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Abstract: Electrical distribution utilities have been dealing with the problem of estimation of
distribution network load diagrams, either for operation studies or in forecasting models for planning
purposes. Load curve assessment is essential for an efficient management of electric distribution
systems. However, the only information available for most of the loads (namely LV loads) is related to
monthly energy consumptions. The general procedure uses measurements in consumers to construct
inference engines that predict load curves using commercial information.
This paper presents a new approach for this problem, based on Kohonen maps and Artificial Neural
Networks (ANN) to estimate load diagramsfor the portuguese distribution utilities. A method for
estimating error bars is also proposed in order to provide a high order information about the
performance of load curve estimation process. Performance attained is discussed as well as the method
to achieve confidence intervals of the main predicted diagrams.
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1 Introduction

The two last decades had testified a continuous growth on consumptions’ estimation studies [1-
5]. Several distribution utilities performed these studies, modelling consumers’ behaviour for
planning purposes, and using inference processes usually based on linear multiregression.
Aiming at solving network planning needs, EDP (Portuguese Power Company) in cooperation
with INESC, developed a Load Curve Management Module that estimates hourly load diagrams
for the distribution network. The project included measurement campaigns, model development
and testing.  EDP has carried out the measurement campaigns, collecting consumptions’
evolution data, in order to implicitly characterise consumers’ behaviour. A large spectrum of
possible load curves is crucial to represent the whole universe of consumers.
The adopted approach can be divided in three phases: a) definition of consumers’ classes
(clustering) from general and commercial information; b) inference of hourly consumptions of a
given consumer, based on its classification and monthly energy consumption; c) estimation of
error bars. On phase a), Kohonen maps were used in the clustering process. Step b) require the
training ANN’s for multiregression purposes, in this case, to obtain load curves from commercial
data. ANN’s used for step c) are trained to learn the error presented by ANN’s obtained on b).
The following sections describe the objectives of all these phases. Finally, some results for LV
cases are presented and commented.

2 Characterization and objectives

2.1 Clustering

Consumers’ classes were defined solely from consumers’ load curves. This approach has the
advantage of producing clusters based on the actual evolution of loads. Each clustering training
pattern contains 24 elements - the registered power consumptions at each hour of a given day.
This training set was presented to a Kohonen clustering tool [6], in order to obtain different load



evolution classes. Results were compared with other classification tools namely Bezdek’s Fuzzy
Isodata algorithm [7].

2.2 Load Curve Estimation

When dealing with MV networks, the main issue is to get load figures consumptions, in any point
of the network, to be used later for planning purposes. The available information from EDP data
base consists mainly on commercial data and energy consumptions.
One intends to estimate load diagrams essentially for MV/LV public stations and MV individual
clients. It was also decided to aggregate LV consumers, dependent from public stations, in order
to evaluate their accumulated load diagram. This will avoid the need for the characterisation of
each LV individual consumer, reducing the size of the data base needed for future studies.
Furthermore, there are no imperative knowledge requirements for a single LV client.

The data obtained from the measurements campaigns was divided following the season (Summer
or Winter), the weekday (workday or weekend) and the type of consumer (LV or MV). Other
available data of LV consumers are the monthly energy consumption, the activity code and hired
power. All those consumers are fed by MV/LV public substations. For MV consumers, the
accessible activity code, peak power, hired power and energy measures for different tariffs are
known.These curves and values must be available in several points of the network, for instance in
a MV/LV public station or in a feeder. Additional parameters are evaluated for each load curve
(peak power use, load factor, loss factor, etc.), which help the characterisation of single or
aggregated consumer behaviour.

3 MODELS

Consumers’ modelling needed two different types of analysis: MV clients and MV/LV public
stations. In fact, a lot of public stations have no load measurement at all, and it is not possible to
infer directly its hourly consumption. Moreover, as a result of the different behaviour according to
time and season of the year, the analysis was divided into Winter/Summer and week/weekend day
cases. The establishment of the partial models for all the mentioned cases was followed by the
development of a integration procedure to cope adequately with intermediate situations. Due to
space limitations only the LV case will be presented.

3.1 Class definition - clustering

Some electrical distribution utilities define an a priori classification of consumers based on its
commercial characteristics. Here, one of the fundamental steps of the adopted approach was the
identification of natural classes from registered diagrams. For that purpose, two different methods
were tried: the Fuzzy Isodata algorithm and self-organised neural networks (Kohonen maps).
After obtaining the cluster’s groups one’s must to induce the relation between classifications and
commercial data (tariff class, hired power and monthly consumption), in order to generalise the
classification of consumers for which  only commercial data is known, (what constitutes the real
future operational conditions).
Some experiences were carried out for determining a good combination of clustering (number of
classes based on load evolution) and inference of classification rules (based on commercial data).
This inference process was based on the observation of the distribution of classes’s members on
the 3D space of commercial data (tariff class, hired power and monthly energy consumption). The
best classification performance was obtained with four classes (figure1) and the following



classification rules:
A Domestic consumers (Tc=0), low hired power (Pc≤6.6kW) and low energy

consumption (E<600kWh);
B Industrial consumers (Tc=4);
C Other consumers (except night consumers);
D Night consumers.

This was validated through a detailed analysis to the list of diagrams belonging to each class.
One’s must stress that Fuzzy Isodata algorithm produced cluster prototypes very similar to
Kohonen ones.
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Figure 1 - Kohonen cluster prototypes
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Figure 2 - Inputs/Outputs from ANN

3.2 Diagram inference

For the Public stations case, the available data for each one of these stations only comprises:
- Number of LV consumers in each operational class;
- Total consumption of energy (monthly) of each class.

The daily diagram estimation in an hourly base (p0, p1, ..., p23) is made using a back-propagation
neural network, as the one, called ANN1, represented in figure2.
ni and Ei are respectively the number of consumers and the total energy (monthly) of class i.

To train this ANN, 2000 patterns were generated from the data file derived from consumption
measurement campaign. Each pattern was generated to include from 80 to 160 LV consumers,
randomly selected from basic sample. For each pattern, the 8 ANN values derive from the
classification of prototype elements, followed by energy counting and sum for each class. The
values from the outputs have equivalence in the 24 time intervals from the aggregated diagram of
the consumers belonging to each pattern. From the 2000 generated patterns, 1500 were taken out
to train the ANN and the remaining were used for test. Figure 3 presents pattern examples of the
test set, comparing the real diagram (cons.) and ANN outputs (NN). The exemplar ANN has an
input/output structure presented in figure2 and was trained with data of LV consumer, summer
and workdays.



Figure 4 similar results but for winter workdays. Global results show that the ANN is capable of
estimating the test set diagrams presenting a rms error around 10%. This may be considered a
good result, if we take into account the arbitrariness inherent to loads evolution.
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Figure 3 - Inference test (LV Summer workday)
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Figure 4 - Inference test (LV Winter workday)

4 Confidence intervals

Despite the good quality of approximation achieved (figures 4 and 5), it is always desirable to
access some measure of the accuracy of each estimated load curve. Of course ANN’s average
errors are always available but they are computed for all the pattern set; the specificity of
consumers characteristics is not taken into account, i. e., average effects will hide the differences
between the very good performance of some estimates and the poor performance of other
estimates. Electrical distribution planners would prefer to obtain a given bandwidth around ANN1

estimated load diagram, in such way that the probability that a real load curve be inside that band
is, let’s say, 0.9.

Figure 5 presents aggregated load diagrams in two given public stations (each graphic) on
different week days (each grey curve inside a graphic). The analysis of a large amount of figures
like this one has shown that there is a structure on the errors spreading. If there is not, we can
only evaluate average errors. We can observe that consumptions’ dispersion is not homogeneous,
that is, the same consumer or group of consumers does not present the same uncertainty around a
medium load curve for all the hours of the days. For instance, the dispersion before 6 a.m. is
usually smaller than at (e.g.)11:00. There has been some interesting work in the area of
confidence interval prediction for ANN’s [8-10]. In most of those studies, authors assume
Gaussian or t-student distributions and estimate output variance as a function of inputs variance
and of input/output transferring function, using Bayes rule. Some of these assumptions are
discussed in [11].

On the present work, there was no need to make any assumptions about distributions of ANN1

inputs, outputs, weights or errors. We propose to train an auxiliary ANN (called ANNd and shown
in figure 6) to learn load curves’s dispersion (error bounds distribution) around  ANN1 output.
These error bars will depend not only on the type and number of consumers aggregated in a given
public station, but also on the hour of the day. Inputs of ANNd are the same of ANN1. Its outputs
are the absolute values of the differences between ANN1 outputs and load consumption curves.
This way, ANNd produces an error dispersion measure of diagrams estimated by ANN1.
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Figure 5 - Two examples of aggregated consumption (grey) and ANN estimation (black); within
each graphic there are several curves for a given public station  for different workdays
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Figure 6 - ANN for estimation of error bars Figure 7 - Inclusion factor versus bandwidth

It must be stressed that there are two kinds of errors: a) errors arising from ANN implementation
limitations and b) errors (called dispersion errors) related with the nature of predicted values. We
shouldn´t expect that ANNd learn the approximation errors that ANN1 couldn’t learn, but we hope
that learn something about the way total error distributes itself over ANN1 outputs and as a
function of its inputs.

After training, the outputs of ANNd were computed for each pattern of the training set and a error
bands were defined around each predicted diagram. Then, for each pattern, we evaluate the
percentage of  load curve points inside its band. We proceed with this study by repeating the
calculus with ½*band, with 2*band, and so on. As a result of this study, Figure 7 was sketched.
This figure characterises the relation between what we have called bandwidth factor and the
percentage of hourly consumptions within the bands. One’s can observe the 90% confidence
intervals corresponds roughly to 2.5 times the band error (output of ANNd). Figure 8 is a
repetition of Figure 6 but also represents the 90% confidence bars around ANN1 output. This tool
provide  power system plannes a measure of the confidence interval of the estimated load curve.

5 Conclusions

It was generated an inference mechanism to estimate consumption from available commercial
data base and monthly energy consumptions for MV/LV public stations and MV consumers.



Results obtained show the adequacy of the adopted approach.
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 Figure 8 - Similar to figure 6 but showing the 90% confidence intervals

The estimation of confidence intervals was performed by a simple but efficient strategy: using a
second ANN to access the error of the first one. This approach has the capital advantage of
including all kind of errors inherent to the load estimator ANN. Moreover, we don’t have to make
any kind of assumptions about training data or weights distribution, or to force any other premises
in order to use Bayes theorem.
The work made so far leads to the conclusion that adopted approach is able to bring very
interesting results and can facilitate adequate results for planning purposes. Presented results
contribute to confirm that adopted tools are most suitable for the proposed objectives.
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