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Abstract – This paper presents a new approach to incipient 
fault diagnosis in power transformers, based on the results of 
dissolved gas analysis. A set of autoassociative neural networks 
or autoencoders are trained, so that each becomes tuned with a 
particular fault mode or no fault condition. The scarce data 
available forms clusters that are densified using an Information 
Theoretic Mean Shift algorithm, allowing all real data to be used 
in the validation process.  Then, a parallel model is built where 
the autoencoders compete with one another when a new input 
vector is entered and the closest recognition is taken as the 
diagnosis sought. A remarkable accuracy of 100% is achieved 
with this architecture, in a validation data set using all real 
information available. 
 

IndexTerms – Transformer fault diagnosis, Dissolved Gas 
Analysis, autoassociative neural networks, mean shift, 
information theoretic learning. 

I.  INTRODUCTION 

his paper describes a new approach to the problem of fault 
detection and identification in power transformers, that 

reaches 100% accuracy: a diagnosis system based on a set of 
autoassociative neural networks. The new model gives 
indication of no-fault or normal condition of the transformer 
and, if a faulty condition is detected, it identifies the type of 
fault. This capacity has not been reached before. 

Power transformer incipient fault diagnosis based on 
dissolved gas [1] analysis (DGA) has been attempted many 
times, due to the economic importance of potential equipment 
failure. It is a problem prone to be addressed by researchers 
since the publication an IEC norm (IEC 60599 [2]) and a 
seminal paper [3] that included a data base for diagnosed 
failures denoted IEC TC10. 

A number of models have been proposed, adopting a 
diversity of techniques: expert systems [4], fuzzy set models 
[5], multi-layer feedforward artificial neural networks (ANN) 
[6][7], wavelet networks [8], hybrids fuzzy sets/ANN [9], 
radial basis function neural networks [10], Support Vector 
Machines (SVM) [11], Self-Organizing Maps (SOM) or 
Kohonen Neural Networks [12]. This listing, while not 
exhaustive, is quite representative. 

All models addressed the problem of recognizing the type 
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of incipient fault from the composition or ratios of dissolved 
gases but in many works the number of fault modes is rather 
limited, while in other works the validity of the result may be 
questioned given that notoriously few data samples (as low as 
2 in some cases) were used in a testing procedure, when used 
at all. A problem yet remained, of discriminating between 
transformers with and without on-line tap changers (OLTC), 
whose action cause the contamination of oil: it is rather 
surprising that it is so difficult to find a publication addressing 
this distinction, especially in a unified approach with the 
identification of failure mode, when the publication IEC 
60599 addresses this issue. 

Instead of a single neural network discriminating all types 
of transformer condition, the idea behind the work reported in 
this paper is the following: assuming that vectors representing 
dissolved gas concentrations fall into different clusters, 
depending on whether there is a fault or not and on the type of 
fault, a set of autoassociative networks are trained to match 
each cluster and capture the characteristics of each data 
manifold. Then, when activated with a new input vector, one 
of the networks should be in tune and display a small error, 
while all the others should be out of tune and will display a 
larger input-output error. The healthy/faulty condition and the 
type of fault are thus identified by recognizing which 
autoencoder presents minimum error – i.e. which cluster is the 
input vector most similar to. 

The paper also introduces a novelty to overcome the 
problem of lack of data: the densification of the data sets using 
the Information Theoretic Mean Shift algorithm. The IEC 
TC10 data available on DGA and failure modes are scarce, 
which means that any validation procedure would have to be 
based on a limited number of cases. With the new procedure 
called the densification trick, virtual data are created in a way 
that they are compatible with the original cluster of data. 
These virtual data can be used to train the neural networks 
with much more efficiency and accuracy and the scarce real 
data may be all used in the testing procedures. 

II.  AUTOENCODERS 

The new model relies on autoassociative neural networks, 
or simply autoencoders, which are special feedforward neural 
networks designed and trained in such a way that the output 
reproduces the input. With adequate training, an autoencoder 
stores in its weights the information about the non-linear 
manifold where data lie. Once trained, the autoencoder may be 
used as recognition machine – if a new data vector 
composition is compatible with the learned manifold, the 
autoencoder will produce an output with a small error 
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regarding the input; however, if this vector is distinct from the 
global pattern of the data used for training, the autoencoder 
will return in the output a result not matching the input – 
therefore, the error will be high. 

The concept of an autoencoder implies that the number n of 
neurons of the input and output layers is the same. The 
simplest autoencoder architecture has only one middle layer, 
with a distinct number m of neurons. As autoencoders have 
been firstly proposed to achieve data compression, it is 
traditional to find schemes in the literature with m < n – then, 
from input to middle layer the autoencoder achieves an 
effective compression from a space S to a space S'. Data can 
then be stored, represented by smaller encoded vectors whose 
components are the values of the output of the middle layer 
neurons. The transition from middle to output layer performs 
decompression and allows retrieving the stored compressed 
information. Fig. 1 illustrates the case where dim(S) > dim(S') 
or n > m. 

 
 

Fig. 1. An autoassociative neural network or autoencoder, with input and 
output layers of the same dimension and a smaller middle layer. If trained to 
reproduce the input variables in the output, one has in the middle layer a set of 
values that encode, in a different space S’, the values in S. The function f  

achieves data compression and the function 1f − performs decompression. 
 
This compression/decompression feature has been used to 

build data compression machines [13][14][15][16]. Also, the 
property that a point over the data manifold will be correctly 
projected back and forth by a trained autoencoder; and a point 
not lying on the data manifold will not be correctly re-
projected back, producing a large input-output error ε, has 
been used in pattern recognition and classification, as well as 
in novelty detection [17]. 

It has been shown that autoencoders with linear activation 
functions produce an input/middle layer mapping equivalent to 
Principal Component Analysis (PCA) [18]. This is equivalent 
to say that information is projected along the direction of 
orthogonal axes (eigenvectors) such that variance is 
minimized. As with any data compression technique, there 
some amount of loss of information. However, when the 
activation functions are non-linear (sigmoidal), it has been 
shown that the mapping is not equivalent to PCA and has 
better characteristics [19].  

Training an autoencoder has been treated no differently to 
training any other feedforward neural network, and 
backpropagation algorithms are currently used. Training is just 
an exercise on optimization and the classical cost function 
adopted is the Minimum Square Error. If X is the input vector 
and Y the output vector, then for N samples 
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A good interpretation of the MSE criterion is that it 
represents the minimization of the variance of the pdf 
(probability density function) of the error distribution. 
However, this criterion is optimal only if this distribution is 
Gaussian, which may be questionable in many applications. A 
non-parametric method should be preferred. 

Because of the extremely large dimension that 
autoencoders may reach in problems of data compression 
(thousands of inputs and tens of thousands of weights to be 
tuned), experience has shown that achieving good 
convergence in training is rather difficult, requiring many 
attempts, a careful choice of initial weight values and many 
training epochs. Some researchers have proposed schemes of 
incremental training, especially when dealing with 
autoassociative networks having several middle layers, such as 
referred to in [13]. 

III.  INFORMATION THEORETIC MEAN SHIFT AND CLUSTER 
DENSIFICATION 

The Information Theoretic Mean Shift algorithm [20][21] 
was introduced as a means to capture the dominant structures 
in the data set, as embedded in its estimated probability 
density function (pdf).  

Renyi's quadratic entropy [22] for a pdf is defined as 
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and the pdf p(X) can be estimated by the Parzen windows 
technique [23] 
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having σ=σ 2' . V(X) is called information potential of the 
pdf p(x). The derivative of this expression with respect to a 
single point xi gives a quantity denoted information force 
exerted by all data particles on xi [24][25][26]. 

The cross entropy between two pdf can be defined by 
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The Cauchy-Schwartz distance measure between two pdf 
denoted p and q is 
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The Information Theoretic Mean Shift algorithm aims at 
finding data sets X that capture structural information from a 
set X0. This is achieved by a double criteria optimization, 
minimizing the entropy of X while keeping the Cauchy-
Schwartz distance at some value k. An unconstrained 
optimization formulation, under a parameter λ that represents 
the trade-off between the two objectives, is given by 
 [ ]k)X,X(D)X(Hmin)X(J 0CS −λ+=  (10) 

Differentiating J(X) with respect to each xi gives an 
algorithmic rule that allows the transformation of X0 into 
another set at iteration t+1, making use of the information 
contained in the pdf of X at iteration t, estimated by (3): 
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This works as if the information particles, in a field of 
information potential, move under the influence of the 
information forces such as the derivative of (5) referred to 
above. 

When one makes λ = 1 in (11), it can be shown that the 
algorithm gives the modes of the pdf p(X). When λ is 
increased between 1 and 2, the algorithm tends to make points 
x to converge to the principal curve of the data, and a further 
increase in λ will concentrate points around the denser regions 
of the pdf. Furthermore, each generation of points t

ix  describe 
a pdf p(Xt) that retains information from p(X0). Each point 

t
ix along the iterations t describes a path from xi0 towards a 

mode of the pdf p(X0), or to a principal curve of the data 
cluster, or to a region of higher density, depending on the 
value of λ adopted. By path one means a succession of points 
X0, X1,…, Xt,… that may be driven towards or away from the 
mode, depending on allowing points to follow the direction of 
the information force – X/V ∂∂  as in (5) – or the reverse 
direction. 

This property is used in this paper, in a novel way, to 
densify clusters X0 by recovering the intermediate iteration 
points and using them as new virtual data points, compatible 
with the original pdf. 

This densification trick becomes especially useful when 
data is scarce – and this happens with the information in IEC 
TC 10. For instance, for the mode of failure PD – Partial 
discharge the data base contains only 30 points; a usual neural 

network training practice would split these points into training 
and validation sets in a proportion 2/3 – 1/3. This would leave 
10 points only to validate the neural network behavior, which 
is rather insufficient. As we shall see in next Section, the 
insufficient number of samples in transformer fault diagnosis 
studies is a difficulty present in many works reported – some 
papers report a number as low as 2 samples (!) to validate a 
proposed model. In particular, the solidity of models whose 
validation rests on such a low number of test samples may be 
questioned. 

With the use of the Information Theoretic Mean Shift, the 
training set may be composed of only virtual points, keeping 
the totality of the real data to be used in the testing phase – 
this largely increases the robustness of the testing procedure 
and the confidence in the results it will provide. 

In order to improve the chance that the network, after being 
trained with virtual points, may correctly generalize and have 
good results in the test set (composed with real data), the 
densification trick includes the generation of a few virtual 
points using the reverse direction of the information force 
vector, applied to each real data point. This means that the real 
data available for the test set will in no case be external points 
of the cluster. The results presented below and in Section VI 
were obtained with a single mean shift step outward, before 
resuming the convergence of points towards the cluster center. 
In the case study reported in this paper, this was enough. 

IV.  DGA DIAGNOSIS DATA IN POWER TRANSFORMERS 
The presence of dissolved gases in the oil of power 

transformers is a well-recognized phenomenon, used to 
monitor the condition of the equipment. In the past, this 
procedure was used sporadically but nowadays one finds in 
place sensors that already provide an online continuous 
monitoring. The DGA – dissolved gas analysis, is therefore a 
powerful technique that should allow the confirmation of 
healthy states and the detection of incipient failures, when gas 
concentrations deviate from the healthy pattern. When this 
change is considered significant, other procedures are put in 
place namely to locate and deal with the fault.  

A landmark publication is the norm IEC 60599 [2], 
introducing a fault classification summarized in Table 1. 
These rules represented an important advancement in spite of 
the fact that, when applied to the transformer data set IEC 
TC10 [3], they still produce a number of mistaken 
classifications plus a number of non-classified patterns (non-
identified failures). Nevertheless, it must be said that the data 
set has been extremely useful in fostering research efforts 
towards achieving a more accurate classification. 

The 6 faulty cases listed in Table 1 are associated with a 
diversity of cases in the data base. It is usual to find that the 
cases T2 and T3are lumped together in many studies, because 
the number of cases in the data base is too small for an 
adequate training of neural networks or building of knowledge 
bases. This data set published together with [3] included also 
many cases of "typical (normal) values in service", 
corresponding to transformers with and without a 
communicating OLTC (on line tap changer). 
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TABLE 1 – IEC 60599 FAULT DIAGNOSIS RULES 

Case Fault type 
42

22
HC
HC

 
2

4
H

CH
 

62

42
HC
HC

 

PD Partial discharge NS <0.1 <0.2 

DL Low energy discharge >1 0.1-0.5 >1 

DH High energy discharge 0.6-2.5 0.1-1 >2 

T1 Thermal fault – T<300oC NS >1 but NS <1 

T2 Thermal fault  300oC< 
T<700oC <0.1 >1 1-4 

T3 Thermal fault – T>300oC <0.2 >1 >4 
 
However, researchers concentrated their attention mainly in 

the discrimination of the fault types identified in Table 1 and 
ignored the possible distinction among healthy cases.  

Table 2 presents a summary of sizes of databases and 
results published by different authors. It includes the size of 
the database and the size of the training set, as well as the % of 
success cases both in the training phase and in the test sets, 
when this information is available. It also identifies (last 
column) the number of outputs in each system, with N 
meaning the identification also of the normal or healthy state.  

 
TABLE 2  – DATA AND RESULTS IN DISTINCT SYSTEMS/PUBLICATIONS 

Model Year 
No. samples % of correct 

diagnoses 

N
o.

 fa
ul

ts
  

To
ta

l 

Te
st

 

Tr
ai

n 

Te
st

 

[6] Y Zhang et al  1996 40 (?) (?) 95 3+N 

[4] Wang  1998 188 + 
22 

60 
 

99.3 to   
100 

93.3 to 
96.7 5+N 

[7] YC Huang et al  2003 220 + 
600 0 95.12 --- 4+N 

[27] HT Yang, CC 
Liao  1999 561 280 93.88 94.9 4+N 

[28] Guardado et al  2001 69 33 100 100 5+N 
[29] Castro,Miranda  2005 431 139 100 97.8 3 
[9] Miranda, Castro  2005 318 88 100 99.4 5 
[30] G Lv et al  2005 75 25 100 100 3+N 
[31] WH Tang et al 2008 168 (?) (?) 80 3+N 
[32] LX Dong et al 2008 220 60 (?) 88.3 3+N 
[33] MH Wang et al  2009 21 0 100 --- 8+N 
[34] SW Fei, XB 
Zhang  2009 142 (?) (?) 94.2 3+N 

[35] NAM Isa et al  2011 160 40 100 100 3+N 
[36] [37] Castro, 
Miranda 2011 318 88 100 100 5 

[38] K Bacha et al  2012 94 30 (?) 90 6+N 
 
This table does not constitute an exhaustive survey but 

provides a clear picture of the state of the art evolution. 
Different data sets were used and a direct comparison of 
percentage of hits/misses must be approached with care. 

TABLE 3  – COMMENTS ON THE DISTINCT SYSTEMS/PUBLICATIONS 

Model Comments 

[6] Y Zhang et al  ANN. Too few testing samples: presumed only 
2-3 testing samples on average per mode. 

[4] Wang  Expert System and ANN combined. No PD 
fault mode. 

[7] YC Huang et al  
ANN modified by Evolutionary Algorithm. No 
validation. Only 220 samples for fault cases, 
600 for normal state. 

[27] HT Yang, CC 
Liao  

Fuzzy rule system. Use of additional 150 
artificial data for 3 extra types of faults. 

[28] Guardado et al  
ANN trained with 5 gas ppm concentrations. 
Too few testing samples: only 5 testing 
samples av. per mode. 

[29] Castro,Miranda  ANN and fuzzy rule system. No normal mode. 
Includes IEC TC10 data 

[9] Miranda, Castro  ANN and fuzzy rule system. IEC TC10 data. 
No normal mode. 

[30] G Lv et al  

3 cascading SVMs. Data for 1 single 
transformer and not from a diversity of 
machines. Too few testing samples: only 2 
samples for testing DH faults. 

[31] WH Tang et al Applies Parzen Windows and PSO. 

[32] LX Dong et al Applies a rough set classifier and the fusion of 
7 wavelet neural networks. No PD mode. 

[33] MH Wang et al  

Couples the Extension Fuzzy Set theory with 
Genetic Algorithms. No validation. Too few 
samples: only 2 testing samples on average per 
mode. 

[34] SW Fei, XB 
Zhang  

Applies cascading SVM tuned with a Genetic 
Algorithm. No PD mode. No information on 
the size of test set, presumed small. 

[35] NAM Isa et al  Couples a feed-forward neural network with k-
means clustering.  

[36] [37] Castro, 
Miranda 

Autoencoders. No normal mode. Small 
number of test samples in some modes. 

[38] K Bacha et al  
Applies SVM. Too few samples: PD mode 
with only 2 samples, DL mode with only 3 
samples, etc. 

 
In order to facilitate such comparison, Table 3 includes a 

rough identification of the main tools used in building these 
diagnosis systems and some comments, especially focused on 
the validation procedures and dimension of test sets. It may be 
seen that a few works claimed 100% accuracy. However, 
either the number of types of faults was notoriously smaller 
than the number in the IEC 60599 publication, rendering the 
clustering exercise much simpler, or then the size of the test 
set was notorious smaller than advisable to confer 
validity/credibility to the method proposed. 

The model in [36], by the same authors as this paper, was 
devoted to discriminating the type of fault given that a faulty 
condition is assumed. The work reported now is an extension 
of previous preliminary results and, while keeping as we shall 
see an accuracy of 100%, it also allows the distinction 
between healthy and faulty states, as well as making a 
distinction between transformers with and without OLTC (on-
line tap changing).. 
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Fig. 2. Densification of the cluster for the D2 fault type (high energy 
discharges). Light spots: original data. Dark spots: new virtual points. Results 
obtained with λ=1 and σ=0.1 (kernel bandwidth), after generating 320 new 
points. This is a 2-D projection from 3-D data points. 

 
In the work reported in this paper, the data base from [3] 

was used, complemented with data from other origin, 
comprising 318 cases for faulty states and 34 cases for healthy 
states. Each sample in the data base includes information of 
dissolved gas concentration of H2 (hydrogen), CH4 (methane), 
C2H6 (ethane), C2H4 (ethylene) and C2H2 (acetylene) as well as 
the verified condition of the transformer. Then, using the 
Information Theoretic Mean Shift algorithm, 1400 new virtual 
data points were generated. 

Fig. 2 illustrates the densification process for a particular 
experiment, in a projection of 3-D data. It  illustrates how the 
mean shift algorithm pushes data points along paths that 
converge to local modes of the pdf of data, as estimated by the 
Parzen windows technique (3) with a given kernel bandwidth. 
This convergence to local modes is induced by the use of 
coefficient λ=1 in (10).  

This densification trick allowed one to populate the clusters 
and have available enough data for training the neural 
networks. The number of real data samples for each fault type 
and healthy condition is given in Table 4. The virtual data 
were used to form the training sets and all the real data were 
included in the test sets. 

V.  DIAGNOSIS VIA COMPETITIVE AUTOENCODERS 
The most usual approach to automated fault diagnosis relies 

on a single classifier. Given a sample as input, it must produce 
an output signal indicating the proposed fault classification. 
The model described in this paper implements a different and 
perhaps more effective concept. The new idea is to match an 
autoassociative neural network to each cluster of data – either 
to each failure mode or to the healthy conditions.  

 

TABLE 4 – SAMPLES GROUPED FOR TRAINING AND VALIDATION 

 Types of fault/no fault Training set 
(virtual) 

Test set 
(real data) 

T1 Thermal fault – T<300oC 200 77 
T2 Thermal fault – T>300oC 200 71 
PD Partial discharge 200 30 
DL Low energy discharge 200 37 
DH High energy discharge 200 103 
H0 Healthy states (no OLTC) 200 20 
H1 Healthy states (with OLTC) 200 14 
 
Each autoencoder is trained to store, in its weight matrix, 

the characteristics of a condition type. Then, when activated 
by an unclassified sample, only a specific autoencoder will 
"resonate" with it while the other will display large 
reconstruction errors. Arranged in a competitive setting, this 
cluster of autoencoders forms the new diagnosis system. 
Because of normal aging processes, dissolved gas 
concentrations are not stable and evolve with time. 
Transformers in a healthy condition but with different ages 
may present very distinct dissolved gas concentrations. This is 
why the best models use ratios instead of absolute 
concentrations, and both the IEC model and other models 
adopted such approach. 

The same is followed in the new model: as in the IEC 
60559 norm, the concentration ratios (C2H2)/(C2H4), 
(CH4)/(H2) and (C2H4)/(C2H6) are used as characterizing 
vectors. The input space is therefore reduced to a space with 3 
dimensions. In this case, it makes no sense to build an 
autoencoder with a smaller inner layer. 

The new system adopts autoencoders with a 3-15-3 
architecture, and sigmoid activation functions. Of course, this 
autoencoder does not perform data compression but this is not 
what is needed here. The large middle layer assures the 
necessary non-linear flexibility for the network to capture the 
features of the cluster it is meant and trained to learn. 

The seven autoencoders (1 for healthy condition in 
transformers with no OLTC, 1 for transformers with OLTC 
and 5 for fault types) are then linked in a competitive parallel 
arrangement such as in Fig. 2. When a gas concentration ratio 
vector is shown to the system, each autoencoder will generate 
an attempt to reconstruct the input vector – but only one of 
these reconstructions will have a small error. A simple min 
box will then allow the selection of a winner. A word must be 
said about the concept of "error". While in this work the error 
is calculated using Eq. (1), in fact we should rather be talking 
of a similarity measure instead of error. Alternative measures 
to be used instead of the MSE would be based on information 
theory – that would translate into a numerical value the 
distance between the data manifold and the vector 
reconstruction produced by the autoencoder. Although 
theoretically a non-parametric method would be preferable, 
this has not been tested because the Square Error dissimilarity 
measure gave, in practice, a success rate of 100% meaning 
that it is a satisfactory approximation for all purposes in this 
problem. 



 6 

 
Fig. 3. General architecture of the new diagnosis system, based on a set of 
autoassociative neural networks activated in parallel. The top ones test for the 
healthy condition, with or without OLTC; the other networks in parallel are 
tuned each for a specific fault type. Their output errors compete to decide 
which network recognizes the input vector as laying on the manifold it 
emulates, by producing a minimal error. 

VI.  TRAINING AND TESTING 

A.  Validation with real data 
The error in each autoencoder was calculated as in Eq. (1), 

which is equivalent to a Euclidean distance between the two 
vectors (input and output). The activation functions used in the 
input and hidden layers were hyperbolic tangents, while in the 
output layer each neuron had a linear activation function. The 
training procedure adopted the Levenberg-Marquardt 
algorithm and was performed in Matlab. Table 4 presents the 
number of samples included in all training and validation sets 
for the 7 autoencoders. 

Table 5 presents the results obtained, after training, in the 
discrimination of healthy/faulty condition. It is obvious that 
enough discriminating power was achieved, because there are 
no false answers: 100% accuracy was achieved. This is even 
more remarkable because the networks could discriminate 
between transformers with and without OLTC just from the oil 
samples. 

Table 6 displays the results produced with the new 
Competitive Autoencoder Set, as well as the diagnosis 
obtained when applying IEC 60599 to the same data. A 

remarkable result emerges, not totally unexpected because it 
was already hinted in [36]: 100% accuracy in pinpointing the 
type of fault – or indicating a no fault condition. Notice that no 
errors or misclassification were produced by the new system 
(352 hits in 352 cases!). Furthermore, with the densification 
trick using the Information Theoretic Mean Shift algorithm, all 
real cases were tested positively! The comparative results 
from applying IEC 60599 indicate that the validation set was 
not especially easy to diagnose and that rectangular hulls (such 
as the ones induced by the application of the norm) are not the 
most convenient way to encapsulate or represent the clusters 
associated to the several fault types. Additionally, Table 6 also 
tells that the virtual data generated by the mean shift algorithm 
were not doctored to satisfy the IEC criteria. 

To illustrate this result with a few examples, Table 7 
presents some classification results, with the correct fault 
identification, the diagnosis produced by the autoencoder 
model and the result provided by IEC 60599 (NI – non-
identified). The new system displays an absolute superiority 
over IEC 60599 and is better than any result reported and 
summarized in Table 2. In relation to IEC 60599, the 
autoencoder model was able to solve and correctly identify all 
undecided cases produced by this method. 

The 100% hit is, indeed, a remarkable result. It can only be 
explained by the capacity of the autoencoders to really learn 
distinct manifolds for the distinct sets or clusters of data. 

 
TABLE 5 – DIAGNOSIS ACCURACY IN DISCRIMINATING HEALTHY FROM 

FAULTY CONDITION 

Model 
% correctly identified 

healthy/faulty condition  
No. cases 

with wrong 
diagnosis training set testing set 

Miranda-Castro-Lima 100 % 100 % 0 
 

TABLE 6 –DIAGNOSIS ACCURACY COMPARISON IN THE DISCRIMINATION OF 
FAULT TYPE 

Model 

% correctly 
identified faults  

Total no. of non-
identified faults or 
cases with wrong 

diagnosis 
Training 
(virtual ) 

Testing 
(real) 

Miranda-Castro-Lima 100 % 100 % 0 

IEC 60599 93.00 95,28 85 in total (15 in 
real data) 

 
TABLE 7 – EXAMPLES FROM THE IEC TC10 DATABASE.  PERFORMANCE 

COMPARISON BETWEEN IEC 60599 AND THE AUTOENCODER SYSTEM 

42

22
HC
HC  

2

4
H

CH  
62

42
HC
HC  Fault Auto-

encoder 
IEC 

60599 

0.0417     1.1628     0.4444 T1 T1 T1 
0.0198 1.8438 4.0 T2 T2 T2 
0.0001 0.1102 0.0001 PD PD NI 
1.1667 0.1065 0.1000 PD PD NI 
0.0001 0.0476 0.0001 PD PD PD 

1.0 0.1667 1.0 DL DL NI 
4.0 0.1607 4.0 DL DL DL 

0.6667 0.2250 4.0 DH DH DH 
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B.  Sensitivity to noise 
Given that dissolve gas concentrations are prone to 

experimental measuring errors, it has become usual that some 
sensitivity study is conducted.  

Fig. 4 displays the results from applying to the database 
uniform noise of different bandwidths, by replicating 20 times 
each sample and contaminating every component of each 
vector with noise. It may be seen that even with a severe noise 
bandwidth of 20% around the real values (gross errors in all 
measured components) the accuracy level remained above 
90%, a value comparable or above the results of many systems 
in Table 2 for data free of noise. In the past publications 
claiming 100% accuracy in their tests, this robustness to noise 
test could not be found. 

This result adds confidence to the robustness of the new 
system devised. 

 

 
 Fig. 4. Degradation of accuracy with growth in noise bandwidth 

 

VII.   CONCLUSIONS 
The problem of condition diagnosis in power transformers, 

namely when subject to online monitoring of dissolved gases 
in oil, has taken a significant advancement with the work 
reported in this paper: a new system, composed of a set of 
competitive autoassociative neural networks, has achieved 
100% accuracy in diagnosis – both in detecting healthy/faulty 
conditions and in pinpointing the exact failure mode in each 
case of faulty condition, while discriminating cases from 
transformers with and without OLTC. 

The novelties in this work are threefold:  
o First, it is the use of competing autoencoders to 

"resonate" with the correct type of condition.  
o Second, it is the capacity of recognizing healthy states 

and discriminating them from faulty states, all in the 
same diagnosis system.  

o And last, the idea of using the Information Theoretic 
Mean Shift algorithm to densify the data clusters, 
allowing all real data to be used in the test/validation 
phase of the process. 

This idea, which was called the densification trick, is of 
general application. It was particularly useful in the case of the 
transformer fault diagnosis problem because the data sets for 
each failure mode or healthy condition are not large (are 
indeed very small). This causes problems in the correct 
training of neural networks.  

For instance, the autoencoders adopted in this work 

required the tuning of 150 parameters (weights) each, but 
several data clusters had a low number of points – as low as 
14. The application of the densification trick allowed one to 
enrich each cluster with many more points, while keeping the 
main structural information about the probability density 
function induced by the data, as estimated with the Parzen 
windows technique. We have thus used 352 real data samples 
to validate our model, by far the largest testing set ever used in 
all the publications referenced. 

Furthermore, the confidence in the accuracy of the results is 
greatly enhanced. The elegance of the densification trick rests 
in the fact that all real data can be used for validation 
purposes, while in all previously proposed methods part of 
these data had to be employed in building the model and 
therefore could not be used to validate it. 

The competitive architecture proposed for classification 
and diagnosis is completely general and its application is not 
restricted to transformer condition monitoring. In this case, a 
Euclidean similarity measure (square error) has proven 
effective and enough to discriminate results. However, in 
other applications it is possible that more sophisticated 
similarity measures should be necessary, both to train the 
autoencoders and to decide the winner among the competing 
results of the parallel set of autoassociative networks. 

This architecture exhibits some advantages over a single 
neural network trying to accomplish the same diagnosis 
objective. Each module may be trained independently and 
therefore the knowledge of new data on one type of fault will 
only have impact on the retraining of one component, while 
the behavior for all other modes will remain intact. The fact 
that it requires the training of more neural networks is seen as 
negligible, given that it is made offline and the training times 
involved are in the order of a few minutes. 

The remarkable success reported in this paper does not 
mean that an infallible machine has been built – for instance, 
there must be cases, in practice, where the simultaneous 
effects of more than one fault may blur the concentration 
ratios and render an ambiguous case for diagnosis. However, 
the results presented surpass, in accuracy, in number and type   
of fault/healthy conditions detected and in the validation 
effort, all that has been published so far. 
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