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The unimodal model for the classification of ordinal data
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Abstract

Many real life problems require the classification of items into naturally ordered classes. These problems are traditionally handled by
conventional methods intended for the classification of nominal classes where the order relation is ignored. This paper introduces a new machine
learning paradigm intended for multi-class classification problems where the classes are ordered. The theoretical development of this paradigm
is carried out under the key idea that the random variable class associated with a given query should follow a unimodal distribution. In this
context, two approaches are considered: a parametric, where the random variable class is assumed to follow a specific discrete distribution; a
nonparametric, where the random variable class is assumed to be distribution-free. In either case, the unimodal model can be implemented in
practice by means of feedforward neural networks and support vector machines, for instance. Nevertheless, our main focus is on feedforward
neural networks. We also introduce a new coefficient, rint, to measure the performance of ordinal data classifiers. An experimental study with
artificial and real datasets is presented in order to illustrate the performances of both parametric and nonparametric approaches and compare them
with the performances of other methods. The superiority of the parametric approach is suggested, namely when flexible discrete distributions, a
new concept introduced here, are considered.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many supervised classification problems involve classifying
examples (instances) into classes which have a natural ordering.
Settings in which it is natural to rank instances arise in many
fields, such as econometric modelling, information retrieval
and collaborative filtering. Other applications include stock
trading support systems, where one wants to predict, for
instance, whether to buy, keep or sell a stock, and biomedical
classification problems, where frequently the classes are
ordered. In fact, we have found that in a great number of
applications the classes are ordered, although that is almost
never taken into account; most of the time conventional
methods for nominal classes or regression are used.

The use of conventional methods of supervised classification
is certainly possible, but first of all it is usually harder and
slower to train with these methods and secondly the derived
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classifier might not be really appropriate (see Section 2). On the
other hand, using regression methods introduces an arbitrary
selection of numbers to represent the classes, which in turn
influences both the prediction function and the usual measures
of performance assessment that are used (see Section 4).
However, the use of methods specifically designed for ordered
classes results in simpler classifiers, making it easier to
interpret the factors that are being used to discriminate among
classes (Mathieson, 1995).

The works that take into account the information concerning
the order relation between the classes date back at least
to McCullagh (1980), where a general class of regression
models for ordinal data, which eliminate the need for assigning
scores to the classes, are presented. Herbrich, Graepel, and
Obermayer (1999) applied the Principle of Structural Risk
Minimization as used in support vector machines (Burges,
1998; Vapnik, 1998) to derive a learning algorithm based on
large rank boundaries for the task of ordinal regression. Frank
and Hall (2001) applied a simple method that, in conjunction
with a decision tree learner, enables standard classification
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algorithms to make use of the ordering between the classes.
More recently, Chu presented together with Ghahramani a
probabilistic kernel approach to ordinal regression based on
Gaussian processes (Chu & Ghahramani, 2005) and together
with Keerthi two new support vector machine approaches for
ordinal regression, which optimize multiple thresholds to define
parallel discriminant hyperplanes for the ordinal scales (Chu &
Keerthi, 2005). Other recent works are those by Shen and Joshi
(2005), where the authors first studied the ranking, reranking,
and ordinal regression algorithms proposed in the context of
ranks and margins and then proposed a general framework, and
by Li and Lin (2007), where the authors presented a reduction
framework from ordinal regression to binary classification
based on extended examples. In dos Santos Cardoso, Pinto
da Costa, and Cardoso (2005) a novel framework for ordered
classes, based on replicating the dataset, was introduced in the
context of support vector machines. Finally, in a preliminary
version of our work (Pinto da Costa & Cardoso, 2005), we
proposed a new learning methodology which is extended and
explored in various directions in this paper. Our approach
to the problem of classification of ordinal data takes a very
different perspective relative to that of other authors. It starts
by analysing which characteristics a prediction function for
this kind of data should possess. We were led to conclude
that the distribution of the a posteriori class probabilities
should be unimodal, so that the order relation between the
different classes is respected. This new paradigm is introduced
in Section 2. In Section 3.1, the parametric approach of this
methodology is introduced and developed under the context
of neural networks and then the nonparametric approach is
introduced in Section 3.2. Section 3.3 is devoted to the
exploration of this new paradigm in the context of regression
using both neural networks and support vector machines.

The usual measures of performance comparison are, in
our view, not adequate for assessing the quality of ordinal
data classifiers. This is why we introduce a new measure
of association in Section 4, which is then used to carry
out a comparison between all proposed implementations and
between these and some competing methods. In Section 5,
we conduct an experimental study on artificial and real
datasets. In Section 6 a new statistical concept, that of the
flexibility of a discrete distribution, is presented in order to
theoretically explain the practical results. Finally, we draw the
main conclusions of our work in Section 7.

2. The unimodal paradigm

Let us start by discussing the supervised classification
problem of separating K ordered classes C1 < · · · < CK
in a feature space χ . In a supervised classification problem,
the goal is to find a classifier represented by a map fT :

χ → {Ci }
K
i=1 that minimises some cost functional relative to

the ` examples in a given training set T = {(xi , Cxi )}
`
i=1 ⊂

χ × {Ci }
K
i=1. Bayes decision theory suggests classifying a new

query point x in the class Ck maximising the a posteriori
probability P(Ck |x), i.e., a classifier fT should be defined
so that fT (x) = arg maxCk {P(Ck |x)}. To that end, fT must
estimate the a posteriori probabilities. As an example, assume
that we have a problem with K = 5 classes, namely that
we are interested in classifying the weather temperature into
five classes: {Very cold, Cold, Mild, Hot, Very hot}. There
is clearly a natural ordering between these classes: Very
cold < Cold < Mild < Hot < Very hot. Given a new query point
x containing information about the weather, if the highest a
posteriori probability is, for instance, P(C4|x), then we should
have fT (x) = C4. Now, if we use a classifier which does not
take into account the order relation between the classes, the
second highest a posteriori probability can be, for instance,
P(C1|x). This does not make any sense of having most likely a
Hot day and the second most likely a Very cold day. Given that
there is an order relation between the classes, C1 < · · · < C5,
C3 and C5 are closer to C4 and therefore the second highest a
posteriori probability should be attained in one of these classes.
This means that if the most likely is a Hot day, then the second
most likely should either be a Mild day or a Very hot day. More
generally, the probabilities should decrease monotonically to
the left and to the right of the class where the maximum
probability is attained. This is the main idea behind the method
we propose in this paper.

Our method assumes thus that in a supervised classification
problem with ordered classes, the random variable class
Cx associated with a given query point x should follow a
unimodal distribution. We impose unimodality in two ways.
Firstly, in the so-called parametric approach, we assume a
particular unimodal discrete distribution for Cx, and a classifier
fT estimates the a posteriori probabilities by estimating the
parameters of the assumed distribution. Secondly, in the so-
called nonparametric approach, we assume no distribution for
Cx, hence for the a posteriori probabilities to be estimated by a
classifier fT ; in this case, unimodality is imposed by new error
measures which penalize nonunimodal distributions.

Before moving to the next section, a final remark should
be made. Since we are dealing with ordered classes, we shall
consider throughout the paper, without loss of generality, a
bijective map g : {Ci }

K
i=1 → {1, . . . , K } which assigns the

number k to the class Ck , i.e., g(Ck) = k.

3. Some unimodal classifiers

In this section we present three ways of implementing the
unimodal paradigm in practice. First of all, in the parametric
approach we can choose a unimodal statistical distribution, like
the binomial or Poisson’s, and force the output of a classifier
to follow that distribution. Here, the classifier chosen by us is
neural networks and also support vector machines, but other
classifiers could be chosen as we plan to do in the future.
Secondly, in the nonparametric approach, we show how to force
the output of a neural network to be unimodal without assuming
a statistical distribution. Finally, we show that the parametric
approach can be implemented via regression; we just have to
estimate the parameters of a statistical distribution, which are
numeric, by a regression algorithm.
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3.1. A network architecture for the classification of ordinal
data: The unimodal parametric approach

In order to apply a neural network (Haykin, 1999) to solve
a classification problem, we need first to design an equivalent
function approximation problem by assigning a target value to
each class. Then, for a feedforward architecture, the number
of layers and neurons must be chosen: in fact, the number of
input neurons corresponds to the number of attributes used
to characterise each instance; the number of hidden layers
and neurons is usually determined by model assessment and
selection techniques, and is related to the problem complexity
degree; finally, the number of output neurons depends on the
number of classes in question. For instance, in a two-class
problem, we can use binary target values of 1 for the first
class, 0 for the other, and a network with a single output
interpreted as an estimate of the probability that a given instance
belongs to the first class. On the other hand, in a multi-class
problem 1-of-K , with K > 2, we use target values of 1 for
the correct class, 0 otherwise, and a network with K outputs,
each one corresponding to a particular class and interpreted
as the estimated probability that a given instance belongs to
that class. Nevertheless, while in a two-class problem we can
use the standard logistic function as the activation function of
the output neuron, in a multi-class problem we need to use
the softmax function in the output layer in order to satisfy
the normalisation constraint on the total probability; moreover,
mind that the targets in the multi-class case are not independent
of each other. In either case, the training of the network is
commonly performed using the popular mean square error.
However, this approach does not take into account the order
of the classes and is not, therefore, appropriate for ordinal
multi-class classification problems. We have already introduced
in Pinto da Costa and Cardoso (2005) a new method for
classifying ordinal data. In this work we extend this new
method in various directions.

As previously mentioned, the output layer in a network
intended for classification usually has as many neurons as
there are classes, namely K . Not only we adopt this, but
also maintain the same order between the outputs as that
existing between the classes. In order to impose a unimodal
distribution at the network output, we start by assuming a
unimodal probabilistic model whose unknown parameters are
estimated by the network so that the a posteriori probabilities
at the output neurons follow the assumed model. Many
parametric models can be considered: binomial, truncated
Poisson, hypergeometric, etc. We will explore the first two
models, starting by detailing the binomial. Henceforth, we will
refer to the network implementing the binomial model as the
binomial network, etc (see Fig. 1).

In the binomial network, the output values follow the
binomial distribution B(K −1, p). This distribution is unimodal
in most cases and when it has two modes these are for
contiguous values, which makes sense in our case since
we can have exactly the same probability for two classes.
As this binomial distribution takes integer values in the set
{0, 1, . . . , K − 1}, we will take value 0 to represent class C1,
1 to C2 and so on until value K − 1 to represent class CK . As
K is known, the only unknown parameter is the probability
of success p. Hence, we consider a network architecture as
in Fig. 1 and train it to adjust all connection weights from
layer 1 to layer N . Note that the connections from layer N
to layer N + 1 have a fixed weight equal to one and serve
only to forward the value of p to the output layer of the
network where the probabilities from the binomial distribution
are calculated. Therefore, there is no back-propagation during
training from layer N + 1 to layer N , only between layer N
and its predecessors. For a given query x, the output of layer
N will be a single numerical value in the range [0, 1], which
we call px. Then, the probabilities P(Ck |x) in layer N + 1 are
calculated from the binomial distribution:

P(Ck |x) =
(K − 1)!pk−1

x (1 − px)
K−k

(k − 1)!(K − k)!
, k = 1, 2, . . . , K .

In fact, these probabilities can be calculated recursively to save
computing time, since

P(Ck |x)

P(Ck−1|x)
=

(K − k + 1)px

(k − 1)(1 − px)
and so

P(Ck |x) = P(Ck−1|x)
(K − k + 1)px

(k − 1)(1 − px)
.

We start with P(C1|x) = (1 − px)
K−1 and compute the

other probabilities, P(Ck |x), k = 2, 3, . . . , K , using the
above formula. For training, we have to choose a measure
of error like, for instance, squared error or cross entropy
(deviance) (Hastie, Tibshirani, & Friedman, 2001). Here, when
the training instance x is presented, the error is defined by

K∑
k=1

(P(Ck |x) − δ(k − g(Cx)))
2

=

K∑
k=1

(
(K − 1)!pk−1

x (1 − px)
K−k

(k − 1)!(K − k)!
− δ(k − g(Cx))

)2

, (1)

where δ(k) =

{
1 if k = 0
0 otherwise and g(Cx) is the number corresponding

to the class Cx. Note that the only difference between the
usual mean square error measure and (1) is the term P(Ck |x),
which represents here the binomial probability distribution. The
binomial network is trained to minimise the average value over
all training cases of this error. Finally, in the test phase, we
choose the class Ck which maximises the probability P(Ck |x).

We can assume other discrete distributions, apart from the
binomial, for the final layer. Let us consider the use of the right
truncated Poisson distribution, Pt (λ), where the suffix t stands
for truncated and λ is the distribution parameter. This distribu-
tion takes values in {0, 1, . . . , K − 1}, just as the binomial, but
with probabilities P(X t = x) = c e−λλx

x !
∀x ∈ {0, 1, . . . , K −

1}, where c is the constant such that the sum of the K probabili-
ties equals 1. Given a query x, it can be seen that the a posteriori
probabilities can now be calculated recursively by

P(Ck |x) = P(Ck−1|x)
λx

k − 1
, k = 2, . . . , K ,
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Fig. 1. Binomial network architecture.
and P(C1|x) = (
∑K−1

k=0
λk

x
k!

)−1. Besides the way by which the
a posteriori probabilities are calculated, the only difference be-
tween the binomial and the truncated Poisson networks is in
the penultimate (N th) layer: in the binomial network, the out-
put of this layer corresponds to the value of p, whereas in the
truncated Poisson network, it corresponds to the value of λ.
In the usual Poisson distribution this parameter takes values in
]0, ∞[. However, we are only interested in the range ]0, K [, as
the mode of this distribution is the integer part of λ, bλc.
We will now introduce a nonparametric version of the unimodal
model which, instead of choosing a statistical unimodal
distribution for the outputs of the neural network, tries to oblige
these outputs to be unimodal by imposing constraints on the
error function.

3.2. A network architecture for the classification of ordinal
data: The unimodal nonparametric approach

So far, the unimodal paradigm was implemented by
assuming that the random variable class follows a particular
unimodal discrete distribution that a neural network implements
by estimating the distribution parameters. Now, we assume
that there is no distribution for the class, and design learning
schemes to train networks which try to fit the true class
distribution by exploring the ordinal nature of the classification
problem in the context of the unimodal paradigm.

To our knowledge, there is no way of imposing a unimodal
output to a feedforward neural network without assuming a
particular distribution. Therefore, we define error functions
so that the network weights are adjusted during training in
such a way that the network output y = (y1, . . . , yK ) tends
to be unimodal. Mind that y corresponds to the estimated a
posteriori probabilities, and recall that the error function of the
conventional network is given by

Ec =
1
`

∑̀
j=1

ec(x j ),
where x j ∈ {x(1)
1 , . . . , x(1)

`1
, . . . , x(K )

1 , . . . , x(K )
`K

} is the j th
training example belonging to one of the K classes with
`1, . . . , `K examples, and where the error ec(x j ) in classifying
x j is given by

ec(x j ) =

K∑
k=1

(yk(x j ) − δ(k − g(Cx j )))
2, (2)

g(Cx j ) being the number corresponding to class Cx j . We

start by defining a family of error functions {E (α)
u1 } which

penalize classifying an example x from class Ck in class Ck′ by
considering the αth power of the distance between the numbers
k and k′ as

E (α)
u1 =

1
`

∑̀
j=1

e(α)
u1 (x j ),

where

e(α)
u1 (x j ) =

K∑
k=1

(δ(k − g(Cx j ))(yk(x j ) − 1)2

+ (1 − δ(k − g(Cx j )))|k − g(Cx j )|
α y2

k (x j )). (3)

This is a weighted sum of the K components of the vector
containing the difference between the output vector y(x j ) =

(y1(x j ), . . . , yK (x j )) and the vector representing the class of
Cx j , (0, . . . , 0, 1, 0, . . . , 0). The weights take value 1 (when
k = g(Cx j )), 2α, 3α, . . . , as k moves away from g(Cx j ).
The implementation of the unimodal paradigm stems from the
fact that a network trained with a member of {E (α)

u1 } tends
to produce a unimodal output as the penalty term α tends to
infinity. Nevertheless, we can only aim at getting in practice
a near unimodal network output, since α < ∞. Finally, it is
straightforward to see that ec = e(0)

u1 , hence Ec = E (0)
u1 ; in

this way, it can be seen that the conventional network does
not penalize deviates between true and predicted classes, and
therefore does not make the classification error an increasing
function of such deviate.
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Besides the proposed family of error functions, we also
consider the possibility of taking the classification error to be
proportional to the number of modes at the network output as

Eu2 =
1
`

∑̀
j=1

eu2(x j ),

where

eu2(x j ) = M(x j )ec(x j ) (4)

and M(·) denotes the number of modes at the network output
and is defined by

M(x j ) = I (y1(x j ) > y2(x j )) + I (yK (x j ) > yK−1(x j ))

+

K−1∑
k=2

I (yk(x j ) > yk−1(x j ))I (yk(x j ) > yk+1(x j )),

I being the indicator function. In order to apply back-
propagation during training, it should be noted that the error
function must be differentiable, so we take the approximation
I (x) '

1
1+e−sx for a sufficiently large s (s = 10 000 in all

practical implementations).

3.3. The binomial ordinal classification model via regression

The binomial and truncated Poisson networks led to very
promising results in the datasets considered by us as we shall
see, although it is possible that a more flexible distribution (see
Section 6) with more than one parameter to estimate is needed
for other datasets. Nevertheless, and for the time being, we
will look to the binomial ordinal classification model from a
different perspective, namely that of usual regression. Mind that
the same could be done for the truncated Poisson model.

As is obvious from Section 3.1, the binomial network
estimates the parameter p, which is a real number in the range
[0, 1], and the final layer in the network is only intended to
compute the a posteriori probabilities P(Ck |x), k = 1, . . . , K ,
and thus the error function. From this perspective, the binomial
network is applied as a regression model. However, there
are two main differences between the binomial network and
other models which treat ordinal classification problems as
regression problems. Firstly, in the context of applying the
latter models, arbitrary numbers are usually assigned to the
classes and then usual regression is used, although certainly
influenced by the arbitrary numbers chosen. Secondly, the
error function is not the same we considered for the binomial
network, i.e., 1

`

∑
x
∑K

k=1 (P(Ck |x) − δ(k − g(Cx)))
2, where

g(Cx) is the number corresponding to the class of x and P(Ck |x)

depends on the estimated value of p; instead, the usual Mean
Square Error (MSE), where P(Ck |x) is computed under no
assumption on a probabilistic model, is quite often used. We
will now drop this second difference and consider estimating
the value of the parameter p, not P(Ck |x), using the usual
MSE. Two algorithms will be used to suit this purpose: neural
networks and support vector machines. To treat the problem as
a regression one, the variable class needs to be replaced by a
numerical variable corresponding to the value of p. It is easy to
see that in the binomial distribution B(K −1, p), if the value of
p is in the range [0, 1

K ) then the distribution mode is attained
at 0, which we assume to represent the first class. Generally, if
p is in the range [

i
K , i+1

K ), i = 0, 1, . . . , K − 1, then the mode
is attained at i and so the corresponding class is Ci+1. We will
take the mean value of these intervals to represent the value of p
for each class, i.e., if an observation belongs to class Ci+1 then
the corresponding value of p will be i+0.5

K . Having replaced
the variable class by the numerical variable p, we can now use
any regression algorithm. In the test phase, if for a test query x
we obtain the answer px, then the corresponding class will be
bK pxc + 1.

3.4. Practical implications of the unimodal idea

To implement the unimodal idea to solve a classification
problem with K > 2 classes in neural networks, we have
seen that we can choose an architecture either with one output
neuron in the parametric approach (as the final layer of the
network in Fig. 1 serves only to compute the a posteriori
probabilities according to the chosen distribution) or with K
output neurons in the nonparametric approach. The first option
gave in general the best results in the study that we shall present
in Section 5. Then, in order to train the parametric networks,
with back-propagation, we can either choose the error function
(1) or treat the problem as regression (Section 3.3) and use the
usual MSE.

To use the error function (1), we have to compute the a
posteriori probabilities P(Ck |x) using the binomial, Poisson, or
other discrete distributions. Each class Ck is represented by a
vector of size K containing 0 everywhere but in the kth position,
whose value is 1; this is what is usually done in neural networks
for classification, and therefore our method does not require
additional work in the dataset preparation when compared to
other common approaches.

To use the usual MSE, the class corresponding to an instance
x will be represented by a numerical value px ∈ [0, 1] (see
the last paragraph of the last subsection), and then the usual
regression methods, like neural networks, SVMs and others, are
used.

In the nonparametric networks, where there are K outputs,
one of the error functions (2)–(4) should be used.

We can of course implement the unimodal idea with other
classifiers. We have seen how to do it with SVMs in the
regression context (Section 3.3). Actually, by approaching the
problem from this perspective, any algorithm for regression can
be used. In the classification perspective, we are now mapping
the problem of using the unimodal paradigm into decision trees
and other classification algorithms can be used.

As a final note, we would like to emphasize what we believe
is a practical advantage of our method when compared to
traditional methods. Our unimodal models, in particular the
parametric ones, are less complex. For instance, the binomial
or Poisson networks have only one output neuron regardless
of the number of classes in the problem. This is in contrast
with traditional networks, where the number of output neurons
grows with the number of classes. Eventually, we might have to
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use other discrete distributions with more than one parameter
to estimate in highly complex problems (as we plan for our
future work), but the corresponding number of output neurons
will certainly be much smaller than the number of classes.

4. How to measure the performance of ordinal data
classifiers?

In supervised classification problems with ordered classes,
it is common to assess the performance of the classifier
using measures which are not really appropriate. Very often,
every misclassification is considered equally costly and the
Misclassification Error Rate (MER) is used. Two other
measures that are also usually used are the Mean Square Error
(MSE) and the Mean Absolute Deviation (MAD). Both of these
treat the problem as if it were a regression problem, i.e., the
performance of a classifier fT is assessed in a dataset O ⊂ X
through

MSE =
1

card(O)

∑
x∈O

(g(Cx) − g( fT (x)))2,

and

MAD =
1

card(O)

∑
x∈O

|g(Cx) − g( fT (x))|,

where g(·) corresponds to the number assigned to a class.
However, this assignment is arbitrary and the numbers chosen
to represent the existing classes will evidently influence the
performance measurement given by MSE or MAD. Still, these
two measures are in a way somewhat better than MER, because
they take values which increase with the absolute differences
between “true” and “predicted” class numbers and so the
misclassifications are not taken to be equally costly. In order
to avoid the influence of the numbers chosen to represent
the classes on the performance assessment, we should only
look at the order relation between “true” and “predicted” class
numbers. The use of Spearman’s rank correlation coefficient,
rS , (Press, Flannery, Teukolsky, & Vetterling, 1992; Spearman,
1904) and specially Kendall’s tau-b, τb, (Press et al., 1992)
is a step forward in that direction. For instance, in order to
get rS , we start by defining two rank vectors of length n,
corresponding to the size of the dataset, which are associated
with the variables C and Ĉ , corresponding respectively to the
numbers representing the true and predicted classes. Obviously,
there will be many examples in the dataset with common values
for those variables and we do what is common, i.e., use average
ranks. If R and Q represent the two rank vectors, then rS =∑

(Ri −R̄)(Qi −Q̄)
√∑

(Ri −R̄)2
∑

(Qi −Q̄)2
. As we can see, Spearman’s coefficient is

still dependent on the values chosen for the ranks representing
the classes and so it is not completely appropriate to measure
the performance of ordinal data classifiers. Kendal’s coefficient
is in our view better than the Spearman’s one to compare ordinal
variables, but it is still not completely adequate to evaluate the
results of a classification algorithm. In fact, the variables C and
Ĉ are two special ordinal variables because, as there are usually
very few classes compared to the number of observations, these
Fig. 2. Diagrammatic representation in Ω of v1 and v2 through S1 and S2,
respectively.

variables will take many tied values (most of them, in fact). As
will be seen below, the coefficient introduced by us, rint, takes
this into account by defining a suitable order relation associated
to each variable. Nevertheless, rint is sufficiently general and, if
there were no tied values, it could be applied as it is. It serves
thus to compare any two ordinal variables, whether there are
tied values or not.

Based on the work by Lerman (1992), we will now introduce
rint, a measure of performance that is not sensitive to the values
that are chosen to represent the ordinal classes. Firstly, note
that the only thing that matters is the order relation between
such values, which is the same as the order relation between the
classes. Let O = {o1, o2, . . . , on} represent the dataset where
the performance is to be measured, i.e., the test set, and take
Ω = O × O − {(o1, o1), (o2, o2), . . . , (on, on)} to represent
the set of pairs corresponding to different observations. Finally,
define the order relation Rv as oi Rvo j if and only if v(oi ) ≤

v(o j ), where v represents a qualitative ordinal variable on O.
Let v1 and v2 be two qualitative ordinal variables on O, whose
exact values are of no importance since the only information of
interest to us is the order relation between those values. Under
the previously exposed, each of the variables v1 and v2 can be
fully represented by a subset of Ω . As a motivating example,
suppose that O = {o1, o2, o3, o4} and consider the following
table:

O v1 v2

o1 3 1
o2 2 2
o3 1 3
o4 4 4

“According” to v1, the subset of Ω (which in this case has car-
dinality twelve) whose elements verify the relation Rv1 is S1 =

{(o1, o4), (o2, o1), (o2, o4), (o3, o1), (o3, o2), (o3, o4)}. Simi-
larly, v2 is represented by S2 = {(o1, o2), (o1, o3), (o1, o4), (o2,

o3), (o2, o4), (o3, o4)}. The intersection S1 ∩ S2, which in this
case has three elements, is the key point for the comparison of
the two variables v1 and v2 (see Fig. 2).
We define our measure of association between the two ordinal
variables v1 and v2 to be

rint = A + B
card(S1 ∩ S2)

√
card(S1)card(S2)

,
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where the denominator is considered to normalise the
coefficient, and the constants A and B are such that rint takes
values in the range [−1, 1]: 1 when the two variables are
identical (S1 = S2), and −1 when they are completely opposite
(S1 ∩ S2 = ∅). These two conditions imply that A + B = 1 and
A = −1, respectively; thus, A = −1, B = 2 and therefore

rint = −1 + 2
card(S1 ∩ S2)

√
card(S1)card(S2)

.

This coefficient allows to compare any two ordinal variables.
Our purpose now is to apply it to the performance measurement
of a classifier. As above, we will do that by comparing
the two variables C and Ĉ , corresponding to the true and
predicted classes. As these two variables take values in the set
{1, 2, . . . , K }, there will be many observations with the same
value in each variable. This fact led us to define a quicker
way of computing rint, which is based on the contingency table
crossing C with Ĉ :

Ĉ Total
C 1 2 . . . K

1 n11 n12 . . . n1K n1•

2 n21 n22 . . . n2K n2•

...
...

...
...

...
...

K nK 1 nK 2 . . . nK K nK•

Total n•1 n•2 . . . n•K n

In this table, ni j represents the number of observations whose
true class is Ci and whose predicted class is C j . The total
number of observations whose true class is Ci is given by the
sum of row i , ni•. The total number of observations whose
predicted class is C j is given by the sum of column j , n• j .
Hence,

card(S1) =

K∑
i=1

ni•

(
K∑

j=i

n j• − 1

)
=

K∑
i=1

K∑
j=1

ni•n j• − n,

card(S2) =

K∑
i=1

n•i

(
K∑

j=i

n• j − 1

)
=

K∑
i=1

K∑
j=1

n•i n• j − n,

and

card(S1 ∩ S2) =

K∑
i=1

K∑
j=1

ni j

 K∑
i ′=i

K∑
j ′= j

ni ′ j ′ − 1


=

K∑
i=1

K∑
j=1

K∑
i ′=i

K∑
j ′= j

ni j ni ′ j ′ − n,

which can now be considered in the definition of rint.

5. Experimental study

5.1. Classifying artificial ordinal data

We start by conducting an empirical comparison in
an artificial dataset between the various implementations
of the unimodal paradigm and between these and other
four classification methods. The first of the four methods
is the conventional network which does not account for
an order relation between classes and estimates directly
the a posteriori probabilities without assuming a particular
parametric probabilistic model at the output. The remaining
three methods are specifically intended for the classification
of ordinal data and they are the neural network (NN) based
algorithms pNN by Frank and Hall (2001), which transform
the problem with K classes into K − 1 binary problems, and
iNN by Costa (1996), which proposes a NN with K −1 outputs
to solve the K -class ordinal problem, and the support vector
machine (SVM) based algorithm pSVM also by Frank and
Hall (2001), which maps into SVMs the strategy of the pNN
algorithm. The comparison study is based on two performance
measures: the Misclassification Error Rate (MER), which is the
most commonly used, and rint, the coefficient introduced in the
previous section, which we think is the most appropriate one to
assess the performance of classifiers applied to ordinal data.

As in Pinto da Costa and Cardoso (2005), we began by
generating 1000 examples x = (x1, x2)

T in the unit square
[0, 1] × [0, 1] ⊂ R2 according to a uniform distribution. Then,
we assigned to each example x a class corresponding to a
number

y = min{r ∈ {1, 2, 3, 4, 5} :

br−1 < 10(x1 − 0.5)(x2 − 0.5) + ε < br },

where (b0, b1, b2, b3, b4, b5) = (−∞, −1, −0.1, 0.25, 1, +∞)

determines the class boundaries and ε ∼ N (0, 0.1252) sim-
ulates the possible existence of an error in the assignment of
the true class to x, Cx. Fig. 3(a) depicts the 16.5% of exam-
ples which are assigned to a different class after the addition of
ε. The unbalanced distribution of the random variable class is
shown in Fig. 3(b).

We randomly split the generated dataset into training,
validation and test sets. In order to study the effect of varying
the size of the training set, we considered three possibilities:
2%, 4% and 8% of all the data were used for training. The
validation set had twice the size of the training set and the
remaining data were used for testing. In each of the three
possibilities, the splitting of the data into training, validation
and test was repeated five times in order to obtain more
stable results for MER and rint by averaging and also to
assess the variability of these measures. Each time, several pre-
chosen models were trained. The models were neural networks
with only one hidden layer and a number of hidden neurons
ranging from 3 to 9, and support vector machines of the
class ν-SVR (Scholkopf, Smola, Williamson, & Bartlett, 2000).
We choose a SVM kernel given by a radial basis function,
because this led us to best results, and a parameterization
ν = 0.5, C = 2i , where i ranged from −10 to 11.
The neural networks were not considered only in the pSVM
method, whereas the support vector machines were only
considered in the binomial regression case and in the pSVM
method. The training of the networks was carried out under
Matlab 7 R14 and was done using back-propagation together
with the Levenberg–Marquardt algorithm in the parametric
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Table 1
Mean (variation coefficient) of MER in the artificial dataset for the unimodal models

Misclassification Error Rate (MER)

Model Penalty term (Training, Test) sets’ percent size
(2%, 94%) (4%, 88%) (8%, 76%)

Binomial NN – 0.40 (16%) 0.29 (8%) 0.27 (8%)
Truncated Poisson NN – 0.43 (19%) 0.39 (20%) 0.33 (7%)

Nonparametric NN α = 1 0.55 (16%) 0.44 (16%) 0.35 (21%)
α = 2 0.60 (11%) 0.41 (28%) 0.50 (31%)
α = 3 0.55 (10%) 0.51 (13%) 0.45 (12%)
Number of modes 0.57 (11%) 0.50 (23%) 0.41 (14%)

Binomial regression NN – 0.42 (15%) 0.29 (30%) 0.23 (11%)
Binomial regression SVM – 0.30 (21%) 0.24 (8%) 0.22 (9%)
Table 2
Mean (variation coefficient) of MER in the artificial dataset for four methods
competing with the unimodal models

Misclassification Error Rate (MER)

Model (Training, Test) sets’ percent size
(2%, 94%) (4%, 88%) (8%, 76%)

Conventional NN 0.55 (12%) 0.46 (12%) 0.41 (15%)
pNN 0.46 (17%) 0.38 (8%) 0.32 (17%)
iNN 0.51 (10%) 0.39 (4%) 0.37 (21%)
pSVM 0.43 (16%) 0.29 (9%) 0.23 (12%)

approach and with the Conjugate Gradient Method with the
Polak–Ribiére formula in the nonparametric approach and for
the conventional network. As for support vector machines,
we used the software implementation provided by LIBSVM
2.8. After the five times training, the best model was chosen
according to best mean performance in the validation set and
the results from its performance assessment in the five setups of
test set were used to obtain the mean and variation coefficient
of MER and rint.

Table 1 shows the test results regarding MER for the
various implementations of the unimodal paradigm. It can be
seen that the parametric models (rows 1, 2, 7, 8) exhibit a
performance superior to the nonparametric models (rows 3–6)
in two senses: not only their mean error is lower but also their
generalization ability tends to be less variant with an increase
in the number of training examples. Comparing the four models
of the parametric approach, it can be seen that the best
results are obtained with the binomial distribution. Moreover,
it seems that there are no significant differences between
using binomial networks in the context of classification and
regression. On the other hand, it seems to be more advantageous
to use SVMs rather than NNs in the regression approach,
particularly when there are few training examples. Hence, the
best implementation of the unimodal model for the current
classification problem is the binomial regression SVM with an
error of 0.22, a value close to the Bayes error of 0.165.

Table 2 shows the test results concerning MER for the four
methods competing with the unimodal paradigm. It is possible
to conclude that the performance of the conventional NN is
worse than the performance of the other three methods, which
account for the order relation between the classes contrary to
the conventional NN. Moreover, the method exhibiting the best
performance is pSVM. Finally, comparing Tables 1 and 2, it
follows that our unimodal paradigm has several implementation
strategies that outperform pSVM, thus all other three competing
methods. For illustration purposes, Fig. 4 depicts the true class
boundaries (black lines) and predicted class regions (from
Ĉ1 (white area) to Ĉ5 (darker grey area)) for the five setups
(columns) of the training set with 8% of all the data when the
conventional (top row), binomial (middle row) and truncated
Poisson (bottom row) networks are used. As expected from the
results in the two tables previously analysed, it can be seen that
the predicted class regions are much closer to the true class
regions when they are predicted by both the binomial and the
truncated Poisson networks.

The previous section introduced rint, a measure of
association between two ordinal variables, such as the
variables’ true and predicted classes in an ordinal data
classification problem. Moreover, it was pointed out why rint
is better than MER and other usually used measures for
performance assessment whenever there is an order relation
between the classes. Hence, we now take rint to carry out an
empirical comparison between the generalization ability of the
various approaches proposed under the context of the unimodal
paradigm and between these and the other four competing
methods. This comparison is made by considering Tables 3
and 4. It is important to start by stressing that the variation
coefficient of rint is always lower than the one of MER (see
Tables 1 and 2); thus, we can look with more confidence at
the mean value of rint. In addition, although not shown, rint
tends to be more conservative and less variant than rS , whose
value is affected by the numbers 1, . . . , 5 used to order the
classes. Looking at the tables under analysis, it is clear that
our models, namely the parametric ones, not only learn better
(higher values for rint) but they also learn faster (with fewer
training observations); in truth, they also learn faster in the
sense that both the computational time and burden needed to
estimate their weights are lower, as they have, in general, a
less complex architecture with fewer weights to estimate. In
the end, we are led to the same overall conclusion as before:
our unimodal paradigm has several implementation strategies
that outperform the other competing methods, most of which
are also designed to solve ordinal data classification problems.
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Fig. 3. Artificial dataset. (a) Scatter plot of the 16.5% of examples wrongly classified in the artificial dataset. Also shown are the class boundaries. (b) Class
distribution in the artificial dataset.

Fig. 4. True class boundaries (black lines) and predicted class regions (from Ĉ1 (white area) to Ĉ5 (darker grey area)) for the five setups (columns) of the training
set with 8% of all the data in the artificial dataset when the conventional (top row), binomial (middle row) and truncated Poisson (bottom row) networks are used.

Table 3
Mean (variation coefficient) of rint in the artificial dataset for the unimodal models

rint

Model Penalty term (Training, Test) sets’ percent size
(2%, 94%) (4%, 88%) (8%, 76%)

Binomial NN – 0.78 (6%) 0.83 (1%) 0.84 (1%)
Truncated Poisson NN – 0.77 (7%) 0.81 (2%) 0.82 (1%)

Nonparametric NN α = 1 0.67 (6%) 0.74 (8%) 0.78 (6%)
α = 2 0.65 (9%) 0.76 (7%) 0.70 (11%)
α = 3 0.67 (8%) 0.70 (8%) 0.74 (4%)
Number of modes 0.63 (9%) 0.69 (12%) 0.73 (9%)

Binomial regression NN – 0.73 (10%) 0.82 (5%) 0.85 (2%)
Binomial regression SVM – 0.81 (5%) 0.84 (2%) 0.85 (2%)
5.2. Classifying real ordinal data

In this subsection, we carry out a comparative empirical
study between the approaches considered in the context
of the unimodal model and the four competing methods
described in the beginning of the last subsection. This time,
we propose to solve real ordinal data classification problems
of employee selection and prediction of pasture production
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Table 4
Mean (variation coefficient) of rint in the artificial dataset for four methods
competing with the unimodal models

rint

Model (Training, Test) sets’ percent size
(2%, 94%) (4%, 88%) (8%, 76%)

Conventional NN 0.65 (11%) 0.71 (8%) 0.74 (5%)
pNN 0.71 (13%) 0.75 (4%) 0.80 (3%)
iNN 0.67 (10%) 0.75 (1%) 0.75 (6%)
pSVM 0.72 (12%) 0.82 (2%) 0.85 (2%)

Fig. 5. Class distribution in the ESL dataset.

(the corresponding datasets are available at the WEKA website
http://www.cs.waikato.ac.nz/˜ml/index.html).

5.2.1. Employee selection: The ESL dataset
The ESL dataset contains 488 profiles of applicants for

certain industrial jobs. Expert psychologists of a recruiting
company determined the values of the input attributes (4
attributes, with integer values from 0 to 9) based upon
psychometric test results and interviews with the candidates.
The output is an overall score (1, . . . , 9), corresponding to the
degree of fitness of the candidate to this type of jobs, which is
nonevenly distributed as depicted in Fig. 5.

We randomly split the dataset into training, validation and
test sets. In order to study the effect of varying the size
of the training set, we considered three possibilities: 5%,
10% and 20% of all the data were used for training. The
validation set had the same size of the training set and the
remaining data were used for testing. The training, selection
and testing of the models followed the same methodology
presented in the problem of classifying artificial data. There is
only one difference concerning support vector machines; the
linear kernel was chosen because its results were the best.

The test results are shown in Tables 5 and 6 for the
unimodal paradigm and in Tables 7 and 8 for the four
competing methods. The performance measure MER suggests
that nonparametric neural networks are slightly better than the
conventional neural network and that parametric models are the
best of all. As before, the differences between the performances
of parametric models lie in the assumed distribution for the a
posteriori probabilities (binomial over truncated Poisson), in
the learning paradigm (support vector machines over neural
networks), but not so much in the perspective (classification,
regression). However, these latter conclusions are not so clearly
drawn when rint is the performance measure considered. In
fact, previously pointed out differences, like the assumed
distribution for the a posteriori probabilities, are not so clear
now, particularly for higher training set sizes. Hence, it is only
suggested that parametric models are better than nonparametric
ones, which in turn are slightly better than the conventional
neural network. Overall, the MER statistic suggests that some
of our models are clearly superior to all the others, including
the three competing methods that take into account the order
relation between the classes. On the other hand, although rint
shows a similar suggestion, it is not so marked.

5.2.2. Pasture production: The pasture dataset
The objective related to the pasture dataset is to

predict pasture production from a variety of biophysical
factors. Vegetation and soil variables from areas of grazed
North Island Hill Country with different management
(fertiliser application/stocking rate) histories (1973–1994)
were measured and subdivided into 36 paddocks. Nineteen
vegetation variables (including herbage production), soil
chemical, physical and biological, and water variables were
selected as potentially useful biophysical indicators, totalling
22 attributes.The target feature, the pasture production, has
been categorised in three classes (Low, Medium, High), evenly
distributed in this dataset of 36 instances. Before training, the
data was scaled to fall always within the range [0, 1] given
that the values of the attributes vary by orders of magnitude.
The fertiliser attribute was represented using 4 variables: LL =

(1, 0, 0, 0), LN = (0, 1, 0, 0), HL = (0, 0, 1, 0) and HH =

(0, 0, 0, 1).
We randomly split the dataset into training, validation and

test sets. In order to study the effect of varying the size of the
training set, we considered three possibilities: 8%, 16% and
32% of all the data were used for training. The validation set
had the same size of the training set and the remaining data
were used for testing. The training, selection and testing of
the models followed the same methodology presented in the
problem of classifying artificial data; this time the kernel giving
the best results in support vector machines was a polynomial of
degree 3.

The test results are shown in Tables 9 and 10 for the
unimodal paradigm and in Tables 11 and 12 for the four
competing methods. We start by stressing that the variation
coefficient of MER is high for all models and training set
sizes; therefore, the mean value of MER is less informative
and we cannot properly judge and compare the model’s
performance using it. If in turn we consider rint, we are
led to the suggestion that there are many cases where
nonparametric models are better than parametric ones, but only
the latter exhibit a consistent increasing in performance with an
increasing training set size. In some situations, the competing
methods are comparable to our best models, although there is

http://www.cs.waikato.ac.nz/~ml/index.html


88 J.F. Pinto da Costa et al. / Neural Networks 21 (2008) 78–91
Table 5
Mean (variation coefficient) of MER in the ESL dataset for the unimodal models

Misclassification Error Rate (MER)

Model Penalty term (Training, Test) sets’ percent size
(5%, 90%) (10%, 80%) (20%, 60%)

Binomial NN – 0.43 (25%) 0.43 (13%) 0.33 (7%)
Truncated Poisson NN – 0.54 (15%) 0.47 (18%) 0.46 (19%)

Nonparametric NN α = 1 0.64 (25%) 0.51 (15%) 0.51 (12%)
α = 2 0.65 (13%) 0.52 (22%) 0.48 (14%)
α = 3 0.59 (13%) 0.57 (16%) 0.49 (17%)
Number of modes 0.72 (10%) 0.52 (11%) 0.53 (18%)

Binomial regression NN – 0.42 (16%) 0.36 (17%) 0.31 (8%)
Binomial regression SVM – 0.35 (14%) 0.32 (5%) 0.30 (4%)

Table 6
Mean (variation coefficient) of rint in the ESL dataset for the unimodal models

rint

Model Penalty term (Training, Test) sets’ percent size
(5%, 90%) (10%, 80%) (20%, 60%)

Binomial NN – 0.78 (8%) 0.76 (5%) 0.82 (3%)
Truncated Poisson NN – 0.71 (13%) 0.77 (7%) 0.79 (2%)

Nonparametric NN α = 1 0.61 (23%) 0.70 (11%) 0.73 (4%)
α = 2 0.64 (13%) 0.70 (16%) 0.75 (4%)
α = 3 0.66 (11%) 0.66 (13%) 0.75 (6%)
Number of modes 0.56 (5%) 0.72 (6%) 0.71 (12%)

Binomial regression NN – 0.77 (7%) 0.81 (3%) 0.83 (1%)
Binomial regression SVM – 0.82 (3%) 0.83 (1%) 0.84 (1%)
Table 7
Mean (variation coefficient) of MER in the ESL dataset for four methods
competing with the unimodal models

Misclassification Error Rate (MER)

Model (Training, Test) sets’ percent size
(5%, 90%) (10%, 80%) (20%, 60%)

Conventional NN 0.65 (16%) 0.57 (13%) 0.50 (18%)
pNN 0.55 (11%) 0.42 (8%) 0.35 (6%)
iNN 0.45 (18%) 0.39 (6%) 0.36 (7%)
pSVM 0.49 (9%) 0.39 (12%) 0.35 (10%)

Table 8
Mean (variation coefficient) of rint in the ESL dataset for four methods
competing with the unimodal models

rint

Model (Training, Test) sets’ percent size
(5%, 90%) (10%, 80%) (20%, 60%)

Conventional NN 0.63 (12%) 0.65 (17%) 0.73 (8%)
pNN 0.68 (11%) 0.78 (3%) 0.83 (1%)
iNN 0.76 (7%) 0.79 (1%) 0.81 (1%)
pSVM 0.76 (3%) 0.80 (2%) 0.82 (1%)

always one of our models which outperforms all models under
analysis. As a final note, rint suggests that this is the dataset
where all considered models have more difficulty in solving the
proposed problem.
5.3. General comments and conclusions

The results of our experimental study suggest that the
unimodal model, specially designed to classify ordinal data,
has a superior performance when compared both in terms of
error measures like MER and rint and also computing time.
This was observed in an artificial and two real datasets and
for several methods. In particular, the parametric approach was
in general better than the nonparametric one; especially, when
the binomial model is considered. This motivated us to find a
theoretical explanation for its success, which we expose in the
next section through a new concept that we introduce; that of
the flexibility of a discrete distribution.

6. Flexibility of a discrete distribution

In the previous section, it was suggested that the binomial
network exhibits a better performance; in particular than does
the truncated Poisson. Given two classifiers, we can of course
never say that one is always better than the other. As it is
usually known, the performance of a classifier depends on many
factors and sometimes simpler (or more rigid) classifiers such as
linear discriminant functions outperform more elaborated ones.
Nevertheless, we will show here that the binomial network is
more flexible (less rigid) than the truncated Poisson network.
This greater flexibility explains, in our view, the experimental
findings observed above.
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Table 9
Mean (variation coefficient) of MER in the pasture dataset for the unimodal models

Misclassification Error Rate (MER)

Model Penalty term (Training, Test) sets’ percent size
(8%, 84%) (16%, 68%) (32%, 36%)

Binomial NN – 0.43 (31%) 0.39 (22%) 0.27 (26%)
Truncated Poisson NN – 0.47 (25%) 0.37 (5%) 0.23 (39%)

Nonparametric NN α = 1 0.43 (37%) 0.37 (32%) 0.23 (39%)
α = 2 0.41 (39%) 0.34 (30%) 0.38 (33%)
α = 3 0.43 (41%) 0.33 (41%) 0.38 (33%)
Number of modes 0.45 (42%) 0.35 (27%) 0.33 (31%)

Binomial regression NN – 0.47 (29%) 0.38 (26%) 0.37 (55%)
Binomial regression SVM – 0.43 (22%) 0.41 (22%) 0.37 (38%)
( )

We will start by defining a new concept, which we call

the flexibility of a discrete distribution. This concept has to
do with the “dependence” between consecutive values of the
distribution. We think that a distribution whose consecutive
values are more “independent” might adapt better to certain
problems and can therefore give better results. For instance,
a distribution for which P(X = x + 1) = cP(X = x),
where c is a constant, is very “rigid”, i.e., has no flexibility at
all. This distribution is monotonically increasing or decreasing
(depending on the value of c), and so its mode is always attained
in the extreme classes. The quotient between consecutive values
in this distribution is always the same, the constant c, showing
no variability. The more variable this quotient is, the more
flexible the distribution will be. This was the reasoning which
led us to the following definition:

Definition 1. Given a discrete distribution of probability
function f (x) = P(X = x) > 0, we define its flexibility to

be flexb( f (X)) = Var
(

f (X)
f (X−1)

)
.

In accordance with the definition, a distribution for which
P(X = x + 1) = cP(X = x) has zero flexibility. We will now
find the flexibility of the binomial and right truncated Poisson
distributions.

6.1. Flexibility of the binomial distribution

In the case of a binomial B(M, p), we have

f (x) = P(X = x)

=
M !

x !(M − x)!
px (1 − p)M−x

∀x ∈ {0, 1, . . . , M}.

Hence,

f (X)

f (X − 1)
=

(M + 1)p

(1 − p)

1
X

−
p

(1 − p)
,

and so

flexb( f (X)) = Var
(

f (X)

f (X − 1)

)
=

(
(M + 1)p

1 − p

)2

Var
(

1
X

)
.

In order to find Var 1
X we will use the delta method (Rice,

1994). Briefly, these methods give us a way of approximating
the variance of a function of a random variable: if we want
to approximate the variance of G(X), where X is a random
variable, we start by using the approximation

G(X) ' G(µ) + (X − µ)G ′(µ),

where µ is the mean of X , so that we can get

Var(G(X)) ' Var(X)[G ′(µ)]2.

In our case, G(X) =
1
X and µ = Mp. Therefore,

Var(G(X)) ' Var(X)[G ′(µ)]2
= Mp(1 − p)

(
1

(Mp)2

)2

=
(1 − p)

M3 p3 ,

and so

flexb( f (X)) '

(
(M + 1)p

1 − p

)2
(1 − p)

M3 p3

=
(M + 1)2

M3

1
p(1 − p)

.

6.2. Flexibility of the right truncated Poisson distribution

In the case of the right truncated Poisson distribution Pt (λ),
taking the integer values between 0 and M , we have

f (x) = P(X t = x) = c.
e−λλx

x !
∀x ∈ {0, 1, . . . , M},

where c is the constant such that the sum of the M + 1
probabilities equals 1. Hence,

f (X t )

f (X t − 1)
=

λ

X t
,

and so

flexb( f (X t )) = Var
(

f (X t )

f (X t − 1)

)
= λ2Var

(
1
X t

)
.
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Table 10
Mean (variation coefficient) of rint in the pasture dataset for the unimodal models

rint

Model Penalty term (Training, Test) sets’ percent size
(8%, 84%) (16%, 68%) (32%, 36%)

Binomial NN – 0.65 (14%) 0.68 (11%) 0.77 (10%)
Truncated Poisson NN – 0.65 (14%) 0.73 (9%) 0.79 (10%)

Nonparametric NN α = 1 0.67 (10%) 0.72 (10%) 0.76 (11%)
α = 2 0.68 (10%) 0.74 (6%) 0.69 (6%)
α = 3 0.71 (10%) 0.76 (6%) 0.67 (7%)
Number of modes 0.66 (7%) 0.72 (8%) 0.68 (8%)

Binomial regression NN – 0.62 (12%) 0.69 (8%) 0.71 (18%)
Binomial regression SVM – 0.68 (8%) 0.70 (9%) 0.73 (6%)
Table 11
Mean (variation coefficient) of MER in the pasture dataset for four methods
competing with the unimodal models

Misclassification Error Rate (MER)

Model (Training, Test) sets’ percent size
(8%, 84%) (16%, 68%) (32%, 36%)

Conventional NN 0.47 (29%) 0.40 (28%) 0.43 (44%)
pNN 0.62 (20%) 0.33 (15%) 0.35 (31%)
iNN 0.56 (13%) 0.41 (29%) 0.33 (18%)
pSVM 0.43 (35%) 0.39 (29%) 0.40 (27%)

Now, the variable 1
X t

, when X t is a right truncated Poisson,
has certainly smaller variance than its corresponding regular
Poisson X . Thus, by applying the delta method to the

regular Poisson, we conclude that Var
(

1
X t

)
< Var

(
1
X

)
'

Var(X)[G ′(µ)]2, where µ and Var(X) are λ, the mean and
variance of the regular Poisson distribution, and G(X) =
1
X . We conclude therefore that, for the truncated Poisson
distribution,

flexb( f (X t )) = Var
(

λ

X t

)
<

1
λ

.

In order to compare the flexibilities of the binomial and
truncated Poisson distributions, we oblige their modes to be
equal, i.e., b(M + 1)pc = bλc, as this is the case in our
problem. Thus, taking p '

λ
(M+1)

, the flexibility of the
binomial becomes

(M + 1)2

M3

1
p(1 − p)

'
(M + 1)2

M3

(M + 1)2

λ(M + 1 − λ)

=
(M + 1)3

M3

M + 1
(M + 1 − λ)

1
λ

.

It is clear that this last expression is greater than the upper
bound 1

λ
for the flexibility of the right truncated Poisson

distribution.
We think this notion of flexibility of a distribution explains

the better results obtained by us with the binomial model.
Nevertheless, as said above, more flexible classifiers are not
always better, and so we suggest the use of both the binomial
and the truncated Poisson networks in practice. Actually, as said
before, other discrete distributions, more flexible, for instance
Table 12
Mean (variation coefficient) of rint in the pasture dataset for four methods
competing with the unimodal models

rint

Model (Training, Test) sets’ percent size
(8%, 84%) (16%, 68%) (32%, 36%)

Conventional NN 0.56 (26%) 0.69 (15%) 0.63 (14%)
pNN 0.50 (21%) 0.73 (7%) 0.73 (7%)
iNN 0.54 (11%) 0.69 (9%) 0.70 (3%)
pSVM 0.65 (11%) 0.70 (8%) 0.67 (4%)

with more than one parameter to estimate, might be needed for
more difficult problems. We plan to consider other parametric
networks in our future work.

7. Conclusions and final remarks

In this paper, we presented a novel model for the
supervised classification of ordinal data. Our approach
assumes that the variable class associated with a given
query should follow a unimodal distribution. We pursued this
goal using different ways of imposing unimodality, either
parametrically or nonparametrically, and applying different
learning methodologies, namely neural networks, as well as
support vector machines. The parametric models have generally
shown better performance, particularly the binomial one. In the
future, we plan to use other discrete distributions and other
learning methodologies in order to explore new approaches of
the unimodal paradigm. The concept of flexibility of a discrete
distribution was introduced in order to explain the superiority
of some parametric models over others. We have also showed
that there is always a unimodal model which outperforms other
known methods for ordinal classification.

Some of the proposed models, namely the parametric ones,
learn faster in two senses: first, the computational burden
time required to train the learning models is lower than that
expended during the training of conventional methods; second,
they usually require less training patterns in order to reach
higher generalization abilities.

A new coefficient to measure the performance of ordinal
data classifiers has been introduced and its advantages over
other usual measures, such as the misclassification error rate,
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have been given. In particular, we found that in practical
experiments the mean value for this new coefficient is much
more informative since it has an associated variation coefficient
which is relatively low regardless of the cardinality of the
training, validation and test sets.
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II. Mathématiques, Informatique et Sciences Humaines, 29e année(119),
75–100.

Li, L., & Lin, H. -T. (2007). Ordinal regression by extended binary
classification. In B. Scholkopf, J. C. Platt, & T. Hofmann (Eds.), Advances
in neural information processing systems: Vol. 19. Cambridge, MA: MIT
Press.

Mathieson, M. J. (1995). Ordinal models for neural networks. In A. Refenes,
Y. Abu-Mostafa, & J. Moody (Eds.), Neural networks in financial
engineering. Singapore: World Scientific.

Pinto da Costa, J., & Cardoso, J. S. (2005). Classification of ordinal data using
neural networks. In LNAI: Vol. 3720. Proceedings of the 16th European
conference on machine learning (pp. 690–697). Springer-Verlag.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal
Statistical Society B, 42, 109–142.

Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. (1992). Numerical
recipes in C: The art of scientific computing. Cambridge University Press.

Rice, J. (1994). Mathematical statistics and data analysis (2nd ed.). Duxbury.
Scholkopf, B., Smola, A., Williamson, R. C., & Bartlett, P. L. (2000). New

support vector algorithms. Neural Computation, 12, 1207–1245.
Shen, L., & Joshi, A. K. (2005). Ranking and reranking with perceptron.

Machine Learning, 60, 73–96.
Spearman, C. (1904). The proof and measurement of association between two

things. American Journal of Psychology, 15, 72–101.
Vapnik, V. N. (1998). Statistical learning theory. John Wiley.


	The unimodal model for the classification of ordinal data
	Introduction
	The unimodal paradigm
	Some unimodal classifiers
	A network architecture for the classification of ordinal data: The unimodal parametric approach
	A network architecture for the classification of ordinal data: The unimodal nonparametric approach
	The binomial ordinal classification model via regression
	Practical implications of the unimodal idea

	How to measure the performance of ordinal data classifiers?
	Experimental study
	Classifying artificial ordinal data
	Classifying real ordinal data
	Employee selection: The ESL dataset
	Pasture production: The pasture dataset

	General comments and conclusions

	Flexibility of a discrete distribution
	Flexibility of the binomial distribution
	Flexibility of the right truncated Poisson distribution

	Conclusions and final remarks
	Acknowledgments
	References


