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a b s t r a c t

The scheduling of maintenance actions of generators is not a new problem but gained in recent years a
new interest with the advent of electricity markets because inadequate schedules can have a significative
impact on the revenues of generation companies. In this paper we report the research on this topic
developed during the preparation of the MSc Thesis of the second author. The scheduling problem of
generator maintenance actions is formulated as a mixed integer optimization problem in which we aim
at minimizing the operation cost along the scheduling period plus a penalty on energy not supplied. This
objective function is subjected to a number of constraints detailed in the paper and it includes binary
variables to indicate that a generator is in maintenance in a given week. This optimisation problem
was solved using Simulated Annealing. Simulated Annealing is a very appealing metaheuristic easily
implemented and providing good results in numerous optimization problems. The paper includes results
obtained for a Case Study based on a realistic generation system that includes 29 generation groups. This
research work was proposed and developed with the collaboration of the third and fourth authors, from
EDP Produção, Portugal.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The scheduling of maintenance actions of thermal generators
has been subject of study and analysis by many researchers. This
implicitly recognizes the importance of this topic in the past in the
sense that this was considered a complex problem, whose solution
affected the daily unit commitment and the dispatch of genera-
tion systems. Preventive maintenance approaches can be broadly
grouped in periodic and sequential. In the first group, equipments
in general, and power generators in particular, are submitted to
maintenance actions that are scheduled at fixed time interval, typ-
ically a multiple of some interval taken as the discretization step
of the problem, for instance a week. In the second case, the equip-
ments under analysis are recognized as aging systems in the sense
that maintenance actions should be scheduled when that is more
appropriate considering their actual deterioration. In this sense, the
operation conditions of the equipments should be monitored and
the adoption of condition-based maintenance policies can lead to
more frequent maintenance actions as equipments are aging. This
problem is far more complex than periodic maintenance scheduling
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but it is also more realistic as different equipments can be charac-
terized more accurately regarding their aging stage.

In this paper we address the periodic maintenance problem of
generators, in the sense that we aim at scheduling the maintenance
actions of the generators in the system along a planning horizon
assuming that the time length between maintenance actions of
the same generator is fixed. The generator maintenance schedul-
ing problem had a variety of formulations and integrated a number
of variables and constraints, reflecting different levels of refine-
ments that were progressively introduced. Nevertheless, a number
of features were common to all these formulations: one aimed at
scheduling the maintenance actions of a set of generators along a
period of typically one or two years discretized in weeks, ensur-
ing that the expected demand was supplied, that the maintenance
period of each generator was continuous in time, that the number
of maintenance crews available for each generation technology was
not exceeded and that at least one maintenance action was sched-
uled for each generator along the period under analysis. Typically
this corresponded to a combinatorial problem formulated using
binary variables having the value 1 if a particular generator was
scheduled for maintenance in a particular week. The objective of
this problem was usually the minimization of the generation cost
along the scheduling period.

With the introduction of market mechanisms in the electricity
sector, this problem started to receive increased attention given
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the implications that the adoption of a good maintenance sched-
ule can have in the revenues of generation agents. In this scope,
the generator maintenance scheduling, GMS, problem gained new
dimensions given that it is now strongly affected by uncertainties
namely determining the behaviour of the demand, by the presence
of renewable generation, several of them dependent on volatile pri-
mary resources, and also being dependent on electricity prices now
determined by market mechanisms.

In this context, this paper describes a GMS model developed
in the scope of the MSc thesis concluded in July 2009 by the sec-
ond author and in close cooperation with a Portuguese generation
company. The model aims at minimizing the cost of generating
electricity to meet the demand along the period of one year dis-
cretized in 52 weeks, considering minimum and maximum limits
of generation units, as well as several other constraints directly
related with the maintenance problem. The problem includes
binary variables to model a generator being scheduled for main-
tenance in a particular week. In order to solve this combinatorial
problem it was used a well known meta-heuristic, Simulated
Annealing that proved to be very efficient in several tests that were
performed. This paper includes a Case Study considering a genera-
tion system integrating 29 thermal generators and expected values
both for weekly values of the demand and for the energy coming
from other sources and from interconnections with other countries.

According to these ideas this paper is structured as follows.
Section 2 summarizes some models and approaches available in
the literature addressing the generator maintenance scheduling,
GMS, problem together with some general indications on Simu-
lated Annealing. Section 3 describes the GMS optimization problem
and Section 4 details the application of Simulated Annealing to this
problem. Finally, Section 5 presents the Case Study and Section 6
draws the most relevant conclusions.

2. Literature review

2.1. Generation maintenance scheduling approaches

The definition of schedules to implement maintenance actions
on generation units has been addressed in the past as it is recog-
nized by the number of papers on this topic. These formulations
can be grouped in two large sets: the first one including approaches
using traditional optimisation techniques and the second adopting
metaheuristics to address the integer nature of several variables.

Regarding the first group, Ref. [1] formulates the optimization
problem to identify the most adequate maintenance schedule using
an objective function that aggregates 5 terms – the expected energy
generation cost along the period under analysis, the maintenance
cost, a reliability driven term, a term related with deviations of
the maintenance program regarding the ideal frequency to develop
maintenance actions and, finally, a term related with penalties for
constraints that are not fully enforced. On the other hand, in [2]
the generator maintenance problem is formulated as a large-scale
mixed integer non-linear optimization problem and the author dis-
cusses the impact on the solution of relaxing several constraints as
well as the integer nature of some variables. In this paper the author
adopts a combined implicit enumeration and branch-and-bound
algorithm. A similar formulation is described in [3] considering the
generation cost in the objective function, a reliability index and
penalties for violated constraints.

Ref. [4] discusses the benefits of developing optimal mainte-
nance generator schedules given that sub-optimal programs lead
to higher generation costs and lower reliability of the generation
system and of the entire power system. Apart from that, the mainte-
nance programs affect short and long-term operation and planning
actions as unit commitment, pumping and hydro scheduling. In

the developed approach the authors use two optimization criteria
– generation cost and reliability, and the formulation uses integer
variables xik that if equal to 1 indicate that the maintenance period
of unit i starts at week k. The developed approach uses a probabilis-
tic production cost algorithm based on cumulants in order to get
the generation cost for the period under analysis.

Ref. [5] proposes a more complex formulation considering a
longer planning period and it includes network constraints as well
as generator outages. Given the complexity of the resulting prob-
lem, the authors use Benders Decomposition to consider network
constraints in each planning sub-period.

Regarding the second group, there are several papers using
Simulated Annealing, Genetic Algorithms, Tabu Search and fuzzy
models to consider different particular aspects of the problem. In
this scope, [6] formulates the generator maintenance scheduling
problem in a similar way regarding [4] considering an objective
function that includes two terms (generation cost and mainte-
nance cost) and constraints related with the continuity of the
maintenance actions once started, with the availability of crews
to develop maintenance actions for a given generator technology,
with specified sequences of maintenance actions for some units,
with the generator output limits and with the supply of the demand
along the period. This mixed integer problem is solved using Sim-
ulated Annealing and the scheduling programs obtained with this
approach and with an Integer Programming traditional technique
are compared considering a small, a medium and a large gener-
ation system. The Simulated Annealing based approach provides
faster solutions for the small and medium systems with compara-
ble costs. For the larger generation system the Integer Programming
approach is not able to get a solution while the Simulated Annealing
provides one.

Refs. [7–9] describe the use of Genetic Algorithms, combined
with Simulated Annealing in case of [8,9]. The authors implemented
genetic operators to prevent the premature convergence of the
simulation together with efficient encoding/decoding techniques
concluding that GA’s are very effective in dealing with the GMS
problem.

The approach described in [10] uses Genetic Algorithms
together with fuzzy membership functions to model the two
objectives included in this formulation – the reserve margin and
the generation cost. Regarding the constraints, this formulation
considers limitations on the number of available maintenance
crews, limitations on the number of generators in maintenance
in the same geographical area in order to limit power transfers
between areas and the definition of a window of weeks during
which each generator maintenance should be scheduled. Ref. [11]
also uses a Genetic Algorithm combined with a fuzzy function
to evaluate the solutions. This function combines a crisp penalty
function to model the inflexible demand constraint together with
fuzzy penalty functions to model the objective and other con-
straints. In [12] it is described a fuzzy approach that is able
to deal with uncertainties affecting the demand and the gen-
eration and maintenance costs. This approach uses triangular
fuzzy numbers to model the demand and an evolutionary algo-
rithm.

In [13,14] the GMS problem is solved using Tabu Search. In [13]
it is used a multi-stage approach to decompose the problem in
several sub-problems. The partial results are then combined to pro-
duce the global maintenance schedule. In [14] the formulation uses
the generation cost and the reserve margin as objectives and the
constraints are related with the availability of crews, predefined
sequence of maintenance actions for several units and continuity of
the maintenance period once a maintenance action starts. The plans
provided by the Tabu Search algorithm for two generation systems
(one with 4 units and another with 22 units) were compared with
the results obtained with an implicit enumeration approach. The



Author's personal copy

J.T. Saraiva et al. / Electric Power Systems Research 81 (2011) 1283–1291 1285

results obtained with Tabu Search were very promising given the
more reduced computation time and their good quality.

Refs. [15,16] compare the performance of several meta-
heuristic approaches, namely Tabu Search, Simulated Annealing,
Genetic Algorithms, an hybrid Simulated Annealing/Genetic Algo-
rithm approach and an hybrid Tabu Search/Simulated Annealing
algorithm. The authors report that the combined use of Simu-
lated Annealing/Genetic Algorithm and of Tabu Search/Simulated
Annealing produces better results than the isolated use of a sin-
gle metaheuristic, although the computational time is sometimes
longer. On the other hand, in Ref. [17] the maintenance schedul-
ing problem is formulated as a dynamic non-cooperative game in
which the players aim at maximizing their profits coming from sell-
ing electricity in the market. The solution corresponds to a Nash
equilibrium that is obtained using a backward induction scheme.

Finally, regarding sequential maintenance approaches, Ref. [18]
describes a model that combines a profit-based approach more
suitable to be used in deregulated systems, rather than a typical cost
based model, with a reliability and a market dynamic module. As a
result, the authors consider that economics should also drive main-
tenance policies, namely determining more frequent actions as the
equipments and components age. Ref. [19] formulates a reliability
driven sequential maintenance scheduling problem for a contin-
uously monitored degrading system that aims at minimizing the
global cost of system operation. In this approach the model is con-
tinuously updated based on changes in the system state in order
to select optimal maintenance schedules. The authors indicate that
this model was able to provide optimized maintenance schedules
and that it was able to react quickly and in a consistent way to
drastic changes in the operation conditions of the equipments.

2.2. Basics about Simulated Annealing

In the last decade, several optimization techniques emerged
both in conceptual terms and in current applications. These tech-
niques, often called meta-heuristics, include Tabu Search, Neural
Networks, Simulated Annealing, Genetic Algorithms and its devel-
opment to Genetic Programming. Literature includes nowadays a
large number of papers reporting applications of these techniques
to several problems showing their success and their special ability
to address problems having some particular characteristics.

In particular, Simulated Annealing and Genetic Algorithms are
used to address combinatorial problems due to the presence of dis-
crete variables. Traditionally, this type of problems could be tackled
in a two-step approach. In a first phase, discrete variables were
relaxed into continuous ones, and then the output was rounded to
the nearest integer. As it is easily understood, this does not ensure
that the selected integer solution corresponds to the optimal one.
Other approaches adopted branch-and-bound based techniques,
usually leading to a large amount of computation time. Regarding
continuous optimization algorithms as gradient techniques, they
often converge to local optima and the iterative process would then
be trapped in these points where derivatives are zero. Apart from
that, the final solution can vary depending on initialization con-
ditions. Finally, in several real life problems, decision makers are
not really interested in the global optimum. They are, in fact, inter-
ested in a good or adequate solution, for which some quality index
is evaluated. The process would end if an improvement, although
not impossible to obtain, can lead to a large computational time.

Simulated Annealing was developed by Kirkpatrick et al. [20],
followed by Aarts and Korst [21] based on the Metropolis algorithm
dated from 1953. It is a search procedure in which it is included the
possibility of accepting a solution that is worse than the current one.
The simulation starts at an initial solution, x1, evaluates it using an
Evaluation Function, f(x1), and samples a new solution in the neigh-
borhood of x1. If this new solution improves f(x1), then it is accepted.

If it is worse than the current one, it can still be accepted depending
on a so-called probability of accepting worse solutions. This proba-
bility is typically computed using an exponential based expression
as it will be detailed in Section 4. This expression depends on the
control parameter of the algorithm, the temperature, that should
be lowered along the simulation according to a pre-specified cool-
ing scheme. This mechanism will eventually allow escaping from
a local optimum avoiding the problems faced by gradient based
techniques. Apart from these aspects, there are some issues on this
algorithm that deserve clarification:

- the solution of a combinatorial problem, CP, has a clear analogy
with the cooling process of a thermodynamic system, TDS. In this
analogy, a state of a TDS is equivalent to the solutions or combi-
nations of a CP. The energy of a TDS corresponds to the Evaluation
Function, f, of the CP and the temperature of a TDS corresponds
to the control parameter of the CP problem;

- a TDS system should be cooled in a slow way. This enables sub-
systems to reorganize themselves so that a low energy system is
built. Similarly, the temperature of the CP must be lowered in a
sufficiently slow way in order to identify a good quality solution;

- the temperature T is usually lowered by steps corresponding to a
maximum number of iterations. Once this maximum is reached,
the current temperature is lowered by a cooling parameter ˛, in
[0.0;1.0]. According to this scheme, at the beginning of the simu-
lation, the probability of accepting worse solutions, p(n), is larger.
This turns it more probable to accept worse solutions making the
search more chaotic in the sense that larger areas of the solu-
tion space are searched. As the process goes on, the temperature
is lowered, turning it more difficult to accept worse solutions.
This means that the search is eventually being conducted in a
promising area from where one does not want to leave;

- the Simulated Annealing algorithm proceeds from one solution x
to another one in its neighbourhood. The definition of the neigh-
bourhood of x, N(x), is a strategic aspect of the algorithm in the
sense it has an impact on the design of the final solution. The
structure of N(x) is quite simple to define in discrete problems. As
an example, Simulated Annealing can be used to minimize trans-
mission losses in a network by changing taps of transformers or
of capacitor banks. Departing from the nominal positions, one
can simply sample a transformer or capacitor, and then sample if
the tap goes upwards or downwards by one step. This leads to a
neighbour solution regarding the current one;

- finally, the search procedure ends if a stopping rule is achieved.
This can correspond to the absence of improvements during a pre-
specified number of iterations, to perform a maximum number of
iterations or to lower the temperature parameter till a minimum
level.

3. Mathematical formulation of the problem

3.1. Overview

The developed model was designed to build maintenance sched-
ules of a set of thermal generators. In case the system has an hydro
component and/or renewable and dispersed generation not sub-
mitted to dispatch and paid according to feed-in schemes and/or
interconnections with other countries, it should be estimated the
demand to be supplied by the thermal sub-system subtracting
the hydro and dispersed generation components and interconnec-
tion injections from the total demand for each period. The model
considers that thermal stations are either available or completely
unavailable for operation for reasons apart from maintenance. This
unavailability can be specified on a weekly basis or for some periods
along each week. As an example, this allows incorporating informa-
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tion regarding periods during which some stations are not typically
used. Regarding maintenance, the units are either completely in
maintenance or not in maintenance. When available, the maximum
available output of each unit is constant. Regarding the constraints,
the formulation considers the following ones:

- the maintenance action is performed continuously. This means
that when started, an unit is unavailable due to maintenance for
a number of weeks corresponding to the duration of the action;

- each unit should be submitted to one maintenance action per
year;

- the demand should always be satisfied and some reserve margin
should be provided by the set of available generators;

- there is a limited number of crews to implement maintenance
actions for each generation technology.

Considering these general ideas, the formulation aims at mini-
mizing the generation cost along a planning period T, discretized in
52 weeks. The week demand is represented by a diagram organized
in 5 steps as follows:

- Step 1 – 5% of the week, corresponding to 8.4 h;
- Step 2 – 30% of the week, corresponding to 50.4 h;
- Step 3 – 18% of the week, corresponding to 30.24 h;
- Step 4 – 20% of the week, corresponding to 33.6 h;
- Step 5 – 27% of the week, corresponding to 45.36 h.

3.2. Formulation of the optimization problem

Given the above general aspects, we used the following notation
to formulate the optimisation problem:

- Ckj – variable generation cost of unit k, in step j, in D /GWh;
- Pkjt – generation of unit k, in step j, in week t, in MW. This value

is assumed constant during step j of week t;
- �Tj – duration in hours of step j;
- Djt – demand in step j, in week t, in MW. This value is assumed

constant during step j of week t;
- Hjt – hydro generation in step j, in week t, in MW. This value is

assumed constant during step j of week t;
- Wjt – wind generation in step j, in week t, in MW. This value is

assumed constant during step j of week t;
- OGjt – other generation available in step j, in week t, in MW. This

value is assumed constant during step j of week t;
- INTjt – power from interconnections with other countries in step

j, in week t, in MW. This value is assumed constant during step j
of week t;

- Resjt – reserve required to be available in step j, in week t, in MW.
This requirement is assumed constant during step j of week t;

- Pmax
k

and Pmin
k

– rated and minimum powers of unit k, in MW;
- P+

kjt
and P−

kjt
– maximum and minimum available powers for unit

k, in step j, in week t, in MW. These values are assumed constant
during step j of week t;

- mkt – state of unit k in week t regarding maintenance. If mkt = 1
unit k is in maintenance in week t. If mkt = 0 then it is not in
maintenance;

- ikt – availability of unit k, in week t. If specified as 1 in week t for
unit k, then this unit can be scheduled to run in that period;

- akj – availability of unit k in step j. If specified as 1 for unit k in
step j, then this unit can be scheduled to run in every step j, along
the whole year;

- Sk – duration in weeks of the maintenance action of unit k;
- tk – week in which the maintenance action of unit k will start;
- t−

k
to t+

k
– initial and final weeks, inclusive, of the scheduling

period during which the maintenance action of unit k should be

located. The values specified for t−
k

and t+
k

should be according to
t+
k

− t−
k

+ 1 ≥ Sk. This means that from week t−
k

to week t+
k

there
is a number of weeks enough to do the maintenance action of unit
k, that is, this number of weeks is not less than Sk;

- V+
r – maximum number of units of the same technology r that

can be in maintenance simultaneously;
- Vr – set of units of the same technology r;
- K – number of units;
- J – number of steps used to model the demand;
- T – total number of weeks;
- R – number of different thermal generator technologies.

According to this notation the generator maintenance scheduling
problem is formulated by (1)–(13).

min Z =
T∑

t=1

J∑
j=1

K∑
k=1

Ckj(Pkjt) · �Tj (1)

subj.
K∑

k=1

Pkjt = Djt − Hjt − Wjt − OGjt − INTjt for j = 1 . . . J; t

= 1 . . . T (2)

K∑
k=1

P+
kjt

≥ Djt − Hjt − Wjt − OGjt − INTjt + Resjt for j = 1 . . . J; t

= 1 . . . T (3)

P−
kjt

≤ Pkjt ≤ P+
kjt

for k = 1 . . . K; j = 1 . . . J; t = 1 . . . T (4)

P+
kjt

= (1 − mkt) · ikt · akj · Pmax
k for k = 1 . . . K; j = 1 . . . J; t

= 1 . . . T (5)

P−
kjt

= (1 − mkt) · ikt · akj · Pmin
k for k = 1 . . . K; j = 1 . . . J; t

= 1 . . . T (6)

T∑
t=1

mkt = Sk for k = 1 . . . K (7)

tk+Sk−1∑
t=tk

mkt = Sk for k = 1 . . . K (8)

t−
k

≤ tk ≤ t+
k

for k = 1 . . . K (9)

tk + Sk − 1 ≤ t+
k

for k = 1 . . . K (10)∑
k ∈ Vr

mkt ≤ V+
r for r = 1 . . . R, t = 1 . . . T (11)

mkt ∈ {0, 1} for k = 1 . . . K; t = 1 . . . T (12)

tk ∈ {1, 2, 3, ..., 52} for k = 1 . . . K (13)

In this formulation, we aim at minimizing the generation cost to
supply the demand along the period T. As mentioned before, this
period T is organized in weeks and the demand is specified by a load
diagram organized in J steps. These steps remain constant along the
whole scheduling period. This objective function is subjected to the
following constraints:



Author's personal copy

J.T. Saraiva et al. / Electric Power Systems Research 81 (2011) 1283–1291 1287

- constraints (2) enforce that the demand Djt is supplied in each
step j and in every week t. This supply is obtained using the K gen-
eration units and also by hydro generation, Hjt, by wind parks, Wjt,
by other generation sources, OGjt, and by interconnections with
other countries, INTjt. The energy from the hydro subsystem, from
wind parks, other generation sources and from the interconnec-
tions with other countries should be specified based on estimates
taking into account historical values;

- on the other hand, constraints (3) indicate that in each week t and
in each step j, the sum of the maximum powers of the available
thermal units should exceed the demand to be supplied by the
thermal subsystem at least by the specified reserve level, Resjt;

- constraints (4) bound the output of the K units to minimum and
maximum values, in each step j and in each week t. These min-
imum and maximum values depend on the availability of each
unit and on its rated and minimum powers;

- constraints (5) and (6) determine the maximum and the mini-
mum possible output of unit k, in each step j and week t. This
maximum output depends on the rated power of the unit, Pmax,
on its availability regarding maintenance modeled by the vari-
able mkt and on its availability regarding other aspects apart from
maintenance. This is modeled by ikt for each unit k in each week t
and by akj for each unit k in each time step j. As mentioned before
the values of ikt and of akj can be used to give indications regard-
ing, for instance, periods (time steps or periods of the year) during
which some thermal units are not typically running. If the input
values of both ikt and akj are specified as 1 for a given unit k for
every t and j, this means the unit can be running all along the year
except during the maintenance period;

- constraints (7) enforce that each unit k has to be subjected to a
maintenance action per year with a duration of Sk weeks;

- constraints (8) enforce that the period of Sk weeks during which
unit k is in maintenance is continuous;

- constraints (9) indicate that the maintenance action of unit k has
be to conducted between t−

k
and t+

k
;

- constraints (10) enforce that the maintenance action of unit k has
to be finished at most at week t+

k
;

- constraints (11) limit the number of simultaneous maintenance
actions of units of the same technology r, given the available
number of crews for technology r, V+

r . For each type of generator
technology it is established a constraint of this type. In this sense,
r represents the technology index and Vr is the set of generators
of the same technology r. For each technology, this constraint
indicates there is a maximum number of mkt binary variables
assuming the value 1 for each week t and this maximum number
corresponds to V+

r for technology r. This limitation means that
there is a maximum number of similar generators that can be
in maintenance in each week t, and this limit can be associated
with the capacity the generation company has to run simultane-
ous maintenance actions over similar generators, assuming that
there are crews more specialized on a given technology and some
others dedicated to other technologies;

- finally, (12) indicates that variables mkt are binary ones and (13)
specifies the possible values that the tk variables can assume.

To solve this problem it is necessary to input the generation
costs, the generation from other sources and the injections from
interconnections, the required reserve margin in each week and
in each time step, the duration of each time step and the corre-
sponding demand, the minimum and rated powers of each thermal
unit, the duration of the maintenance period of each unit and
the availability parameters of each unit in each week and in each
time step. After solving this problem, one obtains the dispatch
of each unit k in each week and time step, Pkjt, the value 1 or
0 of the binary variables mkt indicating the state of each unit
in each week t regarding maintenance and the value of the tk

indicating the starting week of the maintenance action of unit
k.

It is also important to mention that this formulation can include
a fictitious generator apart from the ones that really integrate the
generation park in order to model the energy not supplied. This gen-
erator will have a large generation cost and so whenever used it will
cause an increase of the objective function of the problem since we
are in fact penalizing solutions with non-zero energy not supplied.
This indicates that this resource, although fictitious, should only be
used as a last strategy to balance the generation with the demand, as
it would imply demand curtailment. It is then clear that the solution
algorithm to be used will tend to distribute maintenance actions
along the planning period in order not to turn the generation of
this fictitious generator different from zero. The solution algorithm
to detail in the next section is based on Simulated Annealing and it
characterizes each identified solution by the value of an Evaluation
Function defined as the addition of the generation cost given by (1)
plus penalties over the constraints that are violated by the solution
under analysis. This aspect will be further developed in the next
section.

4. Solution algorithm

The discrete nature of the GMS problem justified the adoption
of Simulated Annealing given its natural adaptation to incorpo-
rate discrete variables and parameters, its implementation easiness
and the good results it has been providing in several engineering
applications. Regarding the characteristics of Simulated Anneal-
ing that turns this metaheuristic so appealing, Ref. [22] discusses
its performance considering the convergence and also its speed
of convergence. The authors consider that the convergence proof
detailed in [22] is a reassuring property, namely if the tempera-
ture reduces at a sufficiently slow rate and the cooling scheme is
adequate. Extensive experiments on the application of Simulated
Annealing on several classes of problems described by the authors
lead to the conclusion that “overall, Simulated Annealing is a gener-
ally applicable and easy-to-implement probabilistic approximation
algorithm that is able to produce good solutions for an optimization
problem, even if we do not understand the structure of the problem
well.”

Simulated Annealing metaheuristic starts at an initial mainte-
nance schedule and evolves to a new schedule by sampling new
maintenance periods for some units. Each schedule is evaluated
considering the generation costs along the whole period T given
by (1), plus penalties on the constraints (2)–(13) that are violated
by the schedule under analysis. This means that for a new sam-
pled schedule the algorithm goes through the constraints of the
problem, identifies the constraints that are violated and adds the
associated generation cost to a penalty term for each violated con-
straint. For instance for an equality constraint, this term is obtained
multiplying a penalty factor by the absolute value of the difference
of the right hand side and the left hand side of the constraint under
analysis. A new solution is then identified in the neighborhood of
the current one and after evaluating this new solution (that is, com-
puting the generation cost and the penalty terms over the violated
constraints), a decision is taken to accept it or not. The following
paragraphs detail the application of Simulated Annealing to this
particular problem.

(i) Consider an initial maintenance schedule, denoted by xo;
(ii) Analyze the current solution:

a. compute the generation cost along the period T. To do this the
generation cost is minimized along the T weeks and the J time
steps using a merit order dispatch, considering the variable
generation costs of the generators. For each week and time
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Table 1
Data for the thermal generation system.

Type Pmin (MW) Pmax (MW) Ck (D /GWh) Sk (week) Type Pmin (MW) Pmax (MW) Ck (D /GWh) Sk (week)

Coal 1 98 292 62367.42 3 CCGT 8 198 330 57497.17 4
Coal 2 98 292 62367.42 3 Fuel 1 142 236 107092.89 6
Coal 3 98 292 62367.42 3 Fuel 2 142 236 107092.89 6
Coal 4 98 292 62367.42 3 Fuel 3 142 236 107092.89 6
Coal 5 109 298 64335.81 3 Fuel 4 142 236 107092.89 6
Coal 6 109 298 64335.81 3 Fuel 5 71.2 118 112411.98 5
Coal 7 109 298 64335.81 3 Fuel 6 71.2 118 112411.98 5
Coal 8 109 298 64335.81 3 Fuel 7 71.2 118 112411.98 5
CCGT 1 210 420 54156.98 3 Fuel 8 71.2 118 112411.98 5
CCGT 2 210 420 54156.98 3 Fuel 9 71.2 118 119288.15 5
CCGT 3 235.2 392 55166.61 3 Fuel 10 71.2 118 119288.15 5
CCGT 4 235.2 392 55166.61 3 Fuel 11 33.6 56 123347.52 5
CCGT 5 235.2 392 55166.61 3 Diesel 1 49.5 82.5 285632.60 2
CCGT 6 198 330 57497.17 4 Diesel 2 49.5 82.5 285632.60 2
CCGT 7 198 330 57497.17 4 ENS – 1000 – –

Table 2
Demand to be supplied by thermal generators in some weeks and in the 5 periods (GWh).

Step Duration (% of
the week)

Week 1 Week 10 Week 20 Week 30 Week 40 Week 52

1 5 34.20828 26.45884 25.68045 36.29361 28.16563 22.63457
2 30 205.29750 148.96730 146.83110 201.82260 160.12520 120.20270
3 18 123.15130 89.17773 84.69330 108.74640 89.31160 72.16986
4 20 99.40688 78.86910 74.19964 88.68652 89.12970 80.30825
5 27 90.63492 90.79465 83.60142 106.20510 119.49480 94.59578

step it is obtained the dispatch using the available generators
and taking into account the demand to be supplied and the
generations from other sources and from the interconnections;

b. check if any constraints (2)–(13) are violated. If some of them
are violated, then compute the corresponding penalty terms as
detailed in the beginning of this section;

c. the value of the Evaluation Function EVo is the sum of the gener-
ation cost plus penalties on the identified violated constraints;

d. assign EVo to EVopt and to EVcurrent;

e. assign xo to xopt and to xcurrent;
f. set the iteration counter, IC, to 1;
g. set the worse solution counter, WSC, at 0;

(iii) Identify a new schedule. Sample an unit k and sample a week
between t−

k
and t+

k
− Sk + 1 to start its maintenance. Condition-

ing this sampling in this way means that constraints (9) and
(10) will not be violated for this unit. The new schedule is then
denoted as xnew;

Table 3
Final maintenance schedule obtained for Simulation 2 (Part 1 – weeks 1–26).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Coal_1

Coal_2

Coal_3

Coal_4

Coal_5

Coal_6

Coal_7

Coal_8

CCGT_1

CCGT_2

CCGT_3

CCGT_4

CCGT_5

CCGT_6

CCGT_7

CCGT_8

Fuel_1

Fuel_2

Fuel_3

Fuel_4

Fuel_5

Fuel_6

Fuel_7

Fuel_8

Fuel_9

Fuel_10

Fuel_11

Diesel_1

Diesel_2
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Table 4
Final maintenance schedule obtained for Simulation 2 (Part 2 – weeks 27–52).

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Coal_1

Coal_2

Coal_3

Coal_4

Coal_5

Coal_6

Coal_7

Coal_8

CCGT_1

CCGT_2

CCGT_3

CCGT_4

CCGT_5

CCGT_6

CCGT_7

CCGT_8

Fuel_1

Fuel_2

Fuel_3

Fuel_4

Fuel_5

Fuel_6

Fuel_7

Fuel_8

Fuel_9

Fuel_10

Fuel_11

Diesel_1

Diesel_2

(iv) Analyze the new schedule computing the generation cost,
identifying the associated violated constraints and computing
the respective penalty terms. Obtain EVnew;

(v) If EVnew < EVopt then assign EFnew to EFopt and to EFcurrent;
assign xnew to xopt and to xcurrent;set the worse solution counter,
WSC, at 0;

(vi) If EFnew ≥ EFopt then
a. get a random number p ∈ [0.0; 1.0];
b. compute the probability of accepting worse solutions p(xnew)

by (14). In this expression KBoltz represents the Boltzman con-
stant and T is the temperature parameter;

p(xnew) = e(EFcurrent−EFnew)/(KBoltz ·T) (14)
c. if p ≤ p(xnew) then assign xnew to xcurrent and EFnew to EFcurrent;
d. if the solution xnew is worse than the best solution identified

so far, then increase the worse solution counter, WSC, by 1;
(vii) If WSC is larger than a specified maximum number of iterations

without improvements than go to (ix);
(viii) If the iteration counter IC is larger than the maximum number

of iterations per temperature level then;
a. decrease the temperature level T by a rate ˛ smaller then 1.0;
b. if the new temperature level is smaller then the minimum

allowed temperature then go to (ix);
c. set the iteration counter IC to 1;

Else, increase the iteration counter IC by 1;

Go back to (iii);
(ix) End.

When going to step (vi) of this algorithm, the new solution is worse
than the optimal one so far identified. This means that xnew will not
replace xopt. It can however replace xcurrent. If xcurrent is better than
xnew , that is, if EFcurrent < EFnew , then the exponent of (14) becomes
negative and so the value computed for p(xnew) is less than 1.0. The
acceptation of xnew will then depend on the sampled p number as
indicated in the step (vi.c). If xcurrent is worse than xnew , that is, if
EFcurrent > EFnew , then the exponent of (14) becomes positive and
so the value computed for p(xnew) is larger than 1.0. This means
that the sampled p number will always be less than p(xnew) and so
in this case xnew will replace xcurrent, although it is nor better than
xcurrent.

5. Case Study

5.1. System data

The Case Study used to illustrate the described approach is based
on a realistic thermal generation system that includes 29 units as
follows:

- coal fire plants – 2360 MW in 8 generation units;
- CCGT – 3006 MW in 8 generation units;
- fuel oil – 1708 MW in 11 generation units;
- diesel – 165 MW in 2 generation units.

Apart from these units, the generation system also has inputs
from hydro stations, wind parks, other generation sources (as
cogeneration and small hydro stations dispersed along the net-
work) and interconnections with other countries. In order to
incorporate a reliability index in the model, we also considered a
fictitious unit to model energy not supplied, as detailed at the end
of Section 3.2. This unit has a very large generation cost when com-
pared with the costs of the other thermal stations. This means that,
in a given week t and demand step j, this fictitious unit will only
be dispatched if the other available cheaper stations are already in
the limit. As mentioned in Section 3.2, this implicitly means that
the corresponding maintenance schedule should not have a large
concentration of units simultaneously in maintenance in the same
weeks to prevent the demand from being larger than the available
capacity leading to energy not supplied. Since the cost of the men-
tioned fictitious generator is very large, we are in fact penalizing
maintenance schedules leading to non-zero values of the energy
not supplied.

For each of the mentioned 29 thermal stations we specified
the minimum and rated powers, the variable generation cost and
the duration in weeks of the corresponding maintenance action.
These elements are indicated in Table 1. We assumed that the min-
imum and rated powers and the variable cost are constant along
the whole year and do not change when going from one demand
step to another one.

Apart from these elements, we also specified the number of
crews available for each technology, the demand for step j in each
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week t, the duration of each step as indicated in Section 3.1 and the
energy obtained from the hydro subsystem, from the wind parks,
from other generation sources and from the interconnections for
each step j and week t. This means that for each step j and week t it is
possible to obtain the energy to be supplied by the thermal system.
As an example and for illustration purposes, Table 2 includes the
values of the energy to be supplied by thermal generators in weeks
1, 10, 20, 30, 40 and 52 in each of the 5 steps that were considered.
These energy values can be readily converted in power admitting
that the demand is constant in each time step. As an example, in
week 1 in step 1 the demand to be supplied by thermal genera-
tors is 34.20828 GWh. Assuming that this time step corresponds to
5% of the 168 h of the week, that is, to 8.4 h, the average power in
this step is 4072.41 MW. In week 1 in step 5 this value reduces to
1998.12 MW. According to these values and the generation vari-
able costs it is then possible to obtain a merit order dispatch of the
available generators and so to estimate the generation cost of that
step. The global generation cost corresponds to the addition of the
costs obtained for each time step j in each week t.

5.2. Results for Simulation 1

In the first simulation we admitted that all units were available
in all weeks during the year, that is ikt = 1 for every k and t and akj = 1
for every step j. On the other hand, in this Simulation we speci-
fied no preference on particular weeks to locate the maintenance
actions of the generators. This means that in this first simulation we
admitted that t−

k
= 1 and that t+

k
= 52. In order to run the Simulated

Annealing algorithm we specified that the number of iterations to
run at the same temperature level was 200, that the number of
worse solutions before convergence was 1000 and the temperature
cooling coefficient ˛ was set at 0.95.

The first solution was obtained by a random procedure and the
corresponding value of the Evaluation Function was larger than
31.4 × 109 D . This large value is very much determined by penalties
on violated constraints associated with this initial random solution.
However, this does not mean that we accept that some constraints
have a hard nature (in the sense they have to be enforced) and some
others are soft (in the sense that some violations could be accept-
able). This large initial value of the Evaluation Function only reflects
the way the initial schedule was obtained, that is adding the genera-
tion cost with the penalties over the violated constraints. The graph
in Fig. 1 illustrating the evolution of the Evaluation Function for the
current solution and for the so far best identified solution shows
that the value of this function decreases along the simulation. After
the first thousand iterations the Evaluation Function decreased
to about 1.4 × 109 D , that is decreased by about 30 × 109 D . This
indicates that it was possible to identify solutions not violating

Fig. 1. Evolution of the Evaluation Function along the iterative process.

any constraint and also completely supplying the demand without
using the fictitious generator representing energy not supplied. So,
the penalties over the violated constraints are progressively elimi-
nated and the energy not supplied also gets cancelled, if it was not
zero in the first schedule. This means that the adoption of penalties
over the violated constraints just corresponds to an operational
technique that is used to enforce feasibility and does mean that
some constraints have a hard nature and some others have a soft
one, as mentioned above.

In this case, the simulation ends after 14.130 iterations and the
temperature is lowered till 0.243. The final schedule displays a rel-
atively large concentration of maintenance actions in the period
from week 14 to 20. This is due to fact that in these weeks the
energy demand to be supplied by thermal stations is more reduced
because there are larger inputs from hydro stations and wind
parks. This enables locating more maintenance actions in these
weeks.

5.3. Results for Simulation 2

In the second simulation we admitted that some units were not
available in some weeks. For instance, one of the CCGT units was
not available from week 45 to 52, one coal station was not available
from week 45 to 52, one fuel station was not available from week 16
to 22 and another fuel station was not available from week 30 to 37.
This means that ikt was set at 0 for these units in these weeks. Apart
from that, for some stations we specified values for t−

k
and for t+

k
different from 1 and from 52, respectively. This means that we spec-
ified preferences for the scheduling of their maintenance actions.
For instance, for one CCGT we specified t+

k
= 20, for another CCGT

unit we specified t+
k

= 30, for one fuel unit we specified t−
k

= 30
and t+

k
= 50 and for another fuel station we specified t−

k
= 20 and

t+
k

= 40. As a result, for this last fuel station the maintenance period
should be located between week 20 and week 40 (inclusive) and
regarding the first mentioned CCGT the maintenance period should
be between week 1 and week 20 (inclusive). The graph in Fig. 2
shows the evolution of the Evaluation Function after the first two
thousand iterations. As in Simulation 1, in the beginning the value
of the Evaluation Function is very large due to penalties on violated
constraints and also due to the fact that there is Energy Not Sup-
plied but, as mentioned in Section 5.2 all constraints are considered
as hard in the sense that a feasible maintenance schedule will have
all the constraints enforced. As the process goes on, constraint vio-
lations are eliminated and Energy Not Supplied comes to zero. The
iterative process ends after 23.997 iterations and the temperature
is lowered to 0.110. Finally, Tables 3 and 4 show the final mainte-
nance schedule along the 52 weeks of the year. As for Simulation
1, this schedule also shows a large concentration of maintenance
actions from week 14 to 25. The demand values and the inputs from

Fig. 2. Evolution of the Evaluation Function along the iterative process.
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hydro and wind parks are the same ones that were used in the first
simulation and so the amount of energy to be supplied by the ther-
mal generators is more reduced in this period creating more room
to locate more maintenance actions in these weeks. As a final indi-
cation, this simulation took less than 15 min in a laptop with an
Intel Pentium Dual Processor.

6. Conclusions

In this paper we addressed the problem of building good quality
generator maintenance schedules given the relevance of this topic
in the context of the advent of competition in the electricity sector.
This is a complex optimization problem formulated as a mixed-
integer problem for which we applied Simulated Annealing, given
its abilities to address combinatorial problems and its easiness of
implementation. The formulation minimizes the generation cost
along the maintenance planning horizon and it implicitly includes
a reliability measure when penalizing non zero values of energy
not supplied. The problem integrates constraints related with the
continuity of the maintenance actions, with the limited number of
crews for some generation technologies and with the preferences
of the Decision Maker to locate some maintenance actions along
the year. The Simulated Annealing application shows good perfor-
mance and it is able to produce good maintenance schedules with
short computation times.
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