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The eruption solitons that exist under the complex cubic–quintic Ginzburg–Landau equation (CGLE) may
be eliminated by the introduction of a term that in the optical context represents intrapulse Raman
scattering (IRS). The later was observed in direct numerical simulations, and here we have obtained
the system of ordinary differential equations and the corresponding traveling solitons that replace the
eruption solutions. In fact, we have found traveling solutions for a subset of the eruption CGLE parameter
region and a wide range of the IRS parameter. However, for each set of CGLE parameters they are stable
solely above a certain threshold of IRS.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The complex cubic–quintic Ginzburg Landau equation (CGLE)
is a generic equation that describes the emergence of spatio-
temporal patterns on several physical systems, such as, certain
chemical reactions [1], pulse propagation in fibers with linear and
nonlinear gain and spectral filtering [2–5] or pulse generation in
fiber lasers with additive pulse mode-locking or nonlinear polar-
ization rotation [6,7]. This equation supports dissipative solitons
which result from the balance of dispersion and nonlinearity but
also of gain and loss. A diversity of dissipative solitons of the CGLE
have already been found, both analytically [8,9] and numerically
[10–14]. They include high and low amplitude pulse solutions, sin-
gle and multi-humped pulses, solutions that travel with zero or
nonzero velocity (relatively to the group velocity of the central fre-
quency whether they exist in the optical fiber context), and also
solutions with special propagation characteristics, namely, erupting
(or exploding), pulsating and creeping solitons [13].

Here, we have particular interest in the erupting solitons. They
have been found numerically [13] and were experimentally ob-
served in passively mode-locked lasers [15]. Their name comes
from the propagation peculiarities they exhibit: a single hump
pulse propagates undistorted until it develops several side lobules
that resemble an eruption, but then it recovers the original shape,
in a process that repeats intermittently. These solutions exist for
a relatively wide range of the CGLE parameters [13,16] and an ex-
planation for the eruptions based on their linear stability spectrum
was proposed in Ref. [17]. It turns out that certain type of opti-
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cal higher order effects may be able to control these eruptions. In
fact, terms similar to intrapulse Raman scattering (IRS) and self-
steepening (SS) were used by Tian et al. [18] to control the erup-
tions, thus obtaining fixed shape soliton propagation with nonzero
velocity. Also, more recently, Latas et al. [19] obtained asymmetric
eruptions or complete elimination of eruptions by adding IRS, SS
and third order dispersion to the CGLE.

In this Letter, we have focused in the CGLE plus IRS in order
to control the eruptions. First, we used a traveling variable to re-
duce the partial differential equation (PDE) to a system of ordinary
differential equations (ODE). These ODEs were then solved using
a shooting method that searches for single hump solutions in the
eruption CGLE parameter range. Finally, direct numerical simula-
tions were performed to investigate which of those solutions have
stable propagation, such that they effectively correspond to steady
pulses that have replaced the CGLE eruption.

2. Traveling similarity variable and solutions

Let us start with the CGLE with the IRS term

iqZ + 1
2 qT T + |q|2q = iδq + iβqT T + iε|q|2q + iμ|q|4q

− ν|q|4q + Tr
(|q|2)T q (1)

where, in the optical context, q is the normalized envelope of the
optical field, and Z and T are the normalized propagation distance
and retarded time, respectively. The parameters in this equation
are all normalized versions of the actual parameters, namely, δ

stands for linear gain/loss, β > 0 for spectral filtering, ε for non-
linear gain, μ < 0 for the saturation of nonlinear gain, ν < 0 for
the saturation of the Kerr effect and Tr for the intrapulse Ra-
man scattering. Note that the existence of localized pulses of the
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Fig. 1. (a) Amplitude profile and (b) phase derivative for Tr = 0.003 and 0.8.
CGLE requires that δ < 0, such that the background waves are al-
ways eliminated, and that the nonlinear gain parameter is positive
(ε > 0) [16]. Moreover, as already mentioned, erupting solitons ex-
ist for different combinations of these parameters. In this work, we
will take δ = −0.1, β = 0.125 and μ = −0.1. Note that for this set
of values, erupting solitons were found for a region of the param-
eter plane (ν, ε) (see Fig. 5 of [13]).

Since we have observed stable propagation of traveling profiles
with nonzero velocity when the IRS term was considered, we apply
the change of variables q(Z , T ) = F (τ )eiθ(τ )+iωZ , with τ = T − v Z ,
where both F and θ are real. Substitution of this envelope in the
evolution equation results in
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where, following the suggestion of Soto-Crespo et al. [14], we have
defined M = F 2θ ′ in order to obtain a system of ordinary differ-
ential equations suitable for integration. Since we are searching for
localized pulses, we look for solutions such that F → 0 and M → 0
as τ → ∞. Then, the previous system of ODEs reduces to
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which is an approximated version of (2) for small F and M . Since
our numerical simulations indicate that our traveling solitons have
constant phase derivative in their tails, we assume that the decay-
ing solutions of this linear system are of the form F (τ ) = F0egτ

and M(τ ) = N0e2gτ . Note that we should have g real and posi-
tive for τ → −∞, and real and negative for τ → +∞, in order to
Fig. 2. Velocity and propagation constant dependence on Tr for δ = −0.1, β = 0.125,
μ = −0.1, ε = 1.0 and ν = −0.6.

assure that we have real and localized solutions. Inserting these
ansatz into (3) we obtain the following equations for g and N0(
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)
g2 + 2βvg −

(
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)
α2 + vα + 2βδ − ω = 0,

N0 = αF 2
0

where

α = vg + δ + 2βω

g + 4β2 g + 2βv
.

In order to obtain the single-humped solutions of (2), we
planned a shooting procedure that starts from the left or right,
with F and M as exponentials with real g as written above, and
change ω and v in order to obtain one hump solutions with F , F ′
and M small at the other tail, that is, at the right or left, respec-
tively. However, the integration of system (2) is very sensitive to
small changes in ω and v , and the integration easily diverges or
it reveals a profile F with several peaks, which correspond to the
multi-humped solutions of the CGLE. Therefore, since here we are
only interested in the single-humped solution, we used instead a
shooting method that starts at the two tails and does the matching
at the pulse peak location. The initial conditions at both ends were
F = F0eg1,2τ = σ � 1, F ′ = g1,2σ and M = ασ 2, where g1 > 0 at
the left and g2 < 0 at the right tails.
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Fig. 3. (a) Amplitude profile and (b) phase derivative for δ = −0.1, β = 0.125, μ = −0.1 and several other parameters referred on the figures.
Fig. 4. Velocity and propagation constant dependence on ε for δ = −0.1, β = 0.125,
μ = −0.1, ν = −0.6 and Tr = 0.25.

We have applied the shooting method described above and ob-
tained single humped profiles and respective velocities and prop-
agation constants for δ = −0.1, β = 0.125, μ = −0.1, ε = 1.0,
ν = −0.6 and Tr ranging from 0 to 1.2. As we increase Tr , a suc-
cessful shooting was more difficult to achieve. For the values of Tr

considered, the amplitude and phase profiles are reasonably iden-
tical, showing a slight asymmetry as we increase Tr . Fig. 1 shows
the obtained profiles for two different Tr . The velocities vary lin-
early with Tr and, actually, the change in v is considerable (see
Fig. 2). The obtained velocities are all negative, which means that
the pulse is propagating in the direction of its leading edge. On
the other hand, the propagation constant ω only varies by 1% in
all the considered Tr range (see Fig. 2). In fact, these traveling pro-
files and corresponding ω under CGLE plus IRS are very similar to
the CGLE single-humped profiles usually named SP (single-pulse).
The IRS term is essentially responsible for their velocity and also a
tiny asymmetry.

In our study we have restricted the search for traveling soli-
tons to the CGLE eruptions parameter range. Therefore, in this
region, the SP solutions are not stable, exhibiting the character-
istic eruption behavior. However, the profile is always reappearing
in between the periodic eruptions. We shall see in Section 3 at
which extent the IRS effect is able to control the eruption, yielding
Fig. 5. Velocity and propagation constant dependence on ν for δ = −0.1, β = 0.125,
μ = −0.1, ε = 1.0 and Tr = 0.3.

the propagation of a slightly asymmetric SP pulse with almost the
same propagation constant but with non-zero velocity.

In order to have a wider understanding of the eruptions con-
trol by the introduction of the IRS term, we have changed ε and ν
within the region of eruptions that was determined in [13]. First,
we have changed ε while keeping all the other previously con-
sidered CGLE parameters and choosing Tr = 0.25, and used the
shooting procedure to find the corresponding profiles, velocities
and propagation constants. Since our numerical PDE simulations
suggest that for ε < 1 the explosions are controlled by a stronger
IRS effect, we have only searched for profiles from ε = 1 up to
ε = 1.5, which is close to the boundary of the explosions region.
The results are shown in Figs. 3 and 4. In this case, we have found
profiles and ωs that differ considerably. This result is unsurprising,
since we expect that the SP profiles and ωs for the CGLE plus IRS
are close to the corresponding SP profiles of the CGLE only, which
in turn show an increase of the peak amplitude and absolute value
of ω with the nonlinear gain parameter ε [14].

A similar procedure has been applied for changing ν . We have
kept all other parameters as in the first experiment and changed ν
to the left of ν = −0.6, by the same reason as above, i.e., our PDE
simulations indicate that the eruptions are controlled by smaller
values of Tr in that direction of ν . The dependence of the velocity
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Fig. 6. Profile evolution under Eq. (1) for δ = −0.1, β = 0.125, μ = −0.1, ν = −0.6,
ε = 1.5 and (a) Tr = 0.2, (b) Tr = 0.25.

and ω with ν is shown in Fig. 5. Fig. 3 also shows one of the
obtained profiles. In this case, the peak amplitude and the absolute
value of ω decrease as we decrease the absolute value of ν . All
these results are for Tr = 0.3.

3. Stability under PDE simulations

The stability of the profiles obtained in the above section, which
in our study is understood as the ability of the IRS effect to con-
trol the eruptions, can be evaluated using PDE simulations. In these
simulations, we have used a sech profile as input in order to easily
excite any unstable modes that may exist. As already mentioned,
we observed that, for each set of CGLE parameters within the
eruption region, there is a threshold level of IRS that we need
to surpass in order to achieve stable propagation. Fig. 6 shows
the evolution of the profiles for ν = −0.6 and ε = 1.5 and two
different values of Tr , one below the stability threshold and the
other one above it. In this case we have obtained a threshold
level of T th

r = 0.24, where the threshold value means the mini-
mum Tr for which we have observed steadily propagation of an
one hump profile identical to the profile obtained in the shoot-
ing procedure. For comparison purposes, let us also refer that the
threshold level for ε = 1.0 and ν = −0.6 is T th

r = 0.76, while for
ε = 1.0 and ν = −1.06 is T th

r = 0.25. Note that in all these cases
we have δ = −0.1, β = 0.125 and μ = −0.1.

In case the evolution model given by Eq. (1) is applied within
the context of nonlinear pulse propagation in silica fibers, the IRS
term considered here is only an approximation of the full Ra-
man term. According to Ref. [20], this approximation is valid for
pulses that are not too short, i.e., for pulses larger than 50 fs,
and the IRS non-normalized coefficient tr is about 5 fs for silica
fibers. The normalized parameter Tr is given by Tr = tr/t0, where
t0 is the time scale used in the normalization of the time vari-
able. Since the full-width at half-maximum (FWHM) in real and
normalized times are related by T fwhm = tfwhm/t0, the condition
tfwhm � 50 fs implies that we should have a maximum value of
Tr given by T max

r = T fwhm/10. As mentioned before, the normal-
ized profiles have different FWHM as the set of CGLE parameters
changes, so that we have different permitted Tr values in silica
for each set. We have determined the FWHM of the three sets
of CGLE parameters considered above, and calculated the maxi-
mum allowed Tr for each one. For the first set, we have ε = 1.0
and ν = −0.6, and the corresponding FWHM is T fwhm = 3.45. This
means that, in this case, we have T max

r = 0.345, which is smaller
than the threshold value necessary for stable propagation. A simi-
lar scenario is obtained for the set ε = 1.5 and ν = −0.6, for which
we have T fwhm = 2.07 and T max

r = 0.207, a value smaller than the
threshold T th

r = 0.24. A different situation occurs for the third set
of values considered, ε = 1.0 and ν = −1.06, which correspond to
profiles with T fwhm = 3.11. In this case, we have T max

r = 0.311 and
a threshold value of only 0.25, which implies that for this set of
values, eruption control can be effectively achieved by the IRS ef-
fect present in silica fibers.

4. Conclusions

We have observed eruptions control in PDE simulations of the
CGLE whenever a term corresponding to IRS was added. Using a
traveling variable, we have reduced the CGLE plus IRS to a sys-
tem of ODEs which were then solved using a shooting method
that searches for single-humped profiles. This numerical procedure
yields profiles that resemble the single humped solution of the
CGLE with the same parameters, but with a slight asymmetry. The
velocities grow linearly with the IRS parameter. Moreover, the PDE
simulations show that for each set of the CGLE parameters there
is a value of the IRS strength above which the obtained traveling
solutions are effectively stable, thus replacing the CGLE erupting
solutions. Our simulations also show that, for some CGLE parame-
ters, there is an effective control of eruptions for sufficiently large
pulses such that the considered IRS approximated term is valid in
silica fibers.
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