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a b s t r a c t

This paper investigates small-signal stability and decentralized control design for distribution electric

energy systems with a large penetration of distributed generators. Two real world distribution systems

are studied in this paper. The first system is the IEEE 30-node distribution system and the second one is

the distribution system on Flores Island, one of the western group islands of the Azores Archipelago.

The Block Gerschgorin Theorem and Liapunov function-based stability criteria are applied to

formally state sufficient conditions for small-signal stability. The results illustrate that when the

governor control of distributed generators is designed without considering interactions between

generators, small-signal instability could occur in the system and even the sufficient conditions for

stability would not be satisfied.

In the next step, the paper assesses control design to stabilize potentially unstable distribution

systems. The main focus is on designing enhanced decentralized control based on the introduced

stability criteria. The findings illustrate that implementing the enhanced decentralized control could

ensure stability and support a large penetration of distributed generators.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

New pressures for cleaner, more efficient and simply smarter
use of energy will lead to large deployment of smaller-scale
power plants closer to the end users. These units are broadly
referred to as distributed generation (DG) and they offer many
advantages. For instance, combined heat and power (CHP) DG
units offer increased efficiency through waste heat recovery, and
high reliability and security (Zerriffi, Dowlatabadi, & Apt, 2004).
Low-head hydro, wind and solar power sources provide clean
electricity. In addition, all DG systems hold the potential to reduce
transmission and distribution losses (Nazari & Ilić, 2010).

In general, a large penetration of distributed generators could
pose new technical problems for legacy distribution systems. The
main focus of this paper is on potential small-signal instability
problems due to DGs. To support large integration of DG units, it
is essential to (1) introduce a structure-based dynamic model to
assess the small-signal stability of distribution systems with
abundant DGs, (2) identify potential technical problems which
might arise by large integration of DGs; and (3) introduce
technically innovative ways and theoretically sufficient condi-
tions to ensuring stability of future distribution systems. This
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paper investigates these issues and illustrates them on two real
world distribution systems.

In Section 2 a plausible structure of future distribution systems
with DG units providing a large portion of electricity is described
first. Then, in Section 3 it is shown that a large penetration of DG
units sending power into an electric distribution system may
cause small-signal instability problems not perceived in today
distribution systems. This new problem has been recently
observed by several authors including Cardell, Ilić, and Tabors
(1998), Cardell and Ilić (2004) and Guttromson (2002). However,
the explanation of the main cause of these problems and possible
solutions still need further investigation.

In Section 3 the paper introduces a structure-based dynamic
model for future distribution systems. The proposed model
provides a better insight of the decentralized nature of these
systems, where each DG represents a sub-system of the whole
system. Furthermore, the Block Gerschgorin Theorem and
Liapunov function-based stability criteria are used to precisely
describe sufficient conditions for stability. The findings illustrate
that interestingly two methods result in the same conditions.

In Section 4 an advanced decentralized control is introduced to
enhance frequency stability of future distribution systems. The
proposed control is designed based on the sufficient conditions
for stability. The paper closes in Section 5 with a brief discussion
of the overall findings and the future outlook of advanced
decentralized control systems.
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2. Future electric distribution systems

In the past electric power systems have had vertical structures
in which electricity is produced by large central power plants and
delivered to the end users by means of transmission and distribu-
tion networks. It is believed by many that producing electricity
locally by DG units has many advantages for electric power systems.
For instance, CHP technologies have higher efficiency (up to 85%)
compared with centralized power plants (around 30%). In addition,
many DGs are falling under the category of renewable energy
resources and they are green. Most of DG technologies could also
provide ancillary services for the grid (Pepermans, Driesen,
Haeseldonckx, Belmans, & Dhaeseleer, 2005).

Recent trends have been toward transforming traditional
electric power systems into systems with many small generators
placed on the distribution side of the grid. Figs. 1 and 2 illustrate
Fig. 1. Schematics of the modified IE
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schematics of distribution systems with DGs placed close to the
end users. The first system (shown in Fig. 1) is created by varying
the IEEE 30-node distribution system in complementation with
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source. For demonstration represented in gray are two Combus-
tion-Turbines (C-T) connected to nodes 13 and 14. In the future
the same system might be expected to have a small hydro plant
and/or a small wind plant. The data for the IEEE 30-node
distribution system is available in Kersting (1991).
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energy is provided by four diesel units whose total capacity is
2.5 MW. Around 35% of the demand is supplied by four hydro
plants with overall capacity of 1.65 MW. Moreover, two synchro-
nous wind plants with the total capacity of 0.65 MW are provid-
ing the rest of the demand (15%) (EDA Report, 2009). The general
policy of EDA (Electricidade Dos Ac-ores) is to make Flores Island
sustainable. Therefore, in the future diesel generators will be
replaced by renewable sources of energy such as wind plants. The
data for the distribution system on Flores is available in Nazari
(2012, chap. 3).

In order to ensure stability of new distribution systems, it is
necessary to establish systematic modeling and develop analyzing
tools. Such tools do not exist at present. This paper is an effort
toward fulfilling this need. To start with, it is important to
understand that at present utilities do not have any systematic
methodology for sitting and operating DGs into the existing
distribution systems. If the DGs are very small, the design is such
that they are expected to supply highly localized parts of end
users. Therefore, it is likely that they reduce overall power losses
relative to the delivery losses seen in today distribution systems
(Nazari & Ilić, 2010). Moreover, no significant dynamic interac-
tions between clusters of local DGs and consumers on one side,
and the rest of the network, on the other, take place. As a result,
these highly distributed small-scale DGs do not require any major
change in operating practices. In particular, it is essential to
ensure that the response of such system to small disturbances is
unlikely to lead to any significant system-wide instabilities of
frequency and voltage.

On the other hand, when DGs of larger capacity are placed
within an existing distribution system, the tradeoff between
delivery loss reduction and system stability with respect to
disturbance is harder to manage (Nazari & Ilić, 2009). For delivery
loss reduction purposes the tendency is to reduce distribution
lines flows by sending electricity back to the grid. This, however,
could create robustness problems, since the system-wide flows
created by the DGs are no longer negligible.

In an earlier work the authors have shown that placement of
medium size DGs for delivery loss reduction could lead to an
operating conditions that is not robust (Nazari & Ilić, 2009). This
could result due to strong interaction of DG units.

It is this inter-dependence of placing DGs for efficient steady
state stabilization and the robustness by each systems that points
into needs for introducing more formal approaches to sitting
medium-size DGs and stability analysis for identifying robustness
problems. Notably the role of systematic control design for
provably stable future distribution systems becomes key in moving
forward.

The remained of this paper concerns modeling sufficient
conditions for ensuring robustness of given systems with med-
ium-size DG units and ultimately the control design for stabilizing
potentially unstable systems. A mathematical model of the inter-
connected system is needed to assess instabilities caused by
interactions of electrically close DGs. The effect of interactions
must be quantified and control must be designed to compensate
instabilities caused by each process.

In addition, it is important to better understand the control
design specifications, which must be placed on DGs themselves to
ensure that the system as a whole remains robust. Having
methods to evaluate complexity and cost tradeoff between
different control designs for achieving this will become more
critical in the future. Many questions lie ahead. For example, how
small and how localized DGs should be before one worries about
robustness issues at all? In fact, introduction of micro-grid and
plug-and-play solutions to integrating highly distributed energy
resources of 1 kW order such as micro-CHPs and PV panels are
currently not perceived to be likely to cause unstable system
response. The theoretical question is whether this is indeed true
with a very high penetration of such small devices. In particular, if
clusters of very small resources in large numbers are displaced
further away from consumers, would each system begin to
experience an emerging instability? Moreover, if larger DGs are
deployed, would this cause instabilities and why?

In order to answer these questions a structure-based dynamic
model is introduced which lends itself to the needed analysis. The
paper starts by observing that poor system stability could be
caused by either (A) a very sensitive response of a DG itself to the
local disturbances; or (B) interactions of electrically intercon-
nected unstable DGs; or (C) interactions of electrically intercon-
nected stable DGs. To assess the nature of possible instabilities,
the paper starts by recognizing fundamental changes in distribu-
tion systems. In particular, instabilities may occur in the newer
distribution systems which may have several DGs interacting. On
the other hand, in today distribution networks power is typically
supplied by a single large substation source for which there is no
frequency instability concern at all.

As one proceeds to assess necessary communication and
control complexity needed to ensure robustness of future dis-
tribution systems, potential sources of instabilities should be
related to physical causes (A)–(C). This is generally hard to do,
but since the complexity of cyber over-laid on top of the physical
grid greatly depends on this understanding, such methods are
essential to introduce.

In general, it is possible to assess the robustness of the
response of a DG itself with respect to disturbances. Intuitively,
smaller DGs are more sensitive to small disturbances than larger
generators. To quantify this sensitivity for a given specific type of
a power plant, it is possible to use the well-understood droop
characteristics of power plants (Ilić & Zaborszky, 2000).

Next the droop characteristics of any electric power plant are
derived starting from the dynamical model of the power plant.
Since this paper is primarily concerned with frequency instability,
a so-called real-reactive power decoupling assumption is made
(Pai, Gupta, & Padiyar, 2004). Any stand-alone power plant
comprising a prime mover, electric generator and their primary
control can be written as a dynamic system of the form

d ~X
ðiÞ

LC

dt
¼ f ðiÞLCð

~X
ðiÞ

LC , ~Z
ðiÞ

LC , ~d
ðiÞ

LCðtÞÞ ð1Þ

where ~X
ðiÞ

LC is the set of internal state variables, such as frequency
( ~oðiÞG ), fuel flow ( ~W

ðiÞ

F ) and fuel control ( ~V
ðiÞ

CE), in a closed-loop
power plant i with its primary control; ~Z

ðiÞ

LC is a vector of coupling
variables between power plant i and the electrical system to
which the plant is connected. In general, the coupling variables
are active power out of generators ( ~P

ðiÞ

G ). Moreover, ~d
ðiÞ

LCðtÞ is a
vector of local disturbances seen by the power plant. A linearized
model of (1) takes on the form

dXðiÞLC

dt
¼ AðiÞLCXðiÞLCþCðiÞMZðiÞLCþDðiÞP dðiÞLCðtÞ ð2Þ

where

XðiÞLC ¼
~X
ðiÞ

LC�X
ðiÞ

LC , ZðiÞLC ¼
~Z
ðiÞ

LC�Z
ðiÞ

LC , dðiÞLC ¼
~d
ðiÞ

LC�d
ðiÞ

LC

Parameters with bar denote the equilibrium point of the
system. As an illustration, consider a linearized model of the
diesel generator shown in Fig. 2

d

dt
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2
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3
75¼
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�KI 0 0

2
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3
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mBd
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2
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3
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0

2
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3
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dðtÞ ð3Þ

In this model, oGd
is the frequency, mBd

is the fuel rate and PCd

is the fuel control of the diesel generator. In addition, Md and Dd
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are the inertia and damping coefficients respectively. Cd and Kd

are the transfer function coefficients for the fuel system, Td is the
time constant of the fuel system, and KI is the gain of the governor
(Sharma, Islam, & Pryor, 2000). The data for the dynamic model of
the diesel generator is available in Table B7. Furthermore, the
linearized dynamic models of the hydro and wind plants on Flores
and those of the C-Ts on the IEEE 30-node system are presented in
Appendix A.

It follows from this example that ZðiÞLC ¼ PðiÞG . In other words,
independent of the type of the power plant, its linearized
dynamics can be expressed in terms of its own XðiÞLC while the
coupling variable is real power (PðiÞG ) generated by the plant. For
hydro plants internal state variables XðiÞLC are different than for the
thermal power plants, and are a function of power generation
type. However, the coupling variable between a thermal power
plant and a hydro power plant is the same (Ilić & Zaborszky,
2000).

It is important to observe that model (2) is of the same form
for any type of a power plant. The numerical parameters will
determine both robustness of a power plant with respect to large
disturbances and with respect to small disturbances.

A linearized model of (2) can be used to assess small-signal
stability of a stand-alone power plant in response to small
disturbances. In particular, in order to define the basic sensitivity
of the plant with respect to its coupling variable PðiÞG and the rest of
the system, the sensitivity of frequency (oðiÞG ) with respect to
active power deviation (PðiÞG ) known as the droop characteristics is
considered (Ilić & Zaborszky, 2000)

SðiÞ ¼ �
@oðiÞG

@PðiÞG

ð4Þ

Calculating the droop characteristics of the plants shown in
Figs. 1 and 2 with and without closed loop frequency control
system illustrates that DGs without closed loop control have
larger droop characteristics (shown in Table 1). This implies that
in order to minimize the sensitivity of frequency to deviations in
real power, at least larger DGs need to be equipped with closed
loop G-C systems.

In fact, the main focus of this paper is on stability of
interconnected systems with many DGs. At a system level,
dynamics of these systems could become very sensitive to very
small fluctuations around operating points. In particular, this
paper shows that strong interaction between DG units or poor
tuning of governor control systems could lead to overall small-
signal frequency instability. It is critical to observe that such
analysis is not done by today distribution companies. This is not
done because in the old systems with one power plant no
dynamic instabilities are expected.

In preparation for the control design of interest, it is per-
ceived that the commonly used droop characteristics definition
includes the effects of primary control of power plant, governor
control in particular. At present typical primary control is fully
decentralized since governor affects valve position on a steam
power plant, for example, in response to deviations of local
Table 1
Droop characteristics of the plants in Figs. 1 and 2.

Type of power plants Combustion

turbine (pu)

Diesel

generator (pu)

Hydro

generator

(pu)

With closed loop

frequency control

0.075 1e�4 0.45

Without closed loop

frequency control

0.5 0.05 1.78
frequency from the desired frequency set point (oref
G ). In the

next section stability conditions are selected assuming decen-
tralized control.
3. Stability conditions with decentralized control

In this section, the paper assesses stability of future distribu-
tion systems with abundant DGs equipped with decentralized
control. In particular, sufficient conditions for stability of such
evolving distribution systems are derived using Block Gerschgorin
Theorem as well as Liapunov function-based stability criteria.

Earlier work has indicated that potential small-signal fre-
quency instabilities may occur in distribution networks with a
large penetration of MW-scale DG units (Cardell & Ilić, 2004;
Cardell et al., 1998; Guttromson, 2002). However, no fundamental
causes of these instabilities are discussed.

This paper stresses that it is possible to identify fundamental
causes of potential frequency instabilities in terms of the strength
of electrical interactions between DGs and the damping magni-
tude (real part of the eigenvalue) contributed by the state
variables of DG units. To this end, the paper introduces a
structure-based dynamic model whose state variables are local
state variables XðiÞLC of all individual DGs and their coupling
variables ZðiÞLC . This model builds on the model first proposed in
Liu and Ilić (1994) and then used for stability analysis of
distribution systems with DGs in Cardell et al. (1998) and
Cardell and Ilić (2004). The model has a system matrix whose
decomposable structure lends itself to deriving sufficient condi-
tions for stability by assessing stability of its sub-systems and the
strength of their interactions. Next this model is derived.

Recalling from earlier in this paper, the coupling variable of a
DG is its real power output, namely ZðiÞLC ¼ PðiÞG . Moreover, since the
coupling variables of all power plants are subject to the real
power flow network constraints, it is possible to express their
dynamics in terms of local state variables of the DGs, in particular
their frequencies (oðiÞG ) (Liu & Ilić, 1994)

dPðiÞG

dt
¼
Xn

j ¼ 1

Kpijo
ðiÞ
G ð5Þ

here n denotes the number of power plants in the system and Kp

is the coupling matrix, defined as follows:

Kp¼ JGG�JGL J�1
LL JLG

The elements in each sub-matrix Jij are defined as @Pi=@dj

where G represents generator nodes and L represents load nodes.
By adding (5) to (2) a full system model representing dynamics of
the distribution system with n DGs is obtained as (Cardell et al.,
1998)

d

dt

Xð1ÞLC

^

Pð1ÞG

^

2
66664

3
77775¼

Að1ÞLC 0 Cð1ÞM 0

0 & 0 &

Kp11Soð1Þ
G

� � � 0 � � �

^ & ^ &

2
66664

3
77775

Xð1ÞLC

^

Pð1ÞG

^

2
66664

3
77775þ

0

^

Dpð1Þ

^

2
66664

3
77775

dPL

dt
ð6Þ

where the matrix SoðiÞ
G

includes 0’s and 1 and relates oðiÞG ¼ SoðiÞ
G

XðiÞLC .
In addition, dPL=dt represents changes in the system loads,
modeled as disturbances to the grid.

The desired system model is obtained by changing the order of
state variables of (6) and by ordering the state variables as the
internal state variables of DGs and their coupling variable (real
power out of the corresponding DG)

d

dt

X1

X2

^

2
64

3
75¼

A11 A12 � � �

A21 A22 � � �

^ ^ &

2
64

3
75

X1

X2

^

2
64

3
75þ

g1

g2

^

2
64

3
75dPL

dt
ð7Þ
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where

Xi ¼
XðiÞLC

PðiÞG

2
4

3
5, Aii ¼

AðiÞLC CðiÞM

KpiiSoðiÞ
G

0

2
4

3
5, Aij ¼

0 0

KpijSoðjÞ
G

0

" #

gi ¼
0

DpðiÞ

" #

3.1. Block Gerschgorin stability conditions

As noted earlier, the particular interest is to identify sufficient
conditions for stability of new distribution systems with DGs.
These conditions are obtained by applying Block Gerschgorin
Theorem to the new system model presented in (7) (Feingold &
Varga, 1962)

ðJðAii�sIiÞ
�1J1Þ

�1r
Xn

j ¼ 1
j a i

JAijJ1 8iA ½1,n� ð8Þ

where J � J1 represents the infinity norm of the indicated matrix.
The left hand side of (8) represents the set of complex-valued
numbers that all the eigenvalues of the full system matrix lie in
the union of these sets (Feingold et al., 1962). Also, the right hand
side of (8) is calculated by adding the infinity norms of the off-
diagonal matrices.

In particular, off diagonal matrices denote the coupling matrix
between the ith DG and other DGs in the system. By inspection, it
can be simply obtained that the infinity norm of off-diagonal
matrices equals to the norm of their coupling variables. That is

JAijJ1 ¼ 9Kpij9

where 9Kpij9 denotes the electrical interaction between the ith and
the jth DGs. Hence, (8) can be re-written as follows:

minf9s�li,19 � � � 9s�li,m9gr
X
ja i

9Kpij9 8iA ½1,n� ð9Þ

here m denotes the number of state variables for the ith sub-
system (Aii). Condition (9) states that eigenvalues of the full
system lie within the circles centered at eigenvalues of a sub-
system and the radius equals to the sum of the electrical
interaction between the sub-system and other sub-systems.
Fig. 3 demonstrates the schematic of the circles in which
eigenvalues (li ¼ riþ jvi) of the full system lie. The blue crosses
represent eigenvalues of sub-systems (Aii).

One can simply conclude from Fig. 3 that stability of the full
system is satisfied when all the circles lie in the left hand side of
the complex plane. That is, (1) eigenvalues of all sub-systems lie
in the left hand side of the complex plane (sub-systems are
Fig. 3. Illustration of Gerschgorin Circles in which eigenvalues of the full system

matrix lie.
asymptotically stable); (2) the real part of the slowest eigenvalue
of a sub-system (the closest eigenvalue to the imaginary axis) is
greater than the sum of the electrical interaction between the
sub-system and other sub-systems.

The physical interpretation of this theorem is that when local
DGs are asymptotically stable and the strength of electrical
interaction between DGs is less than the damping magnitude
(real part) of the slowest eigenmode of DGs, then the whole
system always remains asymptotically stable. This also implies
that the main cause of frequency instability in distribution
systems with abundant DGs is (1) low damping magnitude of
the eigenmode of local DGs; (2) strong coupling between DGs. In
general, low damping results from poor tuning of the governor
control of DGs. Furthermore, strong coupling between DGs is
caused by strong electrical interaction between them. Coupling
between DGs is measured by the norm of the off-diagonal terms
of the coupling matrix (

P
ja i9Kpij9). If this value is greater than

the damping magnitude of the ith DG, then the DG is strongly
coupled to other generators.

In the next step, the Gerschgorin stability criteria are applied
to formally state sufficient conditions for stability of the systems
shown in Figs. 1 and 2. The first system consists of two C-Ts
controlled by traditional G-C systems. The G-Cs are tuned in a
conventional fashion. They are responding to perturbations in
local frequency and are designed to provide DGs with a 5–7%
droop characteristics. The paper shows that tuning G-Cs in a
traditional way, without considering interactions between the
plants, may lead to small-signal instability problems.

Next, the small-signal stability of the 30-node distribution
system is investigated. The results illustrate that the full system
has two eigenvalues in the right hand side of the complex plane.
This implies that the system can become very sensitive to even
very small disturbances. Fig. 4 shows how frequency deviation of
C-Ts becomes unstable when a small perturbation equal to 0.1 pu
occurs at node 15. Eigenvalues of the full system and the sub-
systems are presented in Table B1. In addition, the coupling
matrix of the distribution system is shown in Table B3.

The results of stability analysis illustrate that the 30-node
distribution system with a traditional control design is not
satisfying the second condition for stability with the deficit of
1.15 pu/s. This explains why the system has two eigenvalues in
the right hand side of the complex plane.

In a similar fashion, the small-signal stability of the distribu-
tion system on Flores is investigated. On Flores, the diesel and
hydro plants are equipped with traditional G-C systems with
similar control logic to the G-C of the C-Ts. However, the wind
plant has a basic pitch control system.
10-3

pu

Fig. 4. Frequency response of the IEEE 30-node system after a small perturbation

at node 15.
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Fig. 5. Frequency response of the plants on Flores after a small perturbation on

the island.
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The results of small-signal study demonstrate when penetra-
tion of renewable energy resources is high, the island has
unstable dynamic behavior. Fig. 5 illustrates frequency response
of the plants after a small perturbation (0.1 pu) on the island.
Eigenvalue analysis of the system shows that there are two
eigenvalues in the right hand side of the imaginary axis. Table
B5 shows the results of the eigenvalue analysis. Table B4, also,
presents the coupling matrix of the island.

Note that because of frequency oscillations caused by fast
fluctuations of intermittent resources, penetration of renewable
energy resources (mostly wind) is limited on Flores Island. This
problem is pronounced during peak hours (EDA Report, 2009;
Hamsic et al., 2007).

The technical findings furthermore illustrate that the original
system with conventional control systems is not satisfying the
Gerschgorin stability criteria. In fact, the stand-alone hydro plant
(the third sub-system) is not asymptotically stable. In addition,
the system is not satisfying the second condition for stability with
the deficit of more than 1.37 pu/s.

3.2. Liapunov stability conditions

An alternative approach to determine sufficient conditions for
stability is using Liapunov stability method, fully elaborated in
Siljak (2007). In this section the Block Gerschgorin Theorem-
based and Liapunov-based stability criteria are compared and it is
shown that these conditions are identical when the Liapunov
equation is defined using the knowledge of system eigenvalues.

To this end, Eq. (7) is re-arranged by using nonsingular
transformation (Xi ¼ TiX̂ i). Furthermore, the energy function and
the Liapunov equation of the system are introduced as follows
(Siljak, 2007):

dX̂ i

dt
¼LiiX̂ iþ

X
ja i

DijX̂ j 8iA ½1,n� ð10Þ

viðX̂ iÞ ¼ ðX̂
T

i ĤiX̂ iÞ
1=2

ð11Þ

LT
iiĤ iþĤiLii ¼�Ĝi ð12Þ

where

Lii ¼ T�1
i AiiTi, Dij ¼ T�1

i AijTj

The solution to (12) is obtained as

Ĥi ¼ Ii and Ĝi ¼�2 diagfs1,s2, . . . ,smg
where si is the absolute real part of the ith eigenvalue of Aii. The
sufficient condition for the stability of the system shown in (10) is
satisfied when W-matrix is Metzler. The W-matrix for the choice
of Liapunov function takes on the form (Siljak, 2007)

wij ¼
�si

M , i¼ j

l1=2
M ðD

T
ijDijÞ, ia j

8<
: ð13Þ

here si
M denotes the maximum real part of the eigenvalues of Aii

and lM represents the maximum eigenvalue of the indicated
matrix. Since the second term of the W-matrix is the Euclidean
norm of Dij, it is possible to re-write Eq. (13) as follows:

wij ¼
�si

M , i¼ j

JDijJ2, ia j

(
ð14Þ

As transformation matrices (Ti and Tj) are unity matrices, the
Euclidean norm of Dij is the same as the Euclidean norm of Aij. By
inspection, it is trivial to show that JAijJ2 ¼ 9KPij9. Therefore, the
W-matrix takes on the form

wij ¼
�si

M , i¼ j

9KPij9, ia j

(
ð15Þ

The new W-matrix is Metzler if the following conditions hold:

�si
M o0

9si
M94

P
ja i

9KPij9

8><
>: ð16Þ

In summary, the results in this section claim that both Block
Gerschgorin Theorem-based and Liapunov-based criteria are
equivalent when the Liapunov equation is defined using the
knowledge of system eigenvalues. Furthermore, both conditions
have an intuitive physical interpretation of mathematical condi-
tions which state that as long as local control reacts sufficiently
fast to counteract the dynamics of interactions with the rest of the
system, the decentralized control will be sufficient to stabilize the
system frequency. This follows by analyzing Eqs. (2) and (15)
simultaneously, and recalling that the coupling variable is
ZðiÞLC ¼ PðiÞG .
4. Enhanced decentralized control with Gerschgorin logic

In this section, an enhanced decentralized control system with
Gerschgorin logic is introduced to improve the stability of future
distribution systems. The new control is designed based on
shifting all the Gerschgorian Circles of the full system to the left
hand side of the complex plain. Eq. (16) illustrates the mathema-
tical formulation of the proposed control system

dXi

dt
¼ AiiXiþBiUiþ

X
ja i

AijXj 8iA ½1,n� ð17Þ

where

Ui ¼�KiXi

and

9sMðAii�BiKiÞ94
X
ja i

JAijJ1 ¼
X
ja i

9Kpij9

For the C-Ts shown in Fig. 1 the control signal inputs to the
fuel control state (V ðiÞCE) and therefore the control matrix takes on
the form

BCT ¼ ½0 1 0 0 0�T
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Likewise, for the plants on Flores the control matrices are
obtained as

BDiesel ¼ ½0 0 1 0�T , BWind ¼ ½1 0�T , BHydro ¼ ½0 0 0 1 0�T

The decentralized control signal is superposed to the primary
control of DGs and it responds to both disturbances of the internal
state variables XðiÞLC as well as the coupling variable ZðiÞLC ¼ PðiÞG . Fig. 6
demonstrates a block diagram of the existing closed-loop
dynamics improved by the enhanced decentralized control loop.

Applying the new control strategy to the C-Ts of the IEEE
30-node system demonstrates that the system will restore its
dynamic stability and can satisfy stability criteria. In fact, the
stability margin of the new system (the distance of the Gersch-
gorin circles to the imaginary axis) is approximately 0.3 pu/s.
Fig. 7 illustrates the frequency response of the system after
implementing the enhanced decentralized control. As shown in
Fig. 7, overall overshoot of the system is less than 2% and the
whole system settles gradually. This implies that the enhanced
ALC PG

K

Fig. 6. The block diagram of the new control system.

pu

Fig. 7. Frequency response of the IEEE 30-node system after implementing the

enhanced decentralized control.

10-3

pu

Fig. 8. Frequency response of Flores after implementing the enhanced decentra-

lized control.
control can ensure both stability and dynamic performance of the
system.

In the next step, dynamic stability of Flores is investigated
considering the new control is implemented on the DG units. The
technical findings illustrate that the island will be small-signal
stable even with a high penetration of renewable energy
resources. In this condition, the stability criteria are satisfied with
the margin of around 0.2 pu/s. Fig. 8 demonstrates frequency
deviation of the new system after a small perturbation (0.1 pu)
occurs on the island. The results demonstrate that the overall
overshoot of the new system is less than 0.35% and frequency
deviations settle gradually. Eigenvalues of both scenarios are
presented in Tables B2 and B5.
5. Conclusions and future outlook

This paper shows that poor tuning of G-C systems and strong
electrical interaction between DGs are two main causes of
potential small-signal instabilities in future distribution systems.
If G-Cs of DGs are tuned in a conventional way, without con-
sidering interactions between the plants, DGs may start interact-
ing against each other, especially when they are electrically close
to each other. This can lead to small-signal instability problems.

To ensure stability of future distribution systems, an advanced
decentralized control is introduced. The proposed control
responds to the disturbances of internal states as well as
coupling variables. The logic of the new control is to move the
Gerschgorin Circles of the full system to the left hand side of the
complex plane.

The proposed control is applied to two real world distribution
systems with abundant DGs. The results demonstrate that the
original systems are very sensitive to even very small perturba-
tions in real power. On the other hand, the new systems with the
enhanced decentralized control will be stable with appropriate
stability margin.

The paper recommends that enhanced decentralized control
systems are essential for stability of future distribution systems;
otherwise, today policies, by which private operators can simply
install and operate DG units without any constraint, is likely to lead
to significant stability problems. In summary, the proposed control
with Gerschgorin logic enables flexibility of DGs and brings many
advantages such as
1.
 simple control systems;

2.
 no need for system-wide sensing and communications; and

3.
 relatively inexpensive control equipment.

However, decentralized control has inherent drawbacks such
as it requires that all decentralized controllers operate as
expected. Failure of some decentralized controllers to respond
could lead to system-wide instabilities. The deployment of AMI
(Automatic Meter Infrastructure) could resolve the problem by
metering the actual actions of controllers. AMI enables two-way
communication between DGs and SCADA (control center and data
acquisition). The main advantage of this two-way communication
is to stabilize the whole system at globally optimal equilibrium
point. The future outlook of this paper is to deploy AMIs,
operating in conjugate with DGs, in order to ensure both stability
and efficiency of future distribution systems.
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Table B2
Eigenvalues of the IEEE 30-node system after implementing the enhanced

decentralized control.

Full system The 1st C-T The 2nd C-T

�19.9920 �19.9943 �19.9943

�19.9966 �1.9930 �1.9070

�3.4869 �1.7140 �1.7750

�2.8475 þ 1.5735i �1.450 þ 1.510i �1.5700 þ 1.5090i

�2.8475 � 1.5735i �1.450 � 1.510i �1.5700 � 1.5090i

�1.6033 þ 2.2518i

�1.6033 � 2.2518i

�0.5083 þ 1.6159i

�0.5083 � 1.6159i

�0.0239

Table B3
Coupling matrix of the IEEE 30-node system.

Type of power plants C-T1 C-T2

C-T1 1.2545 �1.1534

C-T2 �1.1519 1.1519

Table B4
Coupling matrix of the distribution system of Flores.

Type of power plants Diesel/hydro Wind

Diesel/hydro 13.9056 �1.4073

Wind �1.3461 1.3461

Table B5
Eigenvalues of the distribution system of Flores.

Full system Diesel generator Wind plant Hydro generator

1.0eþ02 n 1.0eþ02 n �21.7622 1.0eþ02 *

(�0.0069 þ 1.0174i (�0.007 þ 1.0174i �0.7097 (�1.1094

�0.0069 � 1.0174i �0.007 � 1.0174i 0.0001 þ 0.1036i

�1.1094 �0.0031 0.0001 � 0.1036i

�0.2176 �0.0000) �0.0060

0.0001 þ 0.1035i �0.0045)

0.0001 � 0.1035i

�0.0029

�0.0071

�0.0060

�0.0045

�0.0000)
Appendix A

In Appendix A, the state space model of the C-Ts on the IEEE
30-node system is presented in Eq. (18). In addition, the dynamic
model of the hydro and wind plants on Flores are illustrated in
Eqs. (19)–(21)

d

dt

oGCT

VCECT

WFCT

WFdCT

2
66664

3
77775¼

�DCT

MCT
0 c

MCT
0

�KD

b
�1
b 0 0

0 0 0 1

0 1 �d
a

�b
a

2
666664

3
777775

oGCT

VCECT

WFCT

WFdCT

2
66664

3
77775þ

�1
MCT

0

0

2
64

3
75PGCT

þDPCT
dðtÞ

ð18Þ

where VCECT
is the fuel control, WFCT

is the fuel flow, and WFdCT
is

the derivative of the fuel flow. In addition, a, b, d and c are the
transfer function coefficients for the fuel system, and KD is the
gain of the G-C (Cardell et al., 1998). The data for the coefficients
of Eq. (18) is available in Cardell et al. (1998).

The dynamics of the hydro plant on Flores are presented in
Eq. (19)

d

dt

oGh

qh

vh

ah

2
66664

3
77775¼

�Dh

Mh

Kq

Mh
0 �Kw

Mh

1
Tf

�1
Td

0 1
Tw

0 0 �1
Te

r0

Te

�1
Ts

0 1
Ts

�ðrhþ r0 Þ
Ts

2
6666664

3
7777775

oGh

qh

vh

ah

2
66664

3
77775þ

�1
Mh

0

0

0

2
66664

3
77775PGh
þDPh

dðtÞ

ð19Þ

here qh is the penstock flow, vh is the governor droop, and ah is the
gate position. Moreover, Tf, Td, Tw, and Te are the time constants of
the hydro plant. Ts is the time constant of the servomotor, and rh

and r0 are the permanent and transient speed droop, respectively
(Cardell et al., 1998).

A wind plant is a synchronous machine connected to the grid
through a power electronic interface. The mechanical part of the
plant consists of a rotating mass and a wind turbine with a pitch
control system. Eqs. (20) and (21) illustrate the dynamics of the
rotating mass and the wind turbine, respectively (Pierik et al., 2004)

doGw

dt
¼

1

Mw
Pmw�

Dw

Mw
oGw
�

1

Mw
PGw

ð20Þ

where

Pmw ¼�KmoGw
ð21Þ

here Pmw is the mechanical power, Dw is the damping coefficient,
and Km is the proportional gain of the pitch control system (Pierik
et al., 2004). The data for the state space models shown in
Eqs. (19)–(21) are available in Nazari (2012, chap. 3).
Table B1
Eigenvalues of the IEEE 30-node system.

Full system The 1st C-T (at node 13th) The 2nd C-T (at node 14th)

�19.9943 �19.9943 �19.9943

�19.9943 �0.0045 þ 1.510i �0.0057 þ 1.5090i

0.0081 þ 1.5217i �0.0045 � 1.510i �0.0057 � 1.5090i

0.0081 � 1.5217i �1.0714 �1.0775

�0.0186 þ1.4984i �0.0993 �0.0907

�0.0186 � 1.4984i

�1.1387

�0.9989

�0.1969

�0.0037
Appendix B

In Appendix B, the eigenvalues and coupling matrices of
the systems investigated in Sections 3 and 4 are presented
(Tables B2–B4). The data for the dynamic model of the diesel
plant (shown in Eq. (3)) is also illustrated in Tables B6 and B7.
Table B6
Eigenvalues of Flores after implementing the enhanced decentralized control.

Full system Diesel generator Wind plant Hydro generator

1.0eþ02 * 1.0eþ02 * �21.7622 1.0eþ02 *

(�0.017þ1.017i (�0.017þ1.017i �1.7097 (�1.1094

�0.017�1.017i �0.017 � 1.017i �0.015þ0.104i

�1.1094 �0.0140 �0.015�0.104i

�0.2176 �0.0150) �0.0145

�0.015þ0.1041i �0.0160)

�0.015 � 0.1041i

�0.0405

�0.009þ0.0174i

�0.009�0.0174i

�0.0002

�0.0171)



Table B7
Electromechanical parameters of the diesel plant on Flores.

Md (s) Dd (pu) Td (s) Kd (pu)

1.133 0.005 0.6 40

Rc (pu) Cd (pu) KI (1/s) Cc (pu)

0.03 1 10 1
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