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Abstract – The paper describes how mapping a neural network 

into a rule-based fuzzy inference system leads to knowledge 
extraction. This mapping makes explicit the knowledge implicitly 
captured by the neural network during the learning stage, by 
transforming it into a set of rules. By applying the method to 
transformer fault diagnosis using dissolved gas-in-oil analysis 
(DGA), one could not only develop intelligent diagnosis systems, 
providing better results than the application of IEC 60599 Table, 
but also generate a new rule table whose application also leads to 
better diagnosis results. 

 
Index Terms— Fault diagnosis, fuzzy logic, neural networks 

I. INTRODUCTION 

This paper is meant to present a practical Table for incipient 
transformer fault diagnosis, improving the existing IEC 60599 
Table based on DGA - Dissolved Gas Analysis. This 
presentation serves as an example of a new technique of 
knowledge extraction from case analysis, which we have 
named TFRENN - Transparent Fuzzy Rule Extraction from 
Neural Networks. Its basic idea is the following: given a data 
base of cases, if a certain type of Artificial Neural Network 
(ANN) can be trained to recognize features in it, then we can 
apply a specific new mathematical transform and convert the 
ANN in a Fuzzy Inference System (FIS) of the Takagi-Sugeno 
type. Associated with the FIS there is a rule base formed by a 
set of fuzzy rules, which may be conveniently manipulated so 
that the knowledge implicitly captured by the ANN becomes 
explicit. This allows knowledge recognition and, hopefully, 
knowledge discovery - we call this "opening the black box". 

In fact, ANN are often referred to as black boxes, because it 
is argued that they do not have explaining capability - 
although they perform well, no logic explanation may be 
offered on why an ANN, facing a given input, generates its 
output. Mathematically, the ANN performs interpolation on 
data, but there are no explicit or individualized rules providing 
an explanation that is significant in human terms. 

The problem of the diagnosis of incipient transformer faults 
has been dealt with DGA methods such as Dornenburg Ratios 
or Rogers Ratios, which are commonly used by utilities and 
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manufacturers[1].The concentration, relative proportion, and 
generation rate of certain byproduct gases dissolved in the 
insulating oil have been extensively used for the estimation of 
the condition of a transformer. One particular technique of 
interest is translated in IEC 60599 document, presenting the 
so-called IEC Ratios [2]. However, the characterization 
achieved so far still has some margin for improvement. 

Both ANN [3] [4] and FIS [5] have been tried in developing 
fault diagnosis systems, but a connection has never been 
established between them. In particular, ANN lack explanation 
capability and FIS efficiency depended on the completeness of 
the knowledge of human specialists. The TRFENN approach, 
however, allows the extraction of a set of rules exhibiting the 
property of transparency, which is a requirement for human 
understanding of a set of rules with linguistic correspondence. 

II. PREVIOUS WORKS WITH ANN 
A number of works on incipient transformer fault diagnosis 

have been published, based on neural networks. In general, the 
systems developed presented promising results and this 
success is mainly due to the neural network ability to learn the 
hidden relations among fault types and dissolved gas 
concentrations. Besides learning abilities, neural networks also 
have the advantage of being able to acquire new information 
by incremental training from newly obtained samples. This is 
not so natural in systems  based on fuzzy rules, with the 
exception of those implementations that also rely on a Back 
propagation procedure to evolve parameters, such as the 
Takagi-Sugeno FIS. 

In [6] we found an artificial neural network approach to 
diagnose and detect faults in transformers based on DGA 
analysis. A two step ANN method is used to detect faults with 
or without cellulose involved. The first ANN provided the 
classification of the three major fault types: overheating, 
corona and arcing while the second ANN was constructed to 
determine if the cellulose was involved. The authors claimed 
that the results of the two-ANN approach were promising even 
with limited sample data. However, if more complex 
relationships had to be learned by the ANN, such as the 
classification of more specific faults, more training data were 
needed. 

A combined ANN and expert system tool (ANNEPS) for 
transformer fault diagnosis is presented in [8]. With the aim of 
including as many known diagnosis rules as possible, the 
knowledge base of the expert system was derived from the 
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IEEE and IEC DGA standards as well as from expert 
experience. The ANNEPS provided a weighted final 
diagnostic result based on the combination of the expert 
system and ANN output. The system also provided 
maintenance action recommendations. The ANNEPS could 
determine thermal faults (distinguishing between four thermal 
stages and overheating of the oil), low energy discharge 
(corona), high energy discharge and arcing, and cellulose 
degradation from normal condition. 

In [10] a comparative study of ANN efficiency for the 
detection of faults in power transformers is presented. Five 
conventional DGA methods were used to train the ANN. The 
ANN diagnosis results were compared with those obtained by 
inspection and a specialist. The studies showed that the ANN 
rate of successful diagnosis were dependent on the criterion 
under consideration. The percentage of correct diagnosis was 
in the range of 87-100%. 

In [11] an evolving neural net (ENNs) for fault diagnosis 
was proposed. An evolutionary algorithm was used to tune the 
ANN parameters to achieve the best model. The results 
showed that the use of the concentration of the gases as input 
of the ANN provided better results than the use of the relation 
between the gases. Another result of this work was that the 
ENNs improved the diagnosis accuracy and learning speed of 
the conventional ANN approaches. 

Table I presents some results of some systems developed 
for transformer diagnosis based on DGA analysis. 

TABLE I – RESULTS OF SOME SYSTEMS FOR T RANSFORMER INCIPIENT FAULT 
DIAGNOSIS 

Reference No. samples 
in the 

database 

Percentage of correct diagnoses of the 
developed system 

Zhang et al 
[6]  

 
- 95% 

Classification of the three main faults 

Huang et al 
[7]  

711 90.30% -training database 
93.81% - testing database 

Wang [8] 210 
 

99.72% - training database 
95.34% - testing database 

Liao et al 
[9]  

711 96.2% 

Guardado 
et al [10] 

33 ANN training Considering: 
Doemberg method – 90.91% 
Modified Roger – 87.88% 
Roger – 90.91% 
IEC – 93.94% 

Huang [11] 820 90.49% and 93.54%, depending on the 
number of inputs 
Classification of 4 fault types 

III. NEURAL NETWORKS 

A Multilayer Feedforward Neural Network, also known as 
Multilayer Perceptron (MLP), basically consists of a finite 
number of successive layers, each having a finite number of 
processor units called neurons (Figure1). Each neuron of every 
layer is connected to every neuron of a following layer 
through synaptic weights.  

 
Figure 1. Multilayer Feedforward Neural Network 

 
Every neuron in a hidden layer calculates: 
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where xi is the i-th input to the net, wij is the weight of the 
connection from input neuron i to hidden neuron j, jθ  is the 
bias of the j-th hidden neuron and f(.) is the activation function 
of the neuron. 

For the output layer, each neuron calculates: 
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where  
jkβ  is the weight of the connection from hidden neuron j to 

output neuron k  ,  
ky   is the k-th output of the net  

kθ    is the bias of the k-th output neuron and  

(.)g  is the activation function of the neuron.  

ANNs are universal approximators. It has been extensively 
demonstrated that a MLP work ing with arbitrary squashing 
functions in hidden neurons can approximate virtually any 
function of interest to any desired degree of accuracy [12]. 

IV.  FUZZY INFERENCE SYSTEMS 

In fuzzy inference systems of the Takagi-Sugeno type (TS-
FIS), the relationships among variables of the system are 
represented by fuzzy IF-THEN rules in the form:  

 Rule 1R :  If 1x  is lC1 and … and nx  is l
nC  

then ),...,(
1 n

l xxfy =             (3) 

where l
i

C  are fuzzy sets, ix  is the input of the system. When 
ly  is a constant, the fuzzy inference system is called a zero-

order TS fuzzy model.  

The firing strength of each rule is calculated by: 

)(
1 iij

n
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where )( iij xµ  is the membership function associated to the 

fuzzy set l
iC  and ∩  represents the product operator (AND 

operator). The consequent of a rule is an affine linear or non-
linear function of the input variables. 

The output of the system is computed as the weighted 
average of the ly , that is: 
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where N is the number of rules of the system.  

V. MAPPING ANN INTO A FIS MODEL 

A. Definition of the topology of the ANN 
This paper deals with a particular subset of ANNs, having 

one hidden layer and with only one output neuron with a linear 
activation function.. The hidden neurons have a particular 
activation sigmoid function, which we will call positive 
sigmoid function  and whose graphic is shown in Figure2: 
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Figure 2. Positive-Sigmoid function 
 

B. Discovering fuzzy logic operators in the ANN 
The concept of f-duality, originally introduced in [13], 

allows us to define a new transform providing an equivalent 
mathematical operation to the operation performed by the 
hidden neurons in the ANN – equation (1). We will not 
describe the details of the concept. Additional Lemmas 
established and proven by us provide the adequate framework 
for transforming an ANN into a FIS [14] [15]. 

Applying the concept of f-duality in an ANN without 
bias jθ , where the activation function f is a positive sigmoid 

such as in (6), and considering that 0
1

≥∑
=

n

i
iji

wx , we have 

proven that the output signal of the hidden neurons can be 
calculated by: 
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This transformation is crucial because we now recognize in 
(7) a logic operator, well known in Fuzzy Logic as Algebraic 
Sum, which is an S-norm (OR-operator). 

Now we can interpret )( iji wxf  as a membership function 

whose linguistic expression may be “ ix  is greater than 
2.3/wij”, by fixing 9.0)/3.2( =ijwf . The reason for this is that 

)(xf  can reach 1 only asymptotically; thus we have set the α-
cut for 9.0=α as a significant linguistic threshold. 

C. Extracting Rules from ANN 

In an ANN as shown in Figure 1 (considering the ANN 
with one output neuron), having the hidden neurons without 

bias, 0
1

≥∑
=

n

i
iji

wx and 0≥iji wx , for each neuron in the hidden 

layer, one rule can be extracted as: 

Rule jR :  If 
∑
=

n

i
iji

wx
1 is A then jjy β=             (8) 

where A is a fuzzy set whose membership function is the 
positive-sigmoid function. 

According to (7), rules as in (8) can be written as: 
Rule jR : If ( jwx 11  is A )*…*( iji wx  is A)* …*( n jn wx  is A) 

then jjy β=                  (9) 

Expression “xi wij is A” may be interpreted as “xi is Aij” if 
one defines the weight wij as a scaling factor of the slope of 
f(.). Then, the fuzzy set Aij becomes defined by a membership 
function )()( ijiij wxfA =µ . Recognizing the operation ∗  as 

the Algebraic Sum operator (OR), we may rewrite (9) as:  

Rule jR : If ( 1x is jA1 ) or…or ( ix is ijA  ) or… or ( nx is njA ) 

then jjy β=                 (10) 

where its firing strength is calculated by the algebraic sum 
operator: 

))(1))...((1((1)(*....*)( 11 njjnjjj AAAAv µµµµ −−−==   (11) 

Finally, the output of the fuzzy system can be extracted as: 
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Since jj vs =  and jj y=β , equation (12) can be rewritten: 
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=

m

j
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1
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We have finally obtained a mathematical description of the 
operation performed by the ANN that has the form of an 
inference system that resembles to a zero-order Takagi-
Sugeno model. However, the fuzzy logic operator used to 
calculate the firing strength of each rule is an S-norm (OR) 
and not a T-norm (AND) as in the canonical form of TS-FIS.  

T-norms and S-norms (representing AND and OR 
operations) may be associated in couples such that for each S-
norm there is a T-norm such that the two together satisfy 
DeMorgan’s Law [16]. 

The T-norm associated with the Algebraic Sum operator 
)1)(1(1),( babaS −−−=  is the Algebraic Product operator 

abbaT =),( . Therefore, each rule extracted in (10) can be 
transformed into: 
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Rule jR : If ( 1x is Not jA1 ) and… …and ( nx is Not njA ) 

then jjy β=                  (14) 

where the rule firing strength is calculated by the algebraic 
product operator (AND operator); the system output becomes 

)1(
1

∑ −=
=

m

j
jj vy β                  (15) 

Rearranging (15), 
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where ∑
=

m

j
j

1
β  is the default value of the fuzzy system output. 

If a bias is used in the hidden neuron, then the consequent 
of rule jR  will change from jjy β=  to 

))(1('

jpjjj
fy θββ −== . If a bias ( outθ ) conditions the output 

neuron, the system output will change to: 
∑ +∑−=

= =

m

j
out

m

j
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where ∑
=

+
m

j
outj

1

θβ is the new default value of the rule [15]. 

D. Enforcing a correct training 
The basic idea to produce a mapping of ANNs into FIS is 

condensed in the previous section. However, there is  a further 
objective: that the rule antecedents extracted from the ANN 
may be meaningful and subject to human interpretation. To 
guarantee this, some constraints have to be enforced. 

If the negation (NOT) is applied to the extracted 
membership )()( ijii wxfA =µ , we will have a new 
membership defined as: 
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Weight wij acts as a scaling factor of the f(.) . Taking the α-
cut for 999.0=α , we can approximate (18) to : 
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where 1999.0)/001.0( ≈=ijwf (Figure 3). 

This new set fuzzy may be described by “smaller than 
ijw/001.0 ”. It is meaningful if 1/001.00 ≤≤ ijw , which  

requires that 001.0≥ijw . With 001.0≥ijw , 10 ≤≤ ix  

(normalized inputs) and 0≥jθ , the correct use of (7) is 

guaranteed since we will always have 0
1

≥∑
=

n

i
ijiwx  and 

0≥iji wx . However, during the training of the neural net the 

bias values can assume any value in [ ]∞+∞−    . To overcome 
this problem, and considering the constraints 001.0≥ijw  and 

0≥jθ , the weights and bias of equation (1) are transformed 

using the exponential function: 
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The new weight ijw

ij
ew += 001.0'  will always be greater 

than 0.001 and the new bias je
j

θθ =' will be greater than zero.  

The backpropagation algorithm commonly used for training 
a neural network can be used taking in account these 
conditions, s imply adjusting wij and jθ  in [ ]∞+−∞   . 

f(x) 

x 
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Figure 3. New Membership Function Extracted 
 
E. Extraction of a Transparent Fuzzy System 

Transparency is a property of fuzzy rule systems that allows 
the interpretation of rules by humans. A fuzzy system is 
transparent only if all rules of the rule base are transparent 
[17]. A rule is considered transparent if, fired by itself, 
produces an output that is meaningful and according to the 
expected behavior of the physical system represented. This 
means that at firing strength  

1)(
1

=∩=
= iij

n

ij xv µ                  (21) 

the system output is  
jyy =                       (22) 

where jy  is the center of the output membership associated 
with the rule. For the case of zero-order Takagi-Sugeno 
models, jy  is equal to the constant consequent. This means 

that the effect of a single rule may be isolated. In non 
transparent fuzzy rule systems, the output is meaningfu l only 
with interpolation of rules. 

To provide the desired transparency to the rule system 
extracted from the ANN, we need to develop a further 
approximation process for all membership functions. In our 
work, this process is performed by using a combination of 5 
membership functions (Figure 4 and Figure 5): 

)()()()()()( 543dim21 xaxaxaxaxax quitesmallverysamllhighmasmall µµµµµµ ++++=  

where [ ]1,0∈x  and [ ]521 ,..., aaa  are parameters that have to 
be identified. In this work the recursive least squares 
algorithm is used for this task.  Based on experience, 
TFRENN is applied in the following manner: 

1. When the learning of the constrained ANN, for a 
specific application, can provide the desired result 
with the value of ijw  restrict to [ ]13 ,001.0 , then the 

extracted membership functions will be approximated 
by using the 5 membership functions in Figure 4 
(case 1). The restriction of ijw  to [ ]13 ,001.0  can be 
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guaranteed during the learning of the ANN. The 
restriction to 001.0>ijw  is already guaranteed using 

ijw' whereas the restriction to 13≤ijw  will be 

guaranteed by avoiding variations in the weights if 
the training leads them to values greater than 13. The 
restrictions imposed on the weights will reduce the 
search space during the ANN learning phase, and 
luckily this can in fact lead to a better generalization. 

 
Figure 4. Membership functions for Case 1 – x axis: values in a normalized 
domain; y axis: membership value. 
 

2. When the learning of the constrained ANN, for a 
specific application, cannot provide the desired result 
with the value of ijw  restrict to [ ]13 ,001.0 , then the 

constrained ANN has to be trained normally with the 
restriction 001.0>ijw . In this case, the extracted 

membership functions for values of ijw  in 

[ ]13 ,001.0  will be approximated by using the 5 
membership functions in Figure 5 (Case 2), whereas 
the extracted membership functions for 13>ijw  will 

not be approximated; they will be used as 
membership functions to the input variables and they 
will be considered as hedges of the membership 
function represented by the linguistic variable 
“small”. 

 
Figure 5. Membership functions for Case 2 – x axis: values in a normalized 
domain; y axis: membership value. 
 

For each rule, the approximated membership functions 
calculated in (23) for each input are then combined. As result, 
a new rule-based system with a total number of transparent 
rules equal to 5n is formed, where n is the number of inputs of 
the system.  

VI. TRANSFORMER FAULT DIAGNOSIS 

A. The transformer fault diagnosis system proposed 
The detection of incipient faults on transformers using DGA 

begins with the observation of the evolution of rates of 
combustible gases that exceed “normal” quantities. If the 
evolution rate per day is greater than a determined level then 
the transformer is suspected to have an active internal fault.  

TABLE II 
IEC 60599 CRITERIA FOR THE INTE RPRETATION OF DGA 

 
Case 

 
Characteristic fault  

42

22

HC
HC

 
2

4

H
CH

 
62

42

HC
HC

 

PD Partial discharge NS <0.1 <0.2 
D1 Discharges of low 

energy 
>1 0.1-0.5 >1 

D2 Discharges of high 
energy 

0.6-2.5 0.1-1 >2 

T1 Thermal fault  
T < 300 0C 

NS >1 but NS <1 

T2 Thermal fault  
300 0C <T < 700 0C 

<0.1 >1 1-4 

T3 Thermal fault  
T > 700 0C 

<0.2 >1 >4 

NS = Non-significant whatever the value 

 

After a first diagnosis of the possible fault, in order to 
obtain confirmation and more detailed information, such as the 
location of the fault, other tests are needed. 

Many techniques for the detection of possible faults of 
transformer using the measurement of gases have been 
established. Table II presents the IEC 60599 criteria, which is 
widely used to interpret the DGA [2]. 

In our work, we trained a neural network of the type 
described above, with 60 neurons in the hidden layer, to 

receive as input data the ratios 
42

22

HC
HC

, 
2

4

H
CH

 and 
62

42

HC
HC

, and 

then classify the transformer faults in the five classes existing 
in our database, according to Table III. This database was 
composed of data of faulty equipment inspected in service, 
used in Publication IEC 60599 [2][18]. Additionally, we had 
available also a database derived from the literature and a 
database obtained from CELPA (Power Stations of Pará, SA - 
Brazil). 

TABLE III – FAULT T YPES IN THE DATABASE 

 Fault Type Number of samples 
T1 Thermal fault - C300T o<  77 

T2 Thermal fault - C300T o>  71 

PD Partial Discharges (corona) 30 
DL Discharges of Low Energy 37 
DH Discharges of High Energy 103 

 
For the classification of the faults the ANN works as a 

discriminating function. If six discriminatory lines were 
created in -0.5, 0.5, 1.5, 2.5, 3.5 and 4.5, the classification of 
the faults would be according to: 
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If ANN output is between [ ]5.05.0   −  then T1 
If ANN output is between [ ]5.15.0    then T2 
If ANN output is between [ ]5.25.1    then PD 
If ANN output  is between [ ]5.35.2    then DL 
If ANN is output between [ ]5.45.3    then DH 

However, to take in account possible cases with not clear 
symptoms (remember that the IEC table leaves regions with 
the label “not identified”) we have decided to fuzzify the ANN 
output using the membership functions of Figure 6. It is 
important to point out that this fuzzification is reasonable 
since the neighboring codes of the ANN output represent 
neighboring faults. 

0.4 0.6 

1 

T1 T2 PD DL DH NI NI 

1.4 1.6 2.4 2.6 3.6 3.4 4.4 4.6 -0.4 -0.6 

I2 I1 I4 I3 I5 I6 

Figure 6. Fuzzy classification of the output of the ANN or the non-transparent 
FIS as well as the transparent FIS (NI means non-identified). 

 

This fuzzification of the output means that a case may be 
classified as follows: 

Diagnosis: Discharge of low energy (possibility = 0.65) or 
Partial Discharge (possibility = 0.35). 

Or, in another case, 

Diagnosis: Thermal Fault T < 300 ºC (possibility = 1) 

Because the membership functions are trapezoidal, there are 
intervals where the diagnosis only formulates one hypothesis, 
and intervals of indecision where two hypotheses are kept. 
This means that the hypothesis with a smaller degree should 
not be discarded as a possibility. 

After training, we have proceeded to the knowledge 
extraction phase, by using our transform to convert the ANN 
to a FIS with 60 rules (recalling that the ANN has 60 hidden 
neurons). These rules formed a non-transparent set and we 
have further applied the transformation described in the 
previous section - as we had three inputs, we have been led to 
a transparent rule set of 125 rules. 

From the results provided for all training and testing data, 
we could see that among the 125 rules there were 30 rules that 
were never activated and could be excluded from the rule 
base. Thus, the final transparent fuzzy system has 95 fuzzy 
rules. 

Finally, these fuzzy rules may be transformed in crisp rules, 
by taking the maximum membership of rule output in each 
case. Examining the crisp rules, we realized that they could be 
grouped and we thus formed the final Table IV.  

 

TABLE  IV - IMPROVED IEC TABLE 
Case  4222 HCHC  24 HCH  6242 HCHC  

PD Partial discharge  
  <0.1  <0.1  >2.6 or <0.36 
  <0.1  0.1-0.36 <0.1 or >1.06 
  0.1-0.36 <0.1  <0.1 
  0.1-0.36      0.36-2.6 >2.6 
  0.36-1.06 <0.36 <0.36 
  0.36-1.06 1.06-2.6 1.06-2.6 
  1.06-2.6 <0.36 <0.36 
  1.06-2.6 0.36-1.06 0.36-1.06 
  >2.6  <0.1  <0.1 
  >2.6  0.1-0.36 <0.36 
  >2.6  0.36-1.06 0.36-1.06 

D1 Discharges of low energy 
  <0.1  <0.1  1..06-2.6 
  0.1-0.36 <0.36 >1.06 
  0.1-0.36 <0.1  0.36-1.06 
  0.36-1.06 0.36-1.06 1.06-2.6 
  0.36-1.06 1.06-2.6 >2.6 
  1.06-2.6 <0.1  >0.36 
  1.06-2.6 0.1-0.36 0.36-2.6 
  1.06-2.6 0.36-2.6 1.06-2.6 
  >2.6  <0.1  >0.1 
  >2.6  0.1-0.36 >0.36 
  >2.6  0.36-1.06 >1.06 
  >2.6  1.06-2.6 <0.1 or  1.06-2.06 

D2 Discha rges of high energy 
  0.36-1.06 <0.36 >1.06 
  1.06-2.6 0.36-1.06 or 1.06-

2.6 
>2.6 

  0.36-1.06 0.36-1.06 >2.6 
  >2.6  1.06-2.6 >2.6 

T1 Thermal fault     T < 300 0C 
  <0.1  0.36-1.06 0.1-1.06 
  <0.1  >1.06 <1.06 
  0.1-0.36 0.36-1.06 0.1-1.06 
  <0.36 >1.06 <1.06 
  0.36-1.06 1.06-2.6 0.1-0.36 

T2 Thermal fault     T> 300 0C 
  <0.1  0.1-0.36 0.1-0.36 
  <0.1  0.36-1.06 <0.1 or >1.06 
  <0.1  >1.06 >1.06 
  0.1-0.36 0.36-1.06 <0.1 or 0.36 -1.06 
  0.1-0.36 >2.6  >1.06 
  0.36-1.06 >2.6  <1.06 

This Table deserv es some comments. First of all, it should 
be interpreted as a proposal to be carefully examined. It 
derives from the database analyzed and from the rule system 
extracted from a ANN. In this respect, it performs well and, in 
fact, better than the IEC Table, as shown in the following 
section.  

Some adjustments may perhaps still be done in order to 
present a more compact table. The lines in the Table are, in 
fact, rules, but these rules are not evenly represented in the 
database of transformer failures used – there are some rules 
that are fired by many cases while other are only activated by 
a few cases. 
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Another point that deserves further consideration is the 
interpretation of the table by experts in dissolved gas analysis, 
in order to confirm the coherence between the knowledge 
extracted and the scientific knowledge about the phenomena 
occurring in a transformer. For instance, it is believed that at 
300 ºC acetylene is not formed; yet, the Table includes rules 
for high levels of C2H2/C2H4 ratios.  

One must keep in mind that the Table refers to ratios and 
not to absolute values of gas concentrations. When examining 
the database, we have confirmed that the cases justifying the 
existence of such rules corresponded to cases of extremely low 
concentrations of C2H2 and C2H4. Therefore high ratios may 
appear and the rule is not in contradiction with known physics 
and chemistry phenomena. It could be argued, however and in 
these cases, that an option such as in the IEC 60599 Table, of 
indicating some ratios as NS (non significant) would be 
preferable. We have decided to present Table IV without these 
references to preserve the information existing in the database. 

B. Comparing several diagnosis systems 

As a result of our work, we have six diagnosis systems to 
compare: the constrained ANN with positive sigmoid 
activation functions (which is equivalent to the non-
transparent FIS) with fuzzified output (ANN/FIS) and crisp 
output (ANN/FIS crisp), the TFRENN transparent FIS with 
fuzzified output (TFRENN) and crisp output (TFRENN crisp), 
the improved table of rules (IEC improved - Table IV) and 
IEC 60599 criteria (Table II). This comparison is in Table V, 
made over a base of 318 cases. 

It is obvious that the Intelligent Diagnosis systems all 
perform better than the crisp sets of rules, and that the IEC 
60599 rule set has the worst performance. It is also interesting 
to notice that the strategy of having a fuzzified output has 
advantages over a crisp classification. In fact, in all cases 
where the diagnosis fell on the indecision band, where two 
hypotheses were produced, always the correct diagnosis has 
been kept as a possibility. However, just taking the highest 
possibility as the final diagnosis may lead to error, as the 
systems with crisp output prove. 

Still, the analysis of the transparent rules extracted by 
TFRENN has allowed knowledge discovery - which led to 
producing a new table for incipient transformer fault diagnosis 
that represents an improvement over the Table included in IEC 
60599. It is important to underline that the same data were 
used in the generation of IEC 60599 and of the new Table 
included in this paper. 

TABLE V - COMPARISON OF METHODS 

 % Corr Und NI Errors 
ANN/FIS 100 5 0 0 

ANN/FIS crisp 99.05 0 0 3 

TFRENN 100 7 0 0 

TFRENN crisp 99.37 0 0 2 

IEC improved 95.91 0 8 5 

IEC 60599 94.02 0 14 5 

The columns in this Table correspond to the following: 
% Corr - Percentage of cases where the output included 

the correct answer 
Und - No. of cases when the fuzzy output indicated two 

possibilities, but one of them still was the 
correct answer 

NI – No. of non-identified cases  
Errors - No. of errors in classification 

VII.  CONCLUSION 

From the results obtained with TFRENN we could observe 
the percentage of correct diagnoses was greater than the 
percentage obtained with IEC 60599. The problem of “no 
decision”, characteristic of the IEC method and other ratio 
methods, has been overcome. All the non-identified faults by 
IEC 60599 were correctly classified, and no errors committed. 

With TFRENN, we were able not only to produce a 
diagnosis system, but a system that may be translated into a 
set of rules with linguistic expression. This allowed 
knowledge discovery and a new table, improving IEC 60599, 
could be built. Although the Intelligent Systems perform 
better, a rule table may allow better understanding of the 
diagnosis and the phenomena involved. 

The advantage of Fuzzy Systems has also been put to 
evidence. In fact, the practical examples have shown that 
when fuzziness is recognized in the linguistic expression of 
knowledge, the diagnosis of faults in transformers has always 
pointed out to, or at least (in marginal cases) not excluded, the 
correct cause of failure, while a crisp representation of 
answers led, in some cases, to error in the diagnosis. A Fuzzy 
answer is, therefore, more informative and more correct. 

Finally, we produced evidence that the separation of 
clusters found in Dissolved Gas Analysis is non-linear or, at 
least, not representable by an interval partition of the domain.  
This evidence results from the fact that both the Fuzzy 
Inference Systems and the ANN based systems produced 
results with accuracy superior to the IEC code. This non-
interval-separable data structure makes it more difficult for 
humans to apprehend knowledge and reinforces the usefulness 
of having an approach involving intelligent systems. 
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