
 
FUZZY CONTROL OF STATE ESTIMATION ROBUSTNESS 

 
Jorge Pereira 

INESC Porto and FEP 
jpereira@inescporto.pt 

Vladimiro Miranda 
INESC Porto and FEUP 
vmiranda@inescporto.pt 

J. Tomé Saraiva 
INESC Porto and FEUP 
jsaraiva@inescporto.pt 

 
INESC Porto- Instituto de Engenharia de Sistemas e Computadores do Porto, P. República 93, 4050-497 Porto, PORTUGAL 

FEUP – Faculty of Engineering of University of Porto 
FEP - Faculty of Economics of University of Porto 

 
 
Abstract – This paper reports the main results from the 

application of Fuzzy Inference Systems – FIS - to tackle the 
problem of selecting the most adequate set of weights to use 
in State Estimation algorithms directed to distribution 
networks. These networks have distinctive characteristics 
regarding transmission ones turning the migration of 
software packages from EMS to DMS systems not 
immediate. In previous papers, the authors described a 
Fuzzy State Estimation algorithm that has the flexibility to 
adequately address these problems. However, this 
algorithm requires fine tuning of several weights. The 
authors solved this problem by training a FIS system using 
a set of rules derived from a large number of exercises run 
for small networks. This approach, as it will be illustrated 
in the paper, proved to be very successful in the sense that 
the FIS displayed a remarkable capacity of generalization 
since it extremely improved the convergence pattern of the 
Fuzzy State Estimation algorithm when analyzing larger 
networks, differently from the ones used to build the 
training set. 

 
Keywords: State Estimation, Fuzzy Control, Fuzzy 

Inference, System Operation. 

1 INTRODUCTION 
The development of a State Estimation approach 

especially shaped for distribution networks demanded 
new models and techniques, to take in account the 
characteristics of such systems that cannot be found in 
classical transmission systems. Among such 
characteristics, one must rank: the reduced number of 
telemetered measurements, the existence of switching as 
major decision variables and the increasing importance 
of distributed generation. 

 
Recently, the authors have reported the development 

and practical implementation in utilities of a new model 
[1]-[2], called Fuzzy State Estimation (FSE) that is able 
to represent all those characteristics. In particular, in the 
absence of measurements, one has adopted a fuzzy 
model for loads and injections, and one has represented 
the classical binary variables associated to switches by 
continuous functions whose error must be minimized. It 
was also developed an approach aiming at allowing the 
representation of islanding, with local distributed 
generators assuring the energization of segments of a 
network disconnected from the main system. 

 

The results of a FSE computer implementation 
including all these features have been extremely good. 
However, the convergence of the method depended on 
the fine tuning of a set of weights or parameters, a task 
that had to be done on a case-by-case basis and by trial 
an error, for each system. 

 
This paper presents an elegant solution for the tuning 

of the algorithm. The trial-and-error method is replaced 
by the use of a set of fuzzy controllers composing a 
Fuzzy Inference System (FIS), whose output are the 
necessary weights to assure a good convergence of the 
State Estimation algorithm. The FIS is composed of sets 
of Fuzzy Rules, which may have a linguistic translation 
in such terms that make the rules understandable by the 
users. This model has been developed to allow the 
simultaneous determination of the correct topology of a 
network and the calculation of the most fit set of values 
for state variables, minimizing errors in measurements. 

 
The paper shows that both Mamdani and Takagi-

Sugeno controllers [3]-[4], work well, for this purpose. 
The success of this approach derives from the fact that it 
was possible to generate a training set having as basis a 
small network. For a small network, it was possible to 
define a coherent set of cases with enough diversity, a 
task almost impossible for a large network, or for the 
network that one wanted to analyze. This definitely was 
a task to avoid, since a major objective was to build a 
learning set and to conduct the training process of the 
FIS independently of each specific network to analyze. 
Another important advantage of this approach 
corresponded to the possibility of running the analysis of 
a small network for a large number of cases, since 
computation time was reduced in this case. This enabled 
building a training set very rich in terms of the diversity 
of situations – topology, generations, loads – that were 
considered. 

 
With trained controllers, one has then been able to 

successfully run the State Estimation procedure for large 
systems, without having any concern for tuning weights 
or parameters. Having learned rules from a small 
system, the fuzzy inference controllers were able to 
generalize and determine the right set of weights that 
assured the global algorithm convergence. 
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This is, in a way, a remarkable result with great 
industrial interest: a numerical algorithm (such as the 
State Estimation) has been tuned to convergence by a 
fuzzy inference system – or, better said, one was able to 
give robustness to numerical algorithms (of the Newton 
type) by using a fuzzy control of algorithm parameters. 
The interest of this approach goes in fact beyond state 
estimation. 

 
Apart from this initial Introductory Section, Section 2 

describes the Fuzzy State Estimation algorithm 
including some of the recent advances as the treatment 
of topology problems and the possibility of system 
splitting. Section 3 gives some insight to the main 
theoretical concepts about Fuzzy Inference Systems. 
Section 4 details the process adopted to built the FIS 
recalling that it was possible to obtain a sufficiently 
general FIS in the sense it was successively applied to 
large systems although it was trained considering results 
from small systems. Section 5 includes results obtained 
with the application of the whole developed 
methodology – issues as quality of the convergence for 
several topologic structures and several sets of input 
data - to large systems and in Section 6 the main 
conclusions will be drawn.  

2 FUZZY STATE ESTIMATION 

2.1 Traditional State Estimation 

State Estimation became a traditional software 
package in Energy Management System, EMS. This 
module has an essential role in achieving a coherent set 
of voltage magnitudes and phases, as well as any other 
value computed from them, considering that there is a 
number of telemetered values, eventually affected by 
errors, read in a widespread way all through the 
network. In this sense, State Estimation aims at 
identifying the values of a set of state variables that most 
adequately fit to the telemetered available data. 

 
The most well-known State Estimation model 

considers that each measurement Z can be expressed in 
terms of state variables X using a function h(X) and will 
generally be affected by an error ε  (1). The State 
Estimation formulation aims at identifying the set of X – 
traditionally voltage magnitudes and phases – so that the 
sum of the weighted squares of the errors is minimized 
(2). In this approach one considers that the errors are 
represented by random variables having zero mean, 
variance 2

iσ  and that they are not correlated. This leads 
to a diagonal co-variance matrix R that is traditionally 
used in (2) to weight the errors. 

 
 ε+= )X(hZ  (1) 

 min εε −1T R  (2) 
 

After substituting ε  obtained from (1) in (2) one 
obtains (3). The optimization of this non-linear 
continuous function – provided topology, transformer 
taps and capacitor sections are considered fix – can be 
achieved by formulating the stationary optimality 
conditions. These can be expressed by (4) in terms of a 
set of non-linear equations function of the state variables 
X. In (4) H is the Jacobean matrix of the measurement 
vector h. 

 
 min ( )[ ] ( )[ ]XhZRXhZ 1T −− −  (3) 

 ( ) ( )[ ] 0XhZRXH 1T =−−  (4) 
 

The set of non-linear equations (4) can be solved by 
an iterative approach as the Newton Raphson. In this 
approach the solution in iteration k+1 is given by (5) 
and is obtained from the solution in iteration k plus a 
deviation namely depending on the gain matrix G (6). 
This matrix must be computed and inverted in each 
iteration of the Newton Raphson algorithm and is 
responsible by itself for a significant part of the 
computation time. 

 

 ( ) ( )[ ] ( )[ ]k1Tk1kk1k XhZRXHGXX −+= −−+  (5) 

 ( )[ ] ( )[ ]k1Tkk XHRXHG −=  (6) 
 
After getting the set of voltage magnitudes and 

phases that better explain the available measurements, 
one can compute all other variables as power flows and 
currents, losses and nodal injections. 
 

This traditional approach relies on three basic 
assumptions: 

- it assumes that the number of telemetered 
measurements available in real time in the Control 
Centers is large enough not only to enable running 
the algorithm but also to achieve redundancy in 
terms of reducing the impact of eventual large 
errors; 

- it considers that the topology of the network is 
known beyond any doubt and is therefore an input 
to the problem; 

- following the previous point, it assumes that the 
network in operation remains connected. This 
means that splitting is not considered, even if it 
may lead to a configuration more adapted to the 
available set of measurements. 

 
These basic assumptions are not always valid in 

distribution networks. To cope with these problems the 
authors developed an integrated approach [1]-[2] 
flexible enough to integrate fuzzy assessments for nodal 
powers, to deal with topologic variables in a novel and 
efficient way and to allow system splitting if that is more 
adequate given the set of measurements. These three 
issues will be addressed in the next three sub-sections. 



 

2.2 Fuzzy State Estimation 

Fuzzy State Estimation admits that, at least, one input 
value is represented by a fuzzy number, as the triangular 
one depicted in Figure 1. Such a concept can be used to 
translate a natural language assessment such as: 

“The load in node k will most likely be 3MW but 
values from 3 to 2 and from 3 to 4 are still possible”. 

 
In this sense, 3 is assigned a maximum compatibility 

degree with this assessment – membership degree 1.0 – 
while values from 3 to 2 and from 3 to 4 are assigned 
decreasing compatibility degrees from 1.0 to 0.0. 

 

0

1
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Figure 1 : Membership function of a triangular fuzzy number. 

Having in mind this concept, the traditional State 
Estimation algorithm was enlarged to accommodate 
fuzzy indications for nodal powers or voltages and it is 
fully detailed in [1]-[2]. Briefly, it works as follows: 

 

i) Build the fuzzy vector of measurements Z~ ; 
ii) Build the vector of central values of the 

measurements, Z. The central value of a fuzzy number 
is the average of the values having membership degree 
1.0; 

iii) Run a crisp traditional State Estimation study 
according to the formulation in sub-section 2.1. The 
output is the state vector 1X ; 

iv) Get the fuzzy deviations between Z~  and Z by 
performing the fuzzy operation (7). 

 

 )X(hZ~Z~ 1−=∆  (7) 
 

v) Obtain the fuzzy deviations of the state variables using 
(8). Add these fuzzy deviations to the crisp values of 
state variables obtained in iii) according to (9). 

 

 Z~)RHG(X~ 1T1 ∆=∆ −−  (8) 
 X~XX~ 1 ∆+=  (9) 

 
vi) For all other variables (power flows, currents, losses, 

nodal injections), consider a non linear function 
depending on voltage magnitudes and phases as, for 
instance (10) for a line flow in branch ij. In this 
expression FLJ  integrates the linear terms of the 

Taylor Series development of ijF  expressed in terms 

of voltage magnitudes and phases, that is terms of state 
variables- 

 
 XJF FLij ∆=∆  (10) 

 
These in turn depend on the deviations on 
measurements through expression (11). This comes (5) 
recognizing that (11) multiplied by )X(hZ − gives 
the deviation of state variables. This way it is possible 

to obtain expressions directly relating an active power 
flow ijF , for instance, with input data (12). 

 

 ( ) ( )[ ] ZRXHGX 1T1 ∆=∆ −−  (11) 

 ( )[ ] Z~RHG)X(JF~ 1T1
1FLij ∆=∆ −−  (12) 

 
vii) The final value of ijF~  is given by the fuzzy addition 

of ijF~∆  with the crisp value ijF  obtained in iii). 

2.3 Topological variables 

Topology issues can be represented by 0-1 variables 
leading to non-continuous formulations. Several 
techniques have been developed within State Estimation 
problems to avoid the combinatorial problems arising 
from this binary nature. References [5]-[6] are examples 
of models of this type. In our formulation, we addressed 
this problem by including topology real valued variables 
having the particular feature of being constrained to a 
binary behavior. Assuming that ijd  is the variable 
representing the status of a branch of a switching device, 
we will include it in the set of state variables, and ijd  
will be constrained by an equation as (13). This equation 
has two real roots (0 and 1) thus allowing enforcing the 
binary result of these state variables while not loosing 
the continuity of the formulation. 

 
 0xx 2 =−  (13) 

 
In practice, a value can be available for dij in the 

database of the SCADA system. In this case, if certainty 
is not absolute about this value, expression (14) shall be 
considered indicating that the final output dij can be 
different from the input mes

ijd  if that is more adequate to 
explain the whole set of measurements. If no data is 
available for dij in the database, expression (15) is used. 

 
 k

2
ij

mes
ij dd ε+=  (14) 

 k
2
ijij dd0 ε+−=  (15) 

 
The expressions of the flows in branches affected by 

this kind of uncertainty must include dij to ensure the 
coherency of the final results as in (16) for the active 
flow from node i to node j.  
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2.4 System splitting 

Splitting is another major feature designed to turn the 
model more flexible and to reduce the gap between 
mathematic formulations and reality. In fact, 
uncertainties regarding the topology in operation can be 



 

adequately addressed using the ideas in 2.3 provided 
that the network remains connected in a single island. In 
this sense, changes in the status of a switching device 
are not yet admitted if they ultimately lead to network 
islanding. Islanding requires the possibility of defining a 
phase reference in each possible island of the network. 
The number and the constitution of the islands are not 
known a priori but the formulation should have the 
flexibility to adapt itself along the algorithm, namely 
taking into account the set of available measurements. 
This means that islanding should be interpreted as an 
additional resource of the State Estimation algorithm to 
provide an output that is more adequate and better 
explains the available measurements. 

 
From a mathematical point of view splitting was not 

considered because a single phase reference was 
selected all along the network. Thus, if splitting was 
considered, some matrixes would become singular. 

 
In our formulation the ability to dynamically consider 

a phase reference for each island was included by 
admitting a phase pseudo measurement on all generation 
nodes, to which it was assigned the value of 0 (17).  

 
 ki 0 ε+=θ  (17) 
 

 In the beginning of the algorithm, a large weight is 
typically assigned to the phase measurement in one of 
the generation nodes, to the largest generation, for 
instance. Smaller weights will be assigned to all other 
phase measurements. This means that the algorithm may 
use this possibility but it will preferably try to compute 
the state variables for a single island configuration. This 
comes from the fact that there is a larger weight 
assigned to a particular reference thus having a larger 
influence in the final result. In this case, changes in the 
phases in the remaining generation nodes will lead to 
residuals that have a minor impact on the final result 
since their weights are reduced. However, if the 
available measurements are more adequately explained 
by admitting splitting, the algorithm can use a phase 
reference in each island, provided there is at least one 
generator in each of them. 

3 FUZZY INFERENCE SYSTEMS 
Instead of using a trial-and-error approach or trying to 

adjust parameters for each different particular system, 
we used Fuzzy Inference Systems (FIS) to define a set of 
weights leading to good algorithm performance and 
convergence. The main problem was to correctly 
identify a set of influence factors that would, when input 
to the FIS, generate correct responses. As we shall see, 
this identification was successful. 

 
A FIS can be defined as a system that transforms or 

maps fuzzy or crisp values to another collection of fuzzy 
or crisp values. At its core there is a Rule Set of fuzzy 

rules and an Inference Mechanism, which calculates the 
level to which rule is activated for a given input pattern. 

 
The most important FIS are of the Mamdani type 

(M-FIS) [3] and of the Takagi-Sugeno type (TS-FIS) 
[4]. Both types of FIS can be represented in a neuro-
-fuzzy form, and learning procedures may be used to set 
their parameters. We used an ANFIS (Adaptive Neuro-
Fuzzy Inference System) [7] to train the TS-FIS and 
NEFPROX (Neuro-Fuzzy Function Approximation) [8] 
to train the M-FIS. 

 
Let us consider a generic inference system with n 

input variables and one output. In the case of the M-FIS 
type the rules are of the type (18). 

 

if x1 is A1j and … and xn is Anj then y is Bj (18) 

 
In rule (18) ( )n1 x,,x !  is the vector of input 

variables, y  is the output variable and ijA  and jB  are 

fuzzy numbers. These fuzzy numbers are represented by 
membership functions and are associated to the input 
variables ix  and to the output variable y  in rule j 

 
The fuzzy numbers A and B can be associated with 

linguistic labels. The final output of the controller is 
obtained by the defuzzification of the result or it is 
obtained with an or operation over the rules results. To 
do this a number of methods can be used in practice, 
namely the Center-of-Gravity or the Mean-of-Maxima 
(see reference [9]). 

 
Training a M-FIS using the NEFPROX means finding 

the parameters of the membership functions related with 
each one of the fuzzy numbers ijA  and jB  and the 

rules that must be considered by the FIS. 
 
On the other hand, in the case of a 1st-order TS-FIS 

the rules are of the type (19). In this case, the output of 
each rule jy  is a crisp value evaluated using a linear 

combination of the input values with coefficients ija . 

if x1 is A1j and … and xn is Anj then 
yj = a0j+a1jx1+…+anjxn (19) 

 
The output y  of the TS-FIS is obtained by the sum of 

individual rule’s outputs, weighted by rule firing 
strengths jg  (20), which result from an and operation 

on rule’s outputs. In expression (20) an  represents the 
number of rules activated by the input values. 
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Training a M-FIS using the ANFIS corresponds to 
find the parameters of the membership functions related 
to each one of the fuzzy numbers ijA , the rules that 

must be considered by the FIS and the coefficients ija  

of the output values of each rule. 
 
For and operations, T-Norms should be used. In 

M-FIS it is usual to adopt the min or the product 
operator while in TS-FIS, the most usual T-Norm used 
is product. If the T-Norm product is used in TS-FIS the 
firing strength jg  for rule j is given by (21), where 

( )iA xf ij  is the membership function of the input fuzzy 

number ijA  evaluated for the input value ix . 

 
 ( ) ( ) ( )nA2A1Aj xfxfxfg njj2j1 ×××= "  (21) 

 
For or operations, T-Conorms should be used. The 

most widely used T-Conorm in M-FIS is the Max 
operator. 

4 TUNNING THE WEIGHTS WITH FIS 

4.1 General aspects 

The FIS concepts briefly presented in the previous 
section will now be applied to the FSE problem in order 
to find a set of weights to be assigned to topological 
variables. In this section we will detail the set of 
influence factors used as input and the procedure that 
was adopted to obtain the FIS parameters. 

4.2 Inputs and outputs 

As we have seen, the inputs to the FIS may be 
interpreted as representing the influence factors that 
condition FIS response. We have selected the following 
influence factors, associated only with nodes and 
branches but also having some relation with topological 
variables (representing switching devices or branches): 

- Connectivity of the branch (CNB) - ratio between 
branch conductance and the average of 
conductances in the two extreme nodes of the 
branch (values taken from the bus admittance 
matrix); 

- Physical characteristic of the branch (PCB) - the 
symmetrical of the ratio of branch conductance 
over branch susceptance; 

- Voltage deviation of the area (VDA) - average of 
voltage magnitudes in the two extreme nodes of the 
branch; 

- Load Level of branch nodes (LLB) - average of 
active power consumption in the two extreme 
nodes of the branch; 

- Significance of the load (SGL) - ratio between the 
LLB variable and the total active power 
consumption of the possible network island where 
the branch is located. 

 
Each of these variables was assigned 5 linguistic 

levels - Very Small, Small, Medium, Large and Very 
Large - represented each one by a Gaussian-type 
membership function (22) with µ median and σ spread. 
The median parameter is the point for which the 
membership function has the maximum value (equal to 
1.0) and the spread is a positive value related with the 
width of the membership function. As an example, 
Figure 2 represents the membership functions of the five 
linguistic levels that can be assigned to variable CNB. In 
the case of linguistic level Medium the parameters µ and 
σ the values 0.504845 and 0.243606, respectively. 
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Figure 2 : Membership values of CNB. 

The output of the M-FIS is defined by 7 levels, 
represented by Gaussian-type functions defined as a 
function of log10(weight). The output of the TS-FIS was 
also defined as the log10(weight). The FIS is then 
applied to find the most convenient weight to be 
associated to each topological variable (see Figure 3). 

M- or TS-FIS weight

x1
CNB

x2
PCB

x3
VDA

x4
LLB

x5
SGL

y

 
Figure 3 : FIS generating the weight to be assigned to a 
topological variable 



 

4.3 Training the FIS 

To build a training set for the FIS, we used a small 
network considering realistic data, and then we 
generated a large number of different and significative 
cases by changing loads, characteristics of lines, voltage 
level in the reference buses, and changes in the topology 
in operation. For each case, we ran seven Fuzzy State 
Estimation procedures. In each one, we fixed the weight 
value of the topological variables. The weights were 
fixed in the set {-6,-5,-4,-3,-2,-1,0} defining the 
log10(weight). From each of these seven runs, we 
selected the case leading to the best performance of the 
state estimation of the algorithm and we included it in 
the training set. At the end of this procedure, we built a 
training set incorporating 14993 points, each of them 
defined by 5 values for input variables (influence 
factors) and by a value for the output variable (weight). 

Using this training set, we proceeded to train a M-FIS 
(with 256 rules) and a TS-FIS (also with 256 rules), with 
success. In both cases, the training process was 
conducted aiming at minimizing the mean square error 
in the training set. As an illustration, in (23) it is 
represented a rule obtained for the M-FIS and in (24) it 
is represented a rule obtained for the TS-FIS. 

 

if x1(CNB) is Small and x2(PCB) is Medium and 
x3(VDA) is Large and x4(LLB) is Small  and 

x5(SGL) is Medium then weight is 10-4 
(23) 

 

if x1(CNB) is Very Large and x2(PCB) is Large 
and x3(VDA) is Small and x4(LLB) is Large  and 

x5(SGL) is Medium then 
y = –0.916422 – 0.013741x1 – 0.036931x2 – 

0.01297x3 + 0.028395x4 – 0.038957x5 

(24) 
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Figure 4 : IEEE 24 bus Test System. 

5 APPLICATION TO LARGE SYSTEMS 

5.1 Network data 

The IEEE 24 bus system was used to evaluate the 
performance of the described approach. The topology of 
the system and the location of the measurements are 
detailed in Figure 4. System data is detailed [10]-[11]. 
Reference [11] also includes the description of the 
system with all substations modeled at the bus section 
level. We focused our attention on the substations 
related to buses 14, 15, 16 and 24 of the original system 
in Figure 4. Figure 5 and Figure 6 show the detailed 
representation at the section level of the substation for 
buses 14 and 15 and for buses 16 and 24, respectively. 
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Figure 5 : Substations 14 and 16 modeled at section level. 
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Figure 6 : Substations 15 and 24 modeled at section level. 

5.2 Simulations 

Different types of topology errors were simulated: 
- Inclusion errors, which occur when the status of 

switching devices responsible for connecting / 
disconnecting a line to the system are reported to 
the estimator as closed while they are actually open 
(that is, the line is erroneously considered to be in 
operation in the system model); 

- Exclusion errors, when the line is erroneously 
considered to be disconnected in the system model, 
which occur when the respective switching devices 
are reported as opened while in fact they are 
closed. 

Table 1 presents the number of iterations of the State 
Estimation algorithm for several situations in which the 
status of some devices are suspect. In the first place, and 
for comparison purposes, it should be said that the 
algorithm takes 4 iterations to converge if no topology 
errors are present in the input data. Regarding the results 



 

in Table 1, when topological errors are considered the 
number of iterations performed by the unique state 
estimation run in each case increases. For the two 
analyzed substations, the Inclusion type errors are the 
most difficult to address. For this network, the Inclusion 
errors lead to several alternative connections turning it 
more difficult to get convergence. 

 

Substation Error 
type 

Switching device 
suspected  

Number 
iterations 

(Without topological errors) 4 
Inclusion 28-30; 14-32 8 14 - 16 
Exclusion 28-30; 14-32 4 
Inclusion 25-26; 24-32 10 15 - 24 
Exclusion 25-26; 24-32 4 

Table 1 : Number of iterations in each simulated case 

In the two cases, a unique suspected branch replaces 
the two suspected switching devices, because these two 
switching devices make the electrical connection of 
branch to the other network equipment. If the switching 
devices are closed the branch is in service and it has 
power flow, otherwise the branch is out of service. 

Table 2 shows the weights associated to each one of 
these four State Estimation problems. These weights are 
obtained using TS-FIS and the input variables have the 
values related with the respective branch. This is the 
branch between nodes 28 and 32 (see Figure 5) in the 
first case and the branch between nodes 26 and 32 (see 
Figure 6) in the other case. 

 

Substation Branch 
suspected Error type Weight 

Inclusion 0.00009486 14 - 16 Between nodes 
28 and 32 Exclusion 0.00016846 

Inclusion 0.00016630 15 - 24 Between nodes 
26 and 32 Exclusion 0.00030740 

Table 2 : Weights associated to each topological variable 

The influence of the weights assigned to the 
topological variables is large. As an example, in the case 
of the inclusion error of the substation 14 - 26: 

- If the weight is 1.0 or 0.1, the FSE algorithm 
doesn’t identify the topological error; 

- If the weight is 0.01, the FSE algorithm identifies 
the topological error in 11 iterations; 

- If the weight is 0.001, the FSE algorithm identifies 
the topological error in 10 iterations; 

- If the weight is 0.00009486, as indicated in Table 
2, the algorithm takes 8 to converge. 

6 CONCLUSIONS 
In this paper we reported an important set of results 

in terms of controlling the convergence and the 
performance of a numerical iterative procedure using a 
set of weights obtained off-line. The success and 
potential applicability of our approach in DMS systems 
derives from the fact that we were able to generate a 
training set having as basis a small network. For a small 

network, it is possible to define a coherent but 
diversified set of cases, a task almost impossible for a 
large network. This feature is specially important 
because an adequate set of weights can be used not only 
to deal with traditional State Estimation algorithms, but 
also to ensure the identification of the correct topology 
in operation. Both types of tested FIS – Mamdani and 
Takagi-Sugeno - have exhibited a remarkable 
generalization capacity, in terms of running State 
Estimation for large networks. This turns it not 
necessary to train the FIS for each specific large 
network to be analyzed. 

The complete procedure has, in our view, a large 
potential since it covers several hot issues in 
distributions networks as the lack of measurements, the 
integration of fuzzy assessments, topology problems and 
the possibility of splitting. Therefore, we believe it can 
be widely used in DMS systems contributing to reduce 
the gap that often exists between reality and software 
models. 
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