
A single pass trellis-based algorithm for
clustering evolving data streams

Simon Malinowski and Ricardo Morla

INESC-TEC, Faculty of Engineering, University of Porto

Abstract. The main paradigm for clustering evolving data streams in
the last 10 years has been to divide the clustering process into an on-
line phase that computes and stores detailed statistics about the data in
micro-clusters and an offline phase that queries micro-cluster statistics
and returns desired clustering structures. The argument for two-phase
algorithms is that they support evolving data streams and temporal
multi-scale analysis, which single pass algorithms do not. In this pa-
per, we describe a single pass fully online trellis-based algorithm, named
ClusTrel, designed for centroid-based clustering that supports evolving
data streams and generates clustering structures right after a new point
is processed. The performance of ClusTrel is assessed and compared to
state of the art algorithms for clustering of data streams showing similar
performance with smaller memory footprint.

1 Introduction

The increasing number of sensors and monitoring devices in today’s intelligent
systems makes data stream mining a topic of current interest. Mining data
streams is of use in various application domains such as network management,
health monitoring, sports, finance, etc. Amongst the different topics related to
data stream mining, clustering the data points from a data stream is the subject
of many research works over the last few years [1–9].

Algorithms designed to cluster data streams need to deal with specific addi-
tional requirements compared to those designed for offline clustering. These ad-
ditional requirements make this topic extremely challenging. Systems designed
for clustering of data streams should comply with the following requirements:

– The points of the stream have to be processed as they arrive and cannot be
stored in memory.

– The stream cannot be interrupted to process the points: there is limited time
before the next item arrives.

– An up-to-date clustering of the stream should be maintained to give more
importance to recent points.

– Stream clustering algorithms should be capable of detecting noise in the
streams.

– No a priori information on the number of clusters in the stream. The clus-
tering algorithm must self-adapt to detect the number of clusters.

– The system should be able to deliver a clustering structure frequently. This
enables the detection of concept drifts promptly after they occur.

Most of the algorithms proposed in the literature for data stream cluster-
ing fulfill the above requirements to different extents. Current algorithms for
data stream clustering rely on two different phases: a first phase that maintains
sufficient statistics about the stream and a second phase that generates the clus-
tering structure of the stream given the gathered statistics. The first phase is
done online and the second one is left for offline whenever a clustering snapshot
is required. This offline phase represents an increase in processing time and com-
plexity as it needs to be done every time a clustering snapshot is desired. Because
of this increase in time and complexity, the frequency of the offline process is
typically much smaller than that of the incoming data points, which introduces
delay in the detection of concept changes. Slow reaction to changes in the clus-
tering structure can prove to be detrimental to service quality and security in
application domains such as network anomaly and intrusion detection [10].

In this paper, we present ClusTrel, a single pass fully online trellis-based
algorithm designed for centroid-based clustering of data streams. Thanks to its
trellis structure ClusTrel updates the clustering snapshot after each point and
can hence detect concept changes for every incoming data point. This algorithm
is also capable of selecting the number of clusters based on a clustering evalu-
ation index. We use the MOA software [11] to generate synthetic streams and
compare the performance of ClusTrel with state of the art algorithms for cluster-
ing data streams. Simulation results show that ClusTrel is able to reach similar
performance while reducing the number of micro-clusters stored in memory.

The remainder of this paper is structured as follows. Related work is surveyed
in Section 2, the ClusTrel algorithm is described in Section 3. Simulation results
on synthetic and real streams are given in Section 4 and conclusions are drawn
in Section 5.

2 Related work

The initial approaches for clustering data streams focused on supporting the
single pass requirements [1, 3]. A common pitfall of these approaches is that new
points have the same weight as old points, making it difficult to adapt to changes
in the stream. These approaches also require that the target number of clusters
is provided as input to the clustering algorithm, which is an obvious limitation
in the case of evolving data streams.
Most recent two-phase algorithms for clustering data streams rely on micro-
clusters [2, 4–7]. Micro-clusters are a compact representation of clusters that
maintain sufficient statistics that can be updated online. Creating and indexing
micro-clusters from the data stream is established as the online part of most of
these algorithms, while the offline process generates the final clustering structure
from the current set of micro-clusters.
The CluStream [2] algorithm keeps a fixed maximum number of micro-clusters
at each instant. New points that fall within the boundary of already existing

micro-clusters are appended to them, while others form new micro-clusters.
This avoids having to merge clusters at every step and can be implemented
using micro-cluster feature vectors. CluStream also allows for the deletion of
old micro-clusters and can store snapshots of the current clustering structure
at different time horizons. The offline process of CluStream takes as input the
desired number of clusters and uses a k-means algorithm to generate the final
clustering from the current set of micro-clusters. ClusTree algorithm [7] uses an
R∗-tree structure in order to index the micro-clusters that are updated online.
The different levels of the tree build a hierarchical representation of the cluster-
ing. The authors propose different strategies to insert the micro-clusters into the
tree. ClusTree can hence handle slow to very fast stream by adapting the way
micro-clusters are inserted in the tree. The LiarTree algorithm [9] extends the
concepts of ClusTree to cater for noise detection and the improvement of novelty
detection in the streams.
Alternative approaches use density-based clustering such as those in [5, 6, 8]. The
algorithms presented in [5] and [6] are also based on an online and an offline
phase. In [5], the online phase consists of creating and updating micro-clusters,
and separating outlier micro-clusters from core micro-clusters. A density-based
clustering strategy (e.g. DBSCAN [12]) is used as the offline phase to generate
the final clustering. The online part of D-Stream [6] is based on density grids.
In [8], the authors propose a single pass density based clustering approach named
FlockStream that makes use of so-called agents.
The ClusTrel algorithm proposed here is a single pass algorithm similar to Flock-
Stream but is a centroid-based approach. The state of the art algorithms for
centroid-based clustering of data streams are CluStream [2] and ClusTree [7].
The approach proposed in this paper differs from CluStream and ClusTree as it
is a single pass algorithm that gathers statistics from the stream and generates
a macro-clustering after every incoming point.

3 The ClusTrel algorithm

3.1 Preliminary notations

Let S = S1, . . . , Sn, . . . be a stream taking its values in Rd. We assume that our
processing system does not have enough memory to store all the points of the
stream.

Definition 1. A micro-cluster is a compact representation of a cluster. It is
defined by a cluster feature vector (CFV). In this paper, a CFV of a micro-
cluster is a (d+ 2) tuple (n, c, ssqd), where n is the number of points associated
to the cluster, c is its centroid and ssqd is the sum of the squared distances of
all points in the cluster to c.

The CFV of a micro-cluster enables the gathering of sufficient statistics about
the points of the stream assigned to that micro-cluster without the need for
storing all points in memory. We will see later how the CFVs are updated when
new points are inserted in micro-clusters.

Definition 2. We denote by C(t)k a clustering structure that represents the clus-
tering of the stream S up to sample St into k micro-clusters. The k micro-clusters
are represented by their CFVs.

ClusTrel uses a clustering evaluation measure named the MDB index. It is
based on the Davies-Bouldin index [13] and is defined as follows:

Definition 3. Let C(t)k be a clustering structure. The MDB index of C(t)k is de-
fined as :

MDB =
1

k

k∑
i=1

max
j 6=i

SSQ(Ci) + SSQ(Cj)

dist(Ci, Cj)2
, (1)

where SSQ(Ci) is the average squared distance of all points in cluster Ci to its
centroid and dist(Ci, Cj) is the distance between the centroids of Ci and Cj.

The advantage of the MDB index over the classical DB index is that it is
computable online from the CFVs of a clustering structure. Low values of the
MDB index are associated with clustering structures composed of compact and
well-separated clusters. The MDB is used in ClusTrel to determine the number
of clusters that is most adapted to the input stream.

ClusTrel also uses the average SSQ index as a measure of quality of a clus-
tering structure. The average SSQ index is simply the average square distance
of the points of the stream to the centroid of the cluster they are assigned to.

3.2 The ClusTrel algorithm

ClusTrel is a dynamic programming algorithm, based on the Viterbi algorithm [14].
Given the data stream, ClusTrel minimizes one of the two cluster evaluation in-
dices described above. It dynamically builds a trellis whose states are clustering
structures, as shown in Figure 1 where the horizontal axis represents time. The
two parameters nm and nM represent the minimum and maximum numbers of
clusters to be explored by ClusTrel to find a clustering structure for the stream
S.

ClusTrel considers three kinds of transition in the trellis from a given clus-
tering structure, as shown in Figure 1. We denote these by Inc, Dec, and Keep
transitions. Each transition generates a new clustering structure given a current
structure and an incoming point. An Inc transition generates a structure with
an additional cluster, a Dec transition generates a structure with one less clus-
ter, while the structure generated by a Keep transition has the same number of
clusters as the input one. These three transitions incorporate the incoming point
in a structure and modify the CFVs that need to be updated. With a clustering
structure of k clusters and an incoming point p as input, the three transitions of
ClusTrel are detailed in the following.

Inc transition. An Inc transition produces a clustering structure of k + 1
clusters updated with p. It generates a new cluster on the point p. The CFVs of
the k already existing clusters are unchanged and the CFV of the newly created
cluster is simply (1, p, 0).

Fig. 1. The trellis structure of ClusTrel. The states of the trellis are clustering struc-
tures with a number of clusters varying from nm to nM . The three kinds of arrows
represent the possible transitions between structures at two consecutive time stamps.

Keep transition. A Keep transition generates a clustering structure with k
clusters. It first finds the cluster in the structure whose centroid is the closest to
p, denoted C. The point p is then appended into C. Only the CFV of C needs to
be updated. If this CFV is equal to (n, c, s), it is updated into (n′, c′, s′), where

n′ = n+ 1,

c′ = (p+ n× c)/n′,
s′ = s+ dist(p, c′)2 + n× dist(c, c′)2, bonjour!!!!!!!!

(2)

where dist represents the Euclidean distance.

Dec transition. A Dec transition generates a clustering structure of k − 1
clusters. It first merges two clusters Ci and Cj of the current clustering structure.
We denote the CFVs of these clusters (ni, ci, si) and (nj , cj , sj) respectively. Ci

and Cj are merged into C ′i whose CFV (n′i, c
′
i, s
′
i) is equal to

n′i = ni + nj ,

c′i = (ni × ci + nj × cj)/n′i,
s′i = si + sj + ni × dist(ci, c′i)2 + nj × dist(cj , c′i)2.

(3)

It then incorporates p into the closest cluster of the structure and updates the
appropriate CFV according to Eqn(2). Performing a Dec transition on a cluster-

ing structure C(t)k is equivalent to selecting a pair of clusters (Ci, Cj), i 6= j, 1 ≤

i, j ≤ k to merge. We propose here three different ways to choose the two clus-
ters to be merged in a Dec transition. The corresponding transitions are denoted
Dec1, Dec2 and Dec3 in the following.

Dec1 transition. The Dec1 transition selects the clusters (Ci, Cj) that are

the closest in C(t)k .

Dec2 transition. For every cluster Ci in C(t)k , the closest cluster to Ci is
searched for. This cluster is denoted Ci. Merging Ci and Ci leads to a new clus-
tering structure whose average SSQ sqi can be computed according to Eqn(3).
The pair of clusters to merge is chosen as (Cj , Cj) such that j = arg min1≤i≤k sqi.

Dec3 transition. For the Dec3 transition, the pair (Ci, Cj) is chosen as the
one that minimizes the SSQ index over all possible pairs of clusters in the given
clustering structure.

The processing time associated with the three Dec transitions described above
increases from Dec1 to Dec3. We will see in the experimental results section that
Dec2 and Dec3 transitions can lead to better clustering performance, but also
that the gain brought by Dec3 over Dec2 is small, so that Dec2 seems to be a
good trade-off between performance and complexity. In the following, ClusTrel-
1, ClusTrel-2 and ClusTrel-3 will refer to ClusTrel used respectively with the
Dec1, Dec2 and Dec3 transitions.

Initialization step of ClusTrel. The initialization step of ClusTrel consists of

generating the first clustering structure of the trellis : C(nm)
nm which is composed

of nm clusters of 1 point, hence taking into account the first nm points of the
stream S. All the others structures in the same vertical slice of the trellis are
empty.

Updating step of ClusTrel. Let us now assume that the t first points of the
stream are already processed and that the trellis is filled with the clustering

structures C(t)nm , C(t)nm+1, . . . , C(t)nM . Given the incoming point St+1, ClusTrel up-
dates these nM − nm + 1 structures. As can be seen in Figure 1, a structure at
time (t + 1) can be updated from at most three different structures at time (t)
(only two if the state is at the top or bottom of the trellis). ClusTrel algorithm

computes C(t+1)
k by choosing the best clustering structure (in terms of a cluster

evaluation index) that ends up in state C(t+1)
k from the previous slice of the

trellis. In other words,

∀k ∈ [nm, nM], C(t)k = arg min(Inc(C(t−1)k−1), Dec(C(t−1)k+1),Keep(C(t−1)k)), (4)

where the arg min is taken in terms of the desired cluster evaluation index (MDB
or SSQ). This step performs a local minimization of the index of the clustering
structures in the trellis given the data stream. In the following, we use ClusTrel
together with the minimization of the SSQ index.

For memory purposes, only the latest structures are kept in memory. Updat-
ing the structures at time t+1 only needs the incoming point and the structures

at time t. Hence, the maximum number of CFVs stored in a slice of the trellis
is equal to 1/2 × (nM + nm)(nM − nm + 1). However, some micro-clusters can
appear in different clustering structures. In order to reduce the amount of mem-
ory needed, a list of unique micro-clusters is kept by the ClusTrel algorithm.

These micro-clusters are indexed, and the clustering structures C(t)nm , . . . , C(t)nM

are described by the indexes of the micro-clusters that compose each structure.

Selection of the final clustering structure. Whenever a snapshot of the
current clustering is desired, ClusTrel can output the clustering structure in the
trellis with the most adapted number of clusters, w.r.t. to the MDB index. This
index is used for the selection of the best clustering structure as it gives a com-
promise between compact and well-separated clusters, which the SSQ index does
not. The MDB index of the structures in the trellis is calculated online without
the need for further information. The different values of the MDB index in the
trellis can also give soft information about the different clustering structures
that might be interesting to consider for the given stream.

3.3 Summary of the ClusTrel features

ClusTrel is a single pass centroid-based clustering algorithm that does not require
any offline process to deliver the final clustering result. ClusTrel does not need
the number of clusters to search for as an input parameter as it searches for the
best clustering structure with a number of clusters in [nm, nM]. In addition, it
is able to output the best clustering structure (in terms of one of two cluster
evaluation indices) at any time, and without the need for further processing. The
selection and output of the best clustering structure is inherent to ClusTrel.

As far as memory is concerned, at most 1/2 × (nM + nm)(nM − nm + 1)
micro-clusters are kept in memory after the processing of an incoming point. For
each of these micro-clusters, a CF vector is stored. An important point is that
the maximum number of clusters nM does not need to be much higher than the
order of magnitude of the real number of clusters in the data, as will be shown
in the simulation results section.

ClusTrel is able to detect changes in concept in the stream when the selected
number of clusters evolves in a certain period a time. The fact that ClusTrel can
generate clustering structures at every time instant make this detection faster.
For two-phase algorithms, the offline process has to be executed frequently in
order to quickly detect changes in concept in the data stream, which leads to
a larger complexity of the overall system. The ClusTrel algorithm can also deal
with up-to-date clustering by incorporating the concept of weighing down old
points with a decay function (as in [4–8]).

As far as processing time is concerned, ClusTrel is more demanding than
CluStream, DenStream or ClusTree, as it is a single pass algorithm that performs
the statistics gathering phase and the macro-clustering phase in parallel. This
algorithm may not be designed for very fast streams but is more adapted to
applications where the focus is put on the accuracy of clustering and on fast
detection of concept changes.

4 Experimental results

We present some experimental results to assess the performance of ClusTrel
with synthetic streams and streams from a real data set [15]. We focus here on
the comparison between the clustering performance of ClusTrel and the ones of
the two state of the art algorithms for centroid-based data stream clustering:
CluStream [2] and ClusTree [7].

4.1 Using synthetic streams

The synthetic data streams used in this section were generated using the MOA
software [11]. Three different streams with the following features are used:

1. 5 kernels in 2-dimensional space, 10,000 points
2. 8 kernels in 4-dimensional space, 12,000 points
3. 12 kernels in 6-dimensional space, 18,000 points.

The kernels that compose the streams are all Gaussian kernels. The radii of
these Gaussian kernels is a parameter of the MOA stream generator. We have
chosen values of the radii so that some of the kernels overlap in the space. The
results presented for ClusTree and CluStream in this section are obtained with
the MOA software that is freely available1. For all of these experiments, the
correct number of clusters in the streams is detected by ClusTrel by looking at
the MDB index of the clustering structures in the trellis. Hence, the SSQ indices
given in this section always refer to clustering structures with as many clusters
as the number of kernels in the stream.

Figure 2-(a) shows the clustering performance for the first stream in terms
of the average SSQ index of ClusTree for different number of levels, and of
CluStream for different numbers of micro-clusters kept at each time instant.
The performance of ClusTrel-1 is also depicted as the horizontal black curve and
is obtained for nM = 6. For this stream, the clustering performance obtained
with ClusTrel-1, ClusTrel-2 and ClusTrel-3 are the same. The best SSQ indices
reached by ClusTree and CluStream are given by the last value of their respective
curves. It can be seen that CluStream reaches the same performance as ClusTrel
when 85 clusters are kept at each instant. This result highlights the benefit of
the trellis structure of ClusTrel. The optimization of the clustering made at each
time instant allows a decrease in the number of clusters (21 micro-clusters) that
need to be kept in memory in order to obtain good performance.

Similar conclusions can be drawn when the second stream is used. The corre-
sponding results are shown in Figure 2-(b). The performance of ClusTrel is again
the same for the 3 variants of ClusTrel. The horizontal line represents the SSQ
obtained by ClusTrel for nM = 10. The best average SSQ obtained with Clus-
Tree is always higher than the one obtained with ClusTrel. CluStream with 75
micro-clusters reaches the same performance as ClusTrel with 55 micro-clusters
maximum.

1 http://moa.cs.waikato.ac.nz

0.
00

41
0.

00
44

0.
0

04
7

0.
00

65
0.

00
75

2# Levels 84 6 10

10 20 30 40 85

ClusTree
CluStream
ClusTrel,

ClusTree
CluStream
ClusTrel,

2 53 6 11

9 10 25 65 75

4

45

(a) - 5 classes, dimension 2 (b) - 8 classes, dimension 4

Micro-clusters

Micro-clusters

12 57 328 1,716 8,759 12 53 298126 > 10,00026

Fig. 2. Average SSQ index obtained by ClusTrel, ClusTree and CluStream for the first
two synthetic streams.

Table 1. Average SSQ index obtained by ClusTree and CluStream for the third syn-
thetic stream. The performance of ClusTrel for nm = 15 is the same as the one of
CluStream with 120 micro-clusters.

ClusTree [7]

Levels 4 5 6 7 12
Micro-clusters 56 133 331 677 > 10,000

SSQ index 0.018456 0.016093 0.016068 0.016035 0.015817

CluStream [2]

Micro-clusters 20 30 40 50 120
SSQ index 0.017162 0.016059 0.015349 0.015348 0.015347

The clustering performance of ClusTree and CluStream on the third stream
are given in Table 1. For this stream, the average SSQ index obtained by ClusTrel
with nM = 15 (120 micro-clusters maximum) is equal to 0.015347, the same value
obtained using CluStream with 120 micro-clusters.

These experiments made on synthetic streams highlight the benefit of the
trellis structure of ClusTrel w.r.t. the maximum number of clusters that need
to be kept in memory. Even when the height of the trellis is close to the real
number of classes in the stream, ClusTrel is able to generate a clustering with
a good SSQ index compared to the ones obtained by ClusTree and CluStream.
In the following, we assess the performance of ClusTrel with a stream coming
from a real data set and highlight the impact of ClusTrel-2 and ClusTrel-3 on
the clustering performance.

4.2 Using real data

We use the Forest Covertype data set available from [15] to assess the perfor-
mance of ClusTrel with real data streams. This data set is composed of ap-
proximately 500,000 10-dimensional points (only the numerical attributes are

considered). The points are labeled with an integer from 1 to 7 corresponding to
7 different classes. Experimental results are given here in terms of the average
SSQ index together with the widely-used purity index, defined as follows. For
a set of classes C = {c1, . . . , cL} and a set of clusters Γ = {γ1, . . . , γK}, the
purity index of the clustering is equal to

purity(C, Γ) =
1

N

∑
k

max
l

(
card(γk ∩ cl)

)
, (5)

where N is the total number of points. This index looks at how the different
classes are distributed amongst the clusters. The closer the purity is to 1, the
better the distribution of classes in the clusters.

We built a first stream composed of 100,000 points from the Forest Covertype
data set. The proportion of the classes in this stream is similar to those in the
whole data set.

The average SSQ and purity indices obtained by ClusTrel, ClusTree and
CluStream for different parameters are given in Figure 3-(a) and (b) respectively.
The performance obtained by the three variants of ClusTrel is given in this figure.
The SSQ and purity index are calculated on a clustering structure of 7 clusters
output by these algorithms (not at the micro-clustering level). The results on
this figure demonstrate that the use of ClusTrel-2 and ClusTrel-3 brings an
improvement in terms of clustering performance. The SSQ index obtained with
ClusTrel-2 and ClusTrel-3 is almost always less or equal than the one of ClusTrel-
1. The best performance is reached for this stream using ClusTrel-3 and nM = 11.

Fig 3-(b) shows that the purity index obtained by ClusTrel is higher than the
ones obtained with ClusTree and CluStream for the different set of parameters.

Regarding the difference between the performance obtained by ClusTrel-2
and ClusTrel-3, it is important to note that they are equal or very close almost
every time on this experiment. They are exactly equal for nM = 8, 9, 10 and 12.
The difference between the two is very close for nM = 13 (it cannot actually
be seen on the figure, but there is a less than a 0.1% difference). The benefit of
ClusTrel-3 is only significant for nM = 11 here. ClusTrel-1 and ClusTrel-2 hence
seems to provide a good trade-off between processing complexity and clustering
performance. The results given in Table 2 also support this observation. These
average SSQ indices are obtained on another stream of 75,000 points from the
Forest CoverType data set. It can be seen that the increase of the nM parameter
does not improve the clustering performance of ClusTrel-1 while it does for
ClusTrel-2 and ClusTrel-3. The gain obtained with ClusTrel-3 over ClusTrel-2 is
again small.

5 Conclusion

We propose in this paper ClusTrel, a single pass algorithm designed for the clus-
tering of data streams. Clustering structures with different numbers of clusters
and their statistics are maintained while processing the stream. These struc-
tures are chosen so that they minimize a cluster evaluation index at every step.

9.
00

e+
05

1.
00

e+
06

1.
10

e+
06

0.
67

0
0.

67
5

0.
68

0
0.

68
5

0.
69

0

8 9 10 11 12 13

Levels 8 9 105 6 7

Micro-clusters 40 60 80 100 120 150

8 9 10 11 12 13

8 9 105 6 7

40 60 80 100 120 150

(a) (b)

Fig. 3. Average SSQ index (a) and purity index (b) obtained by ClusTrel, ClusTree and
CluStream for different parameters on a stream obtained from the Forest CoverType
data set.

Table 2. Average SSQ index obtained with the three variants of ClusTrel on a second
stream based on the Forest CoverType data set.

nM 12 24 36

ClusTrel-1 8.640e + 5 8.720e + 5 8.860e + 5

ClusTrel-2 8.630e + 5 8.564e + 5 8.4884e + 5

ClusTrel-3 8.630e + 5 8.564e + 5 8.4882e + 5

ClusTrel is able to deliver a clustering of the stream as soon as a new point
is processed. Thanks to the structure of ClusTrel, changes in concept in the
streams can be detected quickly without the need for further processing. The
performance of ClusTrel has been compared to two state of the art algorithms
for clustering data streams. Simulation results show that ClusTrel is competi-
tive with these algorithms in terms of clustering performance while enabling a
reduction in the number of clusters that need to be stored in memory.

Acknowledgments. This work is financed by the ERDF European Regional
Development Fund through the COMPETE Programme (operational programme
for competitiveness) and by National Funds through the FCT Fundao para
a Cincia e a Tecnologia (Portuguese Foundation for Science and Technology)
within project CMU-PT/RNQ/0029/2009

References

1. L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-
data algorithms for high-quality clustering. In Proc. of Intl. Conf. on Data Engi-
neering, pages 685 –694, 2002.

2. C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu. A framework for clustering evolving
data streams. In VLDB, pages 81–92, 2003.

3. S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Cluster-
ing data streams: Theory and practice. Knowledge and Data Engineering, IEEE
Transactions on, 15(3):515 – 528, may-june 2003.

4. C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu. A framework for projected clustering
of high dimensional data streams. In Proc. of the Intl. Conf. on Very large data
bases, pages 852–863, 2004.

5. F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving
data stream with noise. In In 2006 SIAM Conference on Data Mining, pages 328–
339, 2006.

6. Y. Chen and L. Tu. Density-based clustering for real-time stream data. In Proc. of
ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining, pages 133–
142, 2007.

7. P. Kranen, I. Assent, C. Baldauf, and T. Seidl. The ClusTree: indexing micro-
clusters for anytime stream mining. Knowledge and Information Systems, pages
1–24, 2010.

8. A. Forestiero, C. Pizzuti, and G. Spezzano. A single pass algorithm for clustering
evolving data streams based on swarm intelligence. Data Mining and Knowledge
Discovery, pages 1–26, 2011.

9. M. Hassani, P. Kranen, and T. Seidl. Precise anytime clustering of noisy sensor data
with logarithmic complexity. In Proc. of International Workshop on Knowledge
Discovery from Sensor Data, pages 52–60, 2011.

10. G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In Proceedings of
the 17th conference on Security symposium, pages 139–154, 2008.

11. A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, and T. Seidl.
MOA : Massive Online Analysis , a Framework for Stream Classification and Clus-
tering . Journal of Machine Learning Research, pages 3–16, 2011.

12. M. Ester, H-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proc. of ACM SIGKDD
Intl. Conf. on Knowledge discovery and data mining, pages 226–231, 1996.

13. D.L. Davies and D.W. Bouldin. A cluster separation measure. IEEE Trans. on
Pattern Analysis and Machine Intelligence, PAMI-1(2):224–227, April 1979.

14. A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. on Information Theory, 13(2):260–269, April
1967.

15. A. Frank and A. Asuncion. UCI machine learning repository, 2010.
http://archive.ics.uci.edu/ml.

