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Abstract - This paper presents a new meta-heuristic (EPSO) 
built putting together the best features of Evolution Strategies 
(ES) and Particle Swarm Optimization (PSO). Examples of 
the superiority of EPSO over classical PSO are reported. The 
paper also describes the application of EPSO to real world 
problems, including an application in Opto-electronics and 
another in Power Systems. 
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1. INTRODUCTION 

This paper deals with a new variant in the family of meta-
heuristic algorithms, built over the concepts of Evolution 
Strategies (or Evolutionary Programming) and of Particle 
Swarm Optimization. It is only fair that the method is called 
EPSO - Evolutionary Particle Swarm Optimization. 

Under the name of Evolution Strategies (ES) – see [1] and [2] 
– and Evolutionary Programming (EP) – see [3] – a number 
of models have been developed that rely on Darwinist 
selection to promote progress towards the (unknown) 
optimum. This selection procedure may rely on pure 
stochastic basis or have a deterministic flavor, include elitism 
or yet other characteristics – but, in the end, the general 
principle of the “survival of the fittest” remains. 

These models all use a phenotypic representation of the 
solutions of a problem, contrary to Genetic Algorithms, where 
a binary chromosome is adopted instead. Also, as an inductor 
of variation, they use processes like mutation and 
recombination. 

The ES approach to optimization has proven successful in 
many areas, allowing one to obtain solutions of high quality 
for very difficult problems. However, ES models may be time 
consuming and experiment difficulties for very large 
problems and therefore anything that may accelerate 
convergence will be seen as an advance.  

The most modern ES models combine competition with self-
adaptation. Not only individuals are evolving towards the 
optimum but also some of the characteristics that command 
their evolution are also evolving, making the whole process 
“learn” about the best way to achieve progress. 

Particle Swarm Optimization algorithms [4] [5] rely on a 
different concept. Mimicking zoological behavior, imitating 
the collective or social behavior of animal swarms, flocks or 
schools, a set of particles evolves in the search space 

motivated by three factors: habit, memory and cooperation. 

The first factor impels a particle to follow a path along its 
previous movement direction (it is often called the inertia 
factor). The second factor influences the particle to come 
back on its steps, i.e., to tend to go back to the best position it 
found during its life. The third factor (information exchange) 
induces the particle to move closer to the best point in space 
found by the collective of all particles in its family or group. 

In classical PSO there is no competition among particles or 
self-adaptation of characteristics. In fact, if it were not the 
information exchange factor, each particle would evolve 
independently of all the others. It is this cooperation factor 
that gives all the power to the PSO model. PSO is a recent 
paradigm but it has already demonstrated a big potential, 
although it seems sensitive to the tuning of some weights or 
parameters. 

In this paper, we introduce a third view: Evolutionary self-
adapting Particle Swarm Optimization (EPSO). EPSO puts 
together concepts of ES and of PSO. We will have a swarm of 
particles evolving in the search space; however, these 
particles will also be subject to selection under the 
evolutionary paradigm. This selection acts on the weights or 
parameters governing the behavior of a particle and, 
therefore, one might say that particles displaying the fittest 
behavior will survive and propagate. 

We, however, prefer to explain the method from an 
evolutionary point of view – we see EPSO as an evolutionary 
model where a new operator is introduced to generate 
diversity: the particle movement operator, which contributes 
to the increase of the value of the progress rate towards the 
optimum. 

Using the vocabulary of ES, we have therefore a swarm of 
particles that have object parameters (the variables of the 
problem) and strategic parameters (the parameters that define 
the relative weight of the control factors in particle swarm 
movement); the object parameters evolve according to the 
swarm behavior rules, but the strategic parameters are 
selected according to a self-adaptive evolution strategy 
procedure. Therefore, we expect to join together the 
exploratory power of PSO with the self-adaptation power of 
ES and have as a result the “best of two worlds”. 

As we will demonstrate, EPSO is a very successful model. 
However, it is only fair to give credit to other attempts to 
build bridges between PSO and the world of Evolutionary 
Computing, such as in [6], or to give an adaptive flavor to a 
Swarm-type algorithm, such as in [7]. 



 

2. BRIEF REVIEW OF CLASSICAL PSO 

In the classical PSO, one must have, at a given iteration, a set 
of solutions or alternatives called “particles”. From one 
iteration to the following, each particle iX  moves according 
to a rule that depends on three factors, as follows. 

In order to understand this rule, one must also keep record of 
the best point ib  found by the particle in its past life and the 
current global best point gb found by the swarm of particles 
in their past life. 

The movement rule states that 
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where iV  is called the particle i velocity  and is defined by 
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where the first term of the summation represents inertia or 
habit (the particle keeps moving in the direction it had 
previously moved), the second represents memory (the 
particle is attracted to the best point in its trajectory) and the 
third represents cooperation or information exchange (the 
particle is attracted to the best point found by all particles). 

The parameters wik are weights fixed in the beginning of the 
process. Rndx are random numbers sampled from a uniform 
distribution in [0,1]. Dec(t) is a function decreasing with the 
progress of iterations, reducing progressively the importance 

of the inertia term [8]. Figure 1 illustrates the concept. 

Figure 1 – Illustrating the movement of a particle, influenced 
by three terms. 

3. BRIEF REVIEW OF EVOLUTION STRATEGIES 

In the σSA-ES (self-adaptive Evolution Strategies) model, 
one must have, at a given iteration called generation, a set of 
solutions or alternatives called individuals. Each individual is 
characterized by object parameters (the values of the 
variables describing a solution) and by strategic parameters 
(mutation rates for each variable, mutation correlation angles 
and similar). 

Although there are many variants, we will describe the 
following procedure for reasons that will become obvious 
later on: 

• Each individual is duplicated 

• The strategic parameters of each individual undergo 
mutation 

• The object parameters of each individual are mutated 
under a procedure commanded by its strategic parameters 
(this generates new individuals) 

• A number of individuals undergo recombination (this 
generates new individuals) 

• From the set of parents and sons (the original and the 
new individuals), the best fit are selected to form a new 
generation 

The selection procedure has a number of variants and can be 
ruled by a stochastic tournament or be purely deterministic, 
involve elitism, niching, etc. 

There is an interesting theoretical building providing insight 
on why ES achieve convergence and how a near optimal 
progress rate is achieved [9]. 

4. CRITICIZING PSO 

The most striking point of classical PSO is the fact that it 
depends of a number of parameters defined externally by a 
user, and most certainly with values that are problem 
dependent. 

This is certainly true for the definition of the weights wik, and 
our experience seems to be in agreement with other authors: a 
delicate work of tuning the algorithm is often necessary, in 
practical problems. 

Furthermore, the external definition of the decreasing 
function Dec(t) is also something that can only leave on with 
a feeling of discomfort. It is intuitive that if the inertia term is 
eliminated at an early stage of the process, then the algorithm 
risks to be trapped at some local minimum. Therefore, some 
more tuning is needed. 

To avoid this kind of problem, some authors have suggested 
procedures of “re-seeding” the search by generating new 
particles at distinct places of the search space. 

Last, the random factors Rndk, while introducing an useful 
stochastic flavor, only have a heuristic basis and are not 
sensitive to the evolution of the process. 

Observing PSO as an proto-evolutionary process, we may say 
that: 

• We have in PSO a mechanism to reproduce and generate 
new individuals from a previous set (the movement rule) 
– i.e., we see the new iteration not as a movement of 
particles but as a generation of new alternatives in 
different positions in space 

• But we do not have an explicit selection mechanism in 
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the Darwinist sense; however, the algorithm exhibits a 
positive progress rate because the movement rule induces 
such property implicitly. 

5. EPSO –EVOLUTIONARY SELF-ADAPTING PSO 

The idea behind EPSO [10] is to grant a PSO scheme with an 
explicit selection procedure and with self-adapting properties 
for its parameters. 

At a given iteration, consider a set of solutions or alternatives 
that we will keep calling particles. The general scheme of 
EPSO is the following: 
• REPLICATION - each particle is replicated r times 
• MUTATION - each particle has its weights mutated 
• REPRODUCTION - each mutated particle generates an 

offspring according to the particle movement rule 
• EVALUATION - each offspring has its fitness evaluated 
• SELECTION - by stochastic tournament the best 

particles survive to form a new generation 

The movement rule for EPSO is the following: given a 
particle iX , a new particle new

iX results from 
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So far, this seems like PSO – the movement rule keeps its 
terms of inertia, memory and cooperation. However, the 
weights undego mutation 

)1,0(Nww ik
*
ik τ+=  

where N(0,1) is a random variable with Gaussian distribution, 
0 mean and variance 1; and the global best gb  is randomly 
disturbed to give 
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The τ,τ’ are learning parameters (either fixed or treated also 
as strategic parameters and therefore also subject to 
mutation). 

This scheme benefits from two “pushes” in the right direction: 
the Darwinistic process of selection and the particle 
movement rule and therefore it is natural to expect that it may 
display advantageous convergence properties when compared 
to ES or PSO alone. 

Furthermore, EPSO can also be classified as a self-adaptive 
algorithm, because it relies on the mutation and selection of 
strategic parameters, just as any σ-SA Evolution Strategy. 

6. EXPERIENCE WITH EPSO 

We have conducted a large number of experiments that have 
convinced us of the superiority of EPSO. Some of these 
experiments have been performed on classical test problems 
and in this section we will report results for some of them.  

6.1. Test functions 

The two first functions represent difficult optima to be found, 
the third is the classical function that was used by ES 
researchers to define the concepts of progress rate [9] and the 
forth exhibits a large number of deceiving local optima. 

Schaffer’s function: 
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Rosenbrock function: 
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Sphere function: 
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Alpine function: 
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The parameters used in the tests are presented in Table 1. 
The threshold used as the stopping criterion is listed in the 
“Stop” column (a value close to the exact optimum). 

 

Function n Domain Stop 
f1 2 [-50 , 50]n 1.0E-10 
f2  30 [0 , 30]n 100 
f3 30 [-50 , 50]n 0.01 
f4 2 [0 , 100]n 98.9627 
Table 1:  Parameters used in the test functions. 

 

6.2. Results in the test functions  

The following pictures illustrate the typical convergence in 
the test functions, for the EPSO and PSO. The graphs display 
the evolution of the value of the best solution along the 
successive iterations, and the comparison is made in terms of 
“number of evaluations”, and not in number of iteration steps, 
so that a more fair computing effort comparison can be made. 

The EPSO trials were done by setting the replication index r 
equal to 2 (a particle give origin to two descendents, one of 
them mutated in its strategic parameters, and this offspring is 
subject to stochastic tournament selection). PSO requires only 
one evaluation per particle per iteration, but EPS requires r 
evaluations per particle per iteration. 

The results presented were obtained with a population of 20 
particles, over 500 simulations.  
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Figure 1 - Typical convergence in the Schaffer’s function.  
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Figure 2 - Typical convergence in the Rosenbrock function. 
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Figure 3 - Typical convergence in the Sphere function. 
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Figure 4 - Typical convergence in the Alpine function. 

The results presented in Figures 1, 2, 3 and 4 show a clear 
superiority of the EPSO algorithm.  The PSO results could 
perhaps be optimized if we’d invested an extra effort in 
tuning by hand the strategic parameters. EPSO was able to 
provide better results independently of the strategic parameter 
initialization.  

Notice that the position and the strategic parameters 
(inertia, coordination factor and memory) were always 
initialized randomly for each particle. The results of the PSO 
would have perhaps a margin for improvement if the strategic 
parameters were tuned. EPSO algorithm was able to provide 
good results independently of that initialization.  

This is a very important improvement in the algorithm, 
because the results of Classic PSO are very dependent of the 
strategic parameter initialization [8].  

6.3. MIN-MAX FITNESS FUNCTIONS 

All the previous examples were based on differentiable 
objective functions of continuous variables.  

However, in practice one meets other types of problems 
including discrete variables, or other type of objective 
functions. For instance, in Power System planning, there are 
problems formulated with objective functions of the min-max 
type – for instance, in Risk Analysis. Therefore, it is 
interesting to verify if EPSO behaves well for such problems. 

We have solved, with EPSO, a problem in the design of fiber 
optics filters built with Bragg gratings technology [11]. A 
Bragg grating is a periodic modulation of the index of 
refraction along the fiber core. We will not enter in the details 
of this problem, but we may summarize it as follows: 

• A Bragg grating optical filter may be produced by 
controlled laser beams causing a series of “markings” in 
the glass fiber 

• The number of these markings and their mutual distance 
influence the way light is reflected, when a 
polychromatic wave travels inside the fiber 

• A frequency filter is ideal when it reflects only a specific 
target frequency and allows all other frequencies to travel 
through without attenuation 

There are mathematical models known in Physics that, given 
the geometry of a grating, will tell what’s the behavior of the 
filter in terms of frequencies reflected and attenuated. 
However, there is no direct answer to the inverse problem: 
how to design a grating that may display a specific filtering 
behavior. 

This seemed the perfect problem to test EPSO. It includes 
continuous variables (distance between two consecutive 
gratings) and discrete variables (number of sections with 
distinct grating distances, and number of gratings within each 
section). Furthermore, the objective function was of the min-
Max type:  

min [ Max {Reflection errorI} , i∈F ] 

where 
F – set of frequencies around the target frequency 
Reflection errori = Desired Reflection i – Solution Reflection i  

This problem was successively solved by EPSO and has 
provided INESC with a tool to manufacture optical filters 
according to design specifications. Without further details, we 
show in Figure 5 a graph of the reflection spectrum of a 



 

complex Bragg grating as a function of wavelength, its design 
solution obtained by an EPSO model. It goes without saying 
that this reflection spectrum was considered as of high quality 
by the optical communication experts. 
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Figure 5 – Reflectivity spectrum of a solution for a Bragg 
grating designed by EPSO to filter the 1560 nm wavelength. 
Reflectivity is defined as the ratio between the amplitudes of 
the reflected and the incident waves. 

7. APPLICATION OF EPSO IN POWER SYSTEMS 

7.1. Loss reduction: EPSO vs. Simulated Annealing 

The problem of loss reduction in power networks is related to 
finding a set of control actions that originate branch flows in 
such a way that power losses are minimized. Although the 
objective function is well defined, the control action set 
includes setting excitation levels at generators or taps at 
transformers and capacitor banks – this means that some 
variables may be continuous while other are of discrete 
nature. In a general form 

Minimize         )x,u(Plosses  

Subject           0),,( =pxuϕ  

                       0),,( ≤pxuφ  

The first set of constraints describes the power flow equations 
and the second set is associated with operation limits, namely 
maximum branch flows and limits on admissible voltage 
levels. 

We have compared the performance of EPSO with a 
Simulated Annealing model developed at INESC [12] which 
has been integrated in a DMS environment as is in use in 
some utilities. The test was conducted over the system 
defined in [13], with 24 nodes/36 branches, including 31 
transmission lines, 5 transformers, 11 capacitor banks and 9 
synchronous generators. 

The test was conducted by manipulating only the discrete 

controls (transformer and capacitor bank taps).  For both 
methods the stopping criterion has been defined as running 
270 iterations without objective function improvement. 

A typical convergence pattern observed for both algorithms 
can be observed in Figure 5. 
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Figure 6 - Comparison between convergence in both EPSO 
and Simulated Annealing. 

We found that EPSO not only finds better solutions but that it 
is a more robust algorithm. Both algorithms depend on 
random initialization and random numbers to progress; 
therefore it is normal that not always the same solution is 
reached. What is important is that a user may trust the 
algorithm, i.e., that it will always provide a near-optimal 
solution. 

Algorithm Average losses 
(MW) 

Mean sq. error 
(kW) 

EPSO 10 particles 61.7889 1.96607 

EPSO 20 particles 61.7880 1.48473 

Simulated Annealing 61.7921 9.81175 

 

As we can see in the table above, EPSO reveals superiority in 
terms of the solution found (evaluated by the average 
optimum obtained in 1000 runs) and in terms of its robustness 
(evaluated as the root of the mean square error relative to the 
best solution found). 

In particular, EPSO gives consistently a near-optimum result, 
while the Simulated Annealing model failed many times to 
reach a solution as good (and that’s why the dispersion of 
results in this case is much larger than with EPSO). 

Therefore, EPSO is a much more reliable algorithm for 
practical applications. 

7.2. Voltage control 

For this test we’ve increase the load in several buses of the 
same IEEE 24-bus system. The voltage levels became very 
low and we run the EPSO algorithm to re-dispatch the 



 

reactive power in order to set the voltage back inside the 
limits, having as controls only the transformer taps. This 
scenario was designed in such a way that no solution would 
be found that would respect all the nodal voltage limits. 

If no solution satisfies all constraints, some criterion must be 
specified in order to select some acceptable alternative. We 
have put EPSO/20 particles running under several criteria 
with success, and we will refer to two: a) minimizing the sum 
of voltage deviations outside the admissible voltage band; b) 
minimizing the maximum deviation relative to the admissible 
voltage band. Notice that the second criterion is again of the 
min-max type. 

Figure 7 illustrates the two solutions obtained with the two 
criteria, departing from the same initial condition and 
specifying a lower voltage admissible limit of 0.95 p.u.. The 
fact to notice is that EPSO could work as well with a linear 
criterion and with a min-Max criterion and produce high 
quality solutions. 
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Figure 7 – Comparison of best alternatives under two criteria 
for nodal voltages in a problem with no feasible solution. 

8. CONCLUSIONS 

This papers reports a new and successful meta-heuristic built 
over the concepts of Evolution Strategies and Particle Swarm 
Optimization – EPSO, the Evolutionary self-adaptive Particle 
Swarm Optimization. 

In a number of difficult test problems, EPSO proved its 
superiority over Classical PSO. And in Power System 
problems it showed superiority over Simulated Annealing. 

EPSO not only found better solutions than the other methods 
in competition, but also showed to be a more reliable and 
robust method. It is largely independent of parameter 
initialization, due to its self-adaptive characteristics, and it is 
also largely independent of random initialization, showing a 
very small dispersion in results for a large number of 
independent runs for the same problem. 
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