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This  paper  presents  a  multiyear  dynamic  transmission  expansion  planning,  TEP,  model  aiming  at  min-
imizing  operation  and  investment  costs  along  the  entire  planning  horizon  while ensuring  an  adequate
quality  of service  and  enforcing  constraints  modeling  the  operation  of  the  network  along  the  planning
horizon.  The  developed  model  profits  from  the experience  of  planners  when  preparing  a list  of possi-
ble  branch  (lines  and  transformers)  additions  each  of  them  associated  to the  corresponding  investment
cost.  The  objective  of  solving  a TEP  problem  is  to  select  a  number  of  elements  of  this  list  and  provide  its
ransmission expansion planning
nvestments
ynamic multiyear model
iscrete evolutionary particle swarm
ptimization

scheduling  along  the planning  horizon  such  that  one  is facing  a mixed  integer  optimization  problem.  In
this case,  this  problem  was  solved  using  a discrete  evolutionary  particle  swarm  optimization  algorithm,
DEPSO,  based  on already  reported  EPSO  approaches  but particularly  suited  to  treat  discrete  problems.
Apart from  detailing  the  developed  DEPSO,  this  paper  describes  the  mathematical  formulation  of  the  TEP
problem  and  the  adopted  solution  algorithm.  It also  includes  results  of  the  application  of  the  DEPSO  to
the  TEP  problem  using  two  test  networks  widely  used  by other  researchers  on  this  area.
. Introduction

In the last two decades power systems went through a restruc-
uring process aiming at introducing market mechanisms to link
he generation and the demand and liberalizing progressively the
ccess to the networks. As this process developed, new challenges
ere introduced namely in terms of decoupling distribution net-
ork activities from retailing. As a result, most countries that went

hrough restructuring typically implemented competitive mecha-
isms in the extreme activities of the value chain, generation and
etailing, while keeping network activities as regulated monopo-
ies. In the first years after this move, a larger accent was  put on
hort term activities, for instance illustrated by the implementation
f day-ahead markets. As time passed, long term expansion plan-
ing activities regained interest and continue to be a major concern
f generation and transmission companies. Regarding transmis-
ion, expansion plans must now be prepared in a decoupled way
rom generation and from distribution. Transmission networks will

ow have to follow and in most cases to anticipate the requests
oth from new generation and new demand introducing a new

evel of uncertainty regarding the location of connection points.

∗ Corresponding author. Tel.: +351 22 2094230; fax: +351 22 2094150.
E-mail addresses: mz.costeiradarocha@gmail.com (M.C.d. Rocha),

saraiva@fe.up.pt (J.T. Saraiva).

378-7796/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.epsr.2012.07.012
© 2012 Elsevier B.V. All rights reserved.

The increasing number of wind parks together with their increas-
ing installed capacity leads to power surplus in some distribution
networks that now start to inject in transmission. As the installed
capacity of wind parks increase, connection points are also moving
from distribution to transmission creating new challenges to trans-
mission planners. Furthermore, in Europe long term plans are under
development in order to build a super transmission grid enabling
moving large amounts of energy at longer distances, for instance
using hydro resources in Scandinavia and solar and wind resources
in southern countries, as Spain and Portugal. Considering all these
aspects, transmission expansion planning problems are even more
complex than in the past due to a number of aspects:

- they have a multiperiod dynamic nature and it should be main-
tained an holistic view over the entire horizon, eventually
discretized in a number of annual periods. This holistic view
means that running an expansion exercise over np periods is not
the same as running np independent exercises in a sequential
way. Treating the whole horizon in the same problem means that
when commissioning a project for a period we  are taking not only
into account the requirements of that period but also its impact

in the future;

-  they exhibit a geographic coupling in the sense that new instal-
lations will not be selected as answers to local problems. In
meshed networks as transmission ones, solving a problem can

dx.doi.org/10.1016/j.epsr.2012.07.012
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:mz.costeiradarocha@gmail.com
mailto:jsaraiva@fe.up.pt
dx.doi.org/10.1016/j.epsr.2012.07.012
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also address and have positive impacts on bottlenecks in other
locations, so that there is a global view that should be maintained;

 they are discrete problems due to the nature of investment alter-
natives;

 they are affected by load uncertainty over the horizon. A plan
should be adequate not only for a given load evolution but the
decision maker should not feel any relevant regret whatever the
future. This immediately leads to risk analysis under which flex-
ible solutions are most welcome.

So according with these indications, the TEP problem can be
efined as a complex optimization problem involving a large num-
er of variables and constraints that aims at scheduling a number
f investments on transmission assets along an extended horizon.
his problem has a mixed integer non linear programming nature,
hich, in fact, corresponds to a combinatorial problem and it can

e formulated considering several objectives, that are usually con-
radictory.

The literature on this topic includes a large number of publica-
ions that can be gathered in two large groups. On one side, there
re applications designed to analyze pre-prepared expansion plans.
ost of these formulations correspond to software packages devel-

ped by utilities or by research centers that were related with them.
ackages as TRELSS and CREAM developed by EPRI and several oth-
rs implemented by CEPEL in Brazil, ENEL in Italy and EDF in France
re examples of these approaches. On the other hand, there are opti-
ization models designed to build expansion plans according to

ome criteria. The number of publications on this topic is very large
1] and there is not a common and general transmission expansion
ormulation adopted by all researchers. Traditionally, the expan-
ion formulations included continuous variables to represent the
apacity of new branches thus requiring approximations to obtain

 final technically feasible solution. For instance, Refs. [2,3] describe
inear and non-linear approaches to the TEP problem. Some other
apers as [4–7] describe mixed integer formulations and adopt, for

nstance, Branch & Bound and Benders Decomposition based meth-
ds in a way to preserve the discrete nature of investments. Some
thers select investments according to a Merit Index or to a trade-
ff relation between the investment cost and the resulting benefit
8–11].

More recently several emergent techniques as Simulated
nnealing, Genetic Algorithms, Tabu Search and Game Theory
tarted to be applied to this problem. Refs. [12,13] describe the
pplication of Genetic Algorithms to the transmission expansion
roblem [14], details the use of Tabu Search [15], adopts Simu-

ated Annealing and [16] uses Grasp. Finally, ref. [17] describes a
ulti agent implementation based on cooperative games. These

uthors mention the advantages of these approaches to address this
omplex combinatorial problem in terms of identifying a feasible
olution in a manageable computation time.

In view of the characteristics of the TEP problem, this paper
escribes a multiyear dynamic approach that aims at minimizing
he investment and operation costs along the planning horizon
hile enforcing limits for reliability indices, namely considering

 − 1 contingencies, and for the maximum investment cost and
or the number of on-going projects in each period of the hori-
on. Given the mixed integer nature of the resulting problem,
e adopted a discrete evolutionary particle swarm optimization

DEPSO) approach to solve this problem that corresponds to an
nhancement of original PSO algorithms both in terms of introduc-
ng an evolutionary flavor to the rule of generation of new particles

nd treating discrete variables in a more adequate way. Accord-
ngly, the proposed dynamic TEP model based on DEPSO is the main
ontribution of this paper and allows foreseeing the application of
EPSO to other complex combinatorial problems.
 Systems Research 93 (2012) 83– 92

As a result of these ideas, this paper is structured as follows. After
this Section 1, Section 2 details the discrete evolutionary particle
swarm optimization, DEPSO, and Section 3 details the TEP mathe-
matical formulation and the application of the implemented DEPSO
to this problem. Section 4 presents results for two Case Studies,
namely providing comparisons with results reported in the liter-
ature by other researchers and finally Section 5 draws the most
relevant conclusions of this research.

2. Discrete evolutionary particle swarm optimization

2.1. Heuristic tools

Heuristic methods go step-by-step generating, evaluating, and
selecting solutions, with or without interacting with the planner.
Taking advantage from planers experience inputs, the computa-
tional performance of heuristic methods is usually better than that
of classical mathematical methods. In some cases local searches
are also performed. The solutions are evaluated and classified
according to the fitness function that considers technical, finan-
cial and service criteria and data. Heuristic Tools include, among
others, evolutionary algorithms and particle swarm optimization.
In particular, evolutionary algorithms are usually organized in the
following steps:
initialize a random population P of npt elements;
repeat – reproduction (by recombination and/or mutation), evaluation,

selection and test;
until test is positive (for termination criteria based on fitness, on number

of generations or other criteria).
Evolutionary computation offers several advantages when

facing difficult optimization problems [18]: as its conceptual sim-
plicity and broad applicability, it outperforms classic methods on
real problems and it has a large potential to use knowledge and
hybridize with other methods. The classical particle swarm opti-
mization, PSO, was  proposed by Kennedy in 1995, based on the
parallel exploration of the search space by a set of “particles” or
alternatives that are successively transformed along the process
[19]. The basic PSO model is defined according to (1) and (2).  Under
this scheme, the movement rule of a particle pt is given by (2) and
it is used to change the position of the particle Xi

pt obtained for

iteration i to its new position Xi+1
pt in the following iteration i + 1.

Xi+1
pt = Xi

pt + Vi+1
pt (1)

Vi+1
pt = Vi

pt + Rndi+1
mem,pt · Wmem · (bpt − Xi

pt)

+ Rndi+1
coop,pt · Wcoop · (bG − Xi

pt) (2)

This movement rule includes three terms as follows:

- the Inertia Term given by Vi
pt . This term indicates that the move-

ment of the particle pt is influenced by the movement it had in
the previous iteration;

- the Memory Term indicating that the movement of the particle
is attracted by the best of its ancestors, bpt, or, in other words,
by the best particle that was obtained in previous iterations in
this position of the population. This term is determined by the
memory weight Wmem set in the beginning of the process and by
a random number Rndi+1

mem,pt sampled in each iteration from an
uniform distribution in [0.0; 1.0];

- similarly, the Cooperation Term includes information about the
best global particle so far identified in the entire population in all

previous iterations, bG. This term is also determined by the coop-
eration weight Wcoop typically set in the beginning of the process
and by a random number Rndi+1

coop,pt sampled from an uniform
distribution in [0.0; 1.0] in each iteration.
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Fig. 1. Movement rule in the EPSO algorithm.

Some refinements were introduced in this scheme namely
ecause several tests indicated that this movement rule was ade-
uate to make the swarm converge to the zone where the optimum
as but failed to fine tune the convergence to the accurate optimum
osition.

.2. Discrete evolutionary PSO, EPSO

In 2002 Miranda and Fonseca [20] introduced the evolutionary
article swarm optimization (EPSO) that joints the most interesting
eatures of particle swarm methodologies and evolutionary algo-
ithms. The structure of the EPSO algorithm is summarized below
21].
nitialize a random population P of npt particles
epeat
Replication, mutation, reproduction, selection, test
ntil test is positive

EPSO focuses in regions of the search space where better contri-
utions for the solution can be found, instead of conducting a blind
ampling of the space. In this case, the movement rule of particle pt
lso includes the Inertia, the Memory and the Cooperation Terms
entioned above and the velocity Vi+1

pt determining the new posi-

ion of this particle, Xi+1
pt , is now given by (3) and this scheme is

llustrated in Fig. 1.

i+1
pt = Wi+1∗

ine,pt
· Vi

pt + Wi+1∗
mem,pt · (bpt − Xi

pt) + Wi+1∗
coop,pt · (b∗

G − Xi
pt) · P

(3)

In expression (3) Wi+1∗
ine,pt

, Wi+1∗
mem,pt and Wi+1∗

coop,pt represent the
nertia, the Memory and the Cooperation weights. In the first place,
he algorithm samples the weights Wi+1

ine,pt
, Wi+1

mem,pt and Wi+1
coop,pt

hat are then mutated in Wi+1∗
ine,pt

, Wi+1∗
mem,pt and Wi+1∗

coop,pt using (4) in
hich � represents a learning parameter fixed externally. In these

xpressions the sign * denotes mutated values. The best global par-
icle, bG, also undergoes mutation according to (5) so that a local
earch around the current best global particle is performed.

i+1∗
pt = Wi+1

pt · [log N(0, 1)]� (4)

∗
G = bG + Wi+1∗

bG
· N(0, 1) (5)

Finally, the Cooperation Term is also influenced by a commu-
ication factor P. When the particles have several dimensions and
re represented by a vector, the communication factor P is mod-
led by a diagonal matrix having 0 and 1 values on the diagonal.
he 1 values are used to communicate the information in some
imensions of b∗

G to the new particle. The 1 values in this matrix

ave probability p and the 0 values have probability 1 − p. Several
eported tests showed that p values set at 0.2 or 0.3 lead to better
esults when compared with more classical and more deterministic
chemes where p = 1.
 Systems Research 93 (2012) 83– 92 85

The approach introduced in this paper is based on a discrete
modeling of EPSO, DEPSO. Possible solutions are represented by
vectors of integers in the sense that both the velocity vector V and
the particles X are forced to be integers, using a rounding process
of the output of (3).  This model is boosted by local search nearby
the best global solutions ever founded. These features enhance the
successful progression of DEPSO toward the most promising solu-
tions. Further details regarding the application of the DEPSO to the
TEP problem are provided in Section 3.3.

3. Transmission expansion planning model

3.1. General modeling issues

As indicated in Section 1, the TEP problem exhibits a number of
features that contribute to turn it into a complex problem namely
in terms of the holistic view that should be maintained along
the entire horizon and regarding the discrete nature of expansion
projects. As a result of these concerns, in the developed formu-
lation we explicitly consider a planning horizon structured in np
periods that will be represented at a time in the mathematical
problem and we also consider a project list based on nproj projects
including new lines and transformers that are technically imple-
mentable. Each of these projects is characterized by the pair of
nodes between which it can be built, by the technical data of the
line or the transformer and by the investment cost. The objective of
the TEP problem is therefore to identify the best possible solution
that integrates a number of elements of this project list, adequately
scheduled along the years of the planning horizon, so that we
minimize a criterium to be specified and a number of constraints
are enforced.

The search space that will be analyzed in the TEP problem is dis-
crete and it typically includes a large number of possible alternative
plans given by npnproj, where np is the number of periods in the
planning horizon and nproj is the number of investment projects in
the project list defined by the planner. A solution Xpt corresponds
to an expansion plan and it includes a number of projects selected
among this list. The first population X of the DEPSO including npt
particles is randomly generated and it corresponds to a matrix of
npt × nproj. Each line of this matrix corresponds to a particle in the
population, that is, to a possible solution to the TEP problem. Each
element of this line is associated with each project in the project
list and it contains information about:

- the year in which it will be commissioned, that is an integer
between 1 and np;

-  or 0 if this particular project was  not selected to this particular
particle;

- or np + 1 meaning it was postponed.

This design of a particle with integers from 0 to np + 1, and in
particular with a possible states below 1 and above np,  is relevant
when using DEPSO because it should be possible to evolve with the
same difficulty from any state to 0, non selecting the project, or to
np + 1, postponing the project beyond the possible defined states.
If the 0 and np + 1 states where not allowed, the roundings with be
limited to 1, in the lower level, and to np at the higher level and
so the 1 and the np states would be artificially favored eventually
leading to inadequate plans.

3.2. Mathematical formulation
The formulation of the TEP model is given by (6)–(9).  For a par-
ticular particle pt in iteration i, the objective function is given by
(6) and it corresponds to the addition of the investment and the
operation costs in each period adequately transferred to the initial
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eriod using an interest rate rr. In this formulation, pt is the index
f a particle in the population, i is the iteration counter, p and j are
ntegers representing a period in the planning horizon and a project
n the project list. On the other hand, OCi

pt,p represents the oper-
tion cost of this particle in period p, ICj is the investment cost of
roject j, Ki

pt,p,j
is a binary variable indicating that project j is sched-

led to start operation at period p in the expansion plan associated
o particle pt.

in  Costi
pt =

np∑
p=1

(
(OCi

pt,p +
∑nproj

j=1 ICj · Ki
pt,p,j

)

(1 + rr)p

)
(6)

Subjected to:

ower flow and generator limits for each period (7)

inancial constraints,  global or for each period (8)

eliability constraints (9)

The operation cost associated with each particle pt in iteration
 is estimated solving a DC OPF algorithm for each period p in the
lanning horizon according to (10)–(14). In this formulation ck is
he operating cost of the generator connected to bus k, in $/MWh,
gk is the output of the generator connected to bus k, PNSk models

 ficticious generator to represent the Power Not Supplied in bus
, having a large penalization cost given by G, Pdk represents the
oad in bus k, Pgmin

k
and Pgmax

k
are the minimum and the maximum

enerations in bus k, Pmax
b

is the maximum flow in branch b of the
ransmission network and abk is the DC sensitivity coefficient relat-
ng the injected power in bus k with the active power flow in branch
. For each branch b with extreme nodes m and n, these coefficients
re derived dividing the difference of the phases between nodes m
nd n by the branch reactance. Then, the phase in node m and the
hase in node n are sustituted by expressions established using the
lements in lines m and n of the inverse the admittance matrix of
he DC model multiplied by the injected power in each node k of
he system. Making this substitution, finally yelds for branch b an
xpression written in function of the injected powers in each node
. The coefficients of this expression are the so-called sensitivity
oefficients of the flow in branch b regarding the injected powers
n the system nodes, that is the coefficients abk. In this case, given
hat we are considering fictitious generators to represent Power
ot Supplied, the injected power in node k is given by the addition
f the generation Pgk with PNSk and subtracted from the demand,
dk. The flow in branch b is finally constrained by a minimum and

 maximum value that are usually symmetrical of each other, that
s, Pmin

b
= −Pmax

b
, indicating that the flow can range from −Pmax

b
o Pmax

b
, thus leading to constraints (14). For each particle in the

opulation, this problem is solved for every period p = 1, . . .,  np con-
idering the equipments (lines and transformers) that are included
n that particle to start operation in period p.

in OC =
∑

ck · Pgk + G
∑

PNSk (10)

Subject to:

Pgk +
∑

PNSk =
∑

Pdk (11)

gmin
k ≤ Pgg ≤ Pgmax

k (12)

NSk ≤ Pdk (13)

Pmax
b ≤

∑
abk · (Pgk + PNSk − Pdk) ≤ Pmax

b (14)
The objective function of this problem minimizes the generation
ost, subjected to a global balance Eq. (11), to the generation limits
12), to nodal limits on the Power Not Supplied in each bus (13)
nd to the branch flow limits (14). Non zero values of Power Not
 Systems Research 93 (2012) 83– 92

Supplied are undisirable and so the variables associated with these
ficticious generators have a large penalization given by G in (10). On
the other hand, it is clear that if the generation plus transmission
system is unable to supply the demand, non zero values of Power
Not Supplied will be obtained in some nodes. In any case, given that
Power Not Supplied models a demand reduction, it becomes clear
that PNS in node k cannot exceed the demand initially specified
for that node, thus justifying the integration of constraints (13).
Regarding this model, the DC-OPF is solved using a simplex code
programmed in Matlab, and included in the Matpower library.

While solving this problem, network and generator limit con-
straints are enforced but if transmission capacity is unsufficient
then PNS will be non zero thus increasing the value of the objective
function (10). This formulation assumes that the network is loss-
less. In order to increase the realism of the model, this DC-OPF can
be modified to include an estimate of transmission losses accord-
ing to the following scheme that typically converges in less than
5 iterations. The use of the optimization problem (10)–(14) with
the estimate of the transmission losses is illustrated in [22] con-
sidering the Portuguese transmission system. It provided accurate
results in 4–5 iterations, namely considering that in well-developed
transmission systems the level of transmission losses is typically
reduced and it varies in the range from 1 to 1.5% of the load.

Algorithm to include an estimate of branch active losses

(i) run an initial DC-OPF using (10)–(14) and compute voltage
phases using the DC model;

(ii) estimate active losses in branch m-n using (15). In this expres-
sion, gmn is the conductance of branch m-n  and �mn is the phase
difference across this branch;

Lossmn ≈ 2 · gmn · (1 − cos �mn) (15)

iii) add half of the losses in branch m-n to the original loads in
nodes m and n. Run a new dispatch using (10)–(14) and update
voltage phases;

(iv) end if the difference of voltage phases in all nodes is smaller
than a specified threshold. If not, return to (ii).

In order to characterize each particle in the population, we use
a fitness function based on (6) plus a number of penalty terms as
follows. These penalty terms are set at predefined large positive
numbers, which are added to the fitness function when any thresh-
old is violated. If for a given particle, any threshold is violated, the
corresponding fitnesse function assumes a large positive value and
so it gets penalized, given that we are addressing a minimizing
problem when solving the TEP problem.

In the first place, after solving the previous DC dispatch problem,
we get the generation cost, the level of losses and the eventual non
zero value of PNS for the entire system, PNS(N). If the level of losses
exceeds a maximum percentage regarding the total generation in
the system, then this particle is penalized with a term ˛1 in the
fitness function and if PNS(N) is not zero, then the penalty term ˛2
is also introduced in the fitness function. On the other hand, each
of the projects is characterized by its investment. When a project
is selected for a particular period, its investment is referred to the
initial period, using the interest rate rr already used in (6) and in
line with the level of risk of this type of investment. Regarding
these costs, we can establish two  kinds of constraints. The first
one corresponds to the maximum number of projects that can be
implemented per period or the maximum investment cost per
period. This limitation arises due to financial or operational reasons
and if it is violated we consider a penalty term ˛3 in the fitness

function. The second one corresponds to the maximum number of
projects or the maximum investment over the entire horizon and it
models a global financial constraint. If it is violated, then a penalty
term ˛4 is included in the fitness function. Finally, regarding
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eliability aspects, the fitness function also penalizes plans in
hich the PNS is non-zero for network configurations associated

o N − 1 contingencies. It is also possible to include penalties for a
elected number of N − 2 contingencies given that the Grid Codes
f several countries typically detail a list of contingencies, namely

 − 2, regarding which the system is supposed to survive. The
enalty over PNS (N − 1) and eventually regarding other higher
rder contingencies is made using the penalty term ˛5.

As a result of all these considerations, the fitness function,
function,pt, characterizing the quality of each particle pt in the popu-
ation in a particular iteration of the algorithm is given by (16) that
orresponds to (6) plus these five penalty terms.

function,pt =
np∑

p=1

(
(OCi

pt,p +
∑nproj

j=1 ICj · Ki
pt,p,j

)

(1 + rr)p

)
+

5∑
y=1

˛y (16)

Using this expression, we evaluate each particle in the pop-
lation so that we can apply the movement rules of the DEPSO
lgorithm that will be detailed in the next section. At this point
t is important to mention that when calculating the value of the
tness function for a particle pt with expression (16), the OC val-
es in each period are not recalculated. In fact, for each period and
or each particle we already have information about the projects
o be implemented. These new projects together with the initial
ransmission network define the network to analyze in that period.
sing this information, the DC-OPF detailed above was run to esti-
ate the operation costs for every period. These costs are then

sed in (16) to obtain the fitness function of the particle under
nalysis..

.3. Solution algorithm

The discrete nature of the TEP problem inspired the adoption
f a set of changes in the EPSO algorithm. As mentioned above, a
opulation is a matrix with npt × nproj positions that has an inte-
er from 0 to np + 1 in each position. To introduce more diversity
n the search, the DEPSO works with two populations that corre-
pond to clones of the best population, obtained at the end of a
articular iteration. Similarly to the EPSO, the DEPSO is initialized
y randomly sampling an initial population, that is, by sampling

ntegers from 0 to np + 1 for each position of the matrix mentioned
efore. After this initialization procedure, the DEPSO evolves as
ollows:

Replication – the best population obtained at the end of the
previous iteration is cloned twice, so that in each iteration the
algorithm is actually working with two populations;

 Mutation of weights – the Inertia, the Memory and the Cooper-
ation weights mentioned in Section 2.2 are mutated using (17).
This expression uses the weight from the previous iteration and
it includes the logistic function to induce a chaotic search pattern.
Due to the non-repetition characteristic of chaotic functions, their
adoption allows higher speeds on overall searches than stochas-
tic ergodic searches that depend on probabilities [23]. It should
be noticed that these weights are computed for every position of
every particle;

Wi+1∗
pt,j

=
(

0.5 + 1

1 + exp
−wi∗

pt,j

)
(17)

Mutation of the best global – the best global particle is a vector
with as many positions as the elements of the project list. Its nproj

positions are also mutated in case randomly generated numbers
N(0, 1) take values less than a parameter kbg ∈ [0, 1]. This allows
introducing changes in the current best global particle, so that we
make a local search around the current best global. To do this, the
 Systems Research 93 (2012) 83– 92 87

corresponding weight is mutated in the first place using (17) and
then each position j of the best global undergoes mutation using
(18);

b∗
Gj = bGj + round(2 · Wi+1∗

bGj
− 1) (18)

- Recombination – after having mutated the Inertia, the Memory
and the Cooperation weights and having mutated some posi-
tions of the best global so far identified particle, we use the same
recombination rule of the EPSO (3) to compute the movement
from iteration i to i + 1. In each iteration of the DEPSO we  are con-
cerned in obtaining technically feasible solutions, so that at each
step we round the value obtained from (3) to the nearest inte-
ger. The new particle pt is then the result of the addition of the
particle pt in the previous iteration with the computed velocity
vector. It is also important to notice that as a result of this move-
ment rule, each position of each particle is filled with an integer
that can eventually exceed the search space, namely np + 1. If that
is the case, the particle lies outside the search space and it is
then returned back to the search space by placing it either on the
edge of that space, that is integers larger than np + 1, are replaced
by np + 1;

- Recombination by Lamarkian evolution – when applying the move-
ment and the recombination rules (3),  it is possible to obtain
a zero velocity vector. If that is the case, that particle would
not move when going from iteration i to iteration i + 1. In these
cases, to induce some extra diversity, we  also used the ideas of
Jean Baptiste Lamarke, a biologist that lived in the XVIII/XIX cen-
turies. Lamarke developed what can be called a proto evolution
theory that privileged changes at the macroscopic or fenotype
level according to which living beings would be transmutated
along time in order to generate more complex entities. Using
this macroscopic idea, if a particle has a zero velocity, then some
of its positions are mutated, namely the ones regarding which
randomly generated numbers N(0, 1) take values less than a
parameter kLam ∈ [0, 1]. The mutated element in position j of such
a particle is computed using an expression similar to (18) also
including the logistic function in order to introduce a chaotic
search pattern;

- Selection – at this point, all particles in the two populations were
mutated and so we  can evaluate them computing the fitness func-
tion given by (16). Then, we go along the two  populations, we take
the particle pt from population 1 and the particle pt from popula-
tion 2 and it survives the one having better fitness, a more reduced
value for (16) in this case. This tournament scheme yields the new
population, which corresponds to the output of iteration i + 1. At
the end of this step, the best particle in the new population is
compared with the current best global particle to update the best
global so far identified;

- Termination step – finally, it is checked whether this iterative
scheme ends. This corresponds to check if the maximum number
of iterations was already completed or if a convergence criterium
is valid. In the first case, the algorithm stops without having con-
verged eventually suggesting that a larger number of iterations
should be completed. In the second case, the algorithm converges
if, for instance, the best global particle was not updated for a pre-
specified number of iterations or if the value of the fitness function
of the best global particle did not change more than a threshold
for a pre-specified number of iterations.
The output of the algorithm is a population of solutions, among
which is the best particle. The planner can then simply choose the
best global solution or conduct a final decision step taking into
account a trade-off analysis.
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Table 2
Branch data, resistance (pu), reactance (pu) and capacity (MW).

From bus To bus Resistance (pu) Reactance (pu) Capacity (MW)

1 2 0.10 0.40 100
1 4 0.15  0.60 80
1 5  0.05 0.20 100
2  3 0.05 0.20 100
2  4 0.10 0.40 100
3  5 0.05 0.20 100

small populations of 10 particles. For example, for a population with
20 particles after 10 iterations the best solution was identified in
100% of the runs, that is in all the 100 TEP exercices.
Fig. 2. Single line diagram of the 6 bus Garver network.

. Case Studies

.1. Garver network

.1.1. Data
The Garver network was detailed in the seminal paper [24] and

ince then it has been used by several other researchers namely
o compare different TEP approaches. This network is presented
n Fig. 2 and it includes 6 buses and 6 lines. In the initial con-
gutaion, bus 6 is not connected to the rest of the system and
he existing demand in buses 1–5 is 760 MW while the installed
eneration capacity in these interconnected nodes is just 510 MW.
s a result, the expansion planning exercise will obviously have

o promote the interconnection of bus 6 to the rest of the sys-
em in order to prevent Power Not Supplied. Table 1 details the
us data, namely the installed generation capacity and the active
ower demand. Regarding the generator operating costs used in
he objective function (10) of the DC-OPF model described in Sec-
ion 3.2 we used 25 $/MWh  for the generators connected to bus 1
nd 40 $/MWh for the generators connected to buses 4–6. On the
ther hand, the coefficient G that penalizes non zero PNS values
as set at 10,000 $/MWh. The penalty coefficients used in (16) in

ase some established threshold is violated were set at 100,000 so
hat any violation strongly penalizes the associated particle. Table 2
ndicates the branch data and finally Table 3 details the project list
hat includes 17 possible addtions.

.1.2. Single period analysis
Using the data above we solved a single period TEP exercise. The
EPSO algorithm was run in several tests namely to evaluate sev-
ral design options as the size of the populations, the introduction
f the Lamarkian operator in case a null velocity vector is obtained
nd the mutation of the best global ever found particle as a way

able 1
us data – installed generation capacity (MW)  and active power demand (MW).

Bus number Installed
capacity (MW)

Active power
demand (MW)

1 150 80
2  0 240
3  360 40
4 0  160
5  0 240
6 600 0
Fig. 3. Influence of several choices of the parameter kbG associated with the muta-
tion of the best global particle on the frequency of the identification of the optimal
solution.

to induce some local search. In this paper and due to space limi-
tations we  will summarize some of the results that were obtained
along this research. In this scope, Fig. 3 illustrates the influence of
several choices of the parameter kbG associated with the mutation
of the best global particle and Fig. 4 presents the influence of the
parameter kLam determining the use of the Lamarkian evolution
when the velocity of a particle is zero.

Finally, regarding this single period analysis, it is important to
stress that the optimal identified solution is the same as the solu-
tion mentioned in the literature although the final populations may
include other solutions having the same total investment cost and
having zero Power Not Supplied. This solution includes one new
branch between nodes 3 and 5 and 3 new branches between nodes
4 and 6. This final solution was  obtained in the scope of a number
of tests in which the DEPSO ran 100 times for 10, 20, 30 and 50
particles in each population and Fig. 5 illustrates the convergence
characteristcs of the algorithm. The performance of the DEPSO is
very good because it provided very large rates of identification of
the optimal solution in a reduced number of iterations even for
Fig. 4. Influence of the parameter kLam determining the use of the Lamarkian evo-
lution when the velocity of a particle is zero on the frequency of the identification
of  the optimal solution.
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Table  3
Project list including extreme nodes of possible new branches and investment cost.

Branch number From bus To bus Resistance
(pu)

Reactance
(pu)

Capacity
(MW)

Inv. cost
(106 $)

1 2 6 0.08 0.03 100 30
2 2  6 0.08 0.03 100 30
3  2 6 0.08 0.03 100 30
4  2 4 0.10 0.40 100 40
5  5 6 0.1476 0.61 78 61
6  3 5 0.05 0.20 100 20
7 3 5 0.05  0.20 100 20
8 3 5  0.05 0.20 100 20
9 4  6 0.08 0.30 100 30

10  4 6 0.08 0.30 100 30
11  4 6 0.08 0.30 100 30
12  4 6 0.08 0.30 100 30
13 4 6 0.08 0.30 100 30
14  1 4 0.15 0.60 80 60
15 1  5 0.05 

16  1 2 0.10 

17 2 3 0.05 

F
o

4

i
c
l
c

tions with 30 particles yield very good results since the best solution
ig. 5. Performance of the DEPSO algorithm for 10, 20, 30 and 50 particles in terms
f  the frequency of the identification of the best solution.

.1.3. Multiperiod analysis
In a second step, we used again the Garver network presented

n Fig. 2 to run a four period test. In this case, the project list still

ontains the 17 projects in Table 3 but the search space is much
arger than in the single period test and it includes 617 possible
ombinations. Recall that each position j of each particle can be

Fig. 6. Evolution of the network from periods 1 to 4 – p
0.20 100 20
0.40 100 40
0.20 100 20

filled with an integer from 0 to np + 1, that is, from 0 to 5 in this case.
Regarding the results, the best solution includes the construction
of 6 lines spread by the 4 periods as follows:

- in period 1 – 1 line 1–5, 1 line 2–6, 1 line 3–5 and 1 line 4–6;
- in period 2 there is no new addition;
- in period 3 – 1 line 4–6;
- in period 4 – 1 line 3–5.

This solution has an investment cost of 150 M$.  It was obtained
not considering the penalty term in (16) over the losses and it was
admitted that the demand increased at a rate of 5% per period. The
evolution of the network since the initial configuration in Fig. 2 to
period 1, and finally to period 4 is displayed in Fig. 6.

The performance of the DEPSO was  evaluated running the TEP
exercise 100 times for populations with 10, 20, 30, 50 and 80 par-
ticles. Fig. 7 illustrates the results in terms of the frequency of the
identification of the best solution. These graphs show that popula-
is identified in 95% of the cases after 40 iterations. If the number of
particles is larger, 80 in this case, a similar percentage is obtained
after 20 iterations.

eriod 1 on the left side and period 4 on the right.
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ig. 7. Frequency of identification of the best solution for 10, 20, 30, 50 and 80
articles.

Finally, the performance of the DEPSO was compared with the
ne of the EPSO as reported in [21]. Fig. 8 shows the rate of conver-
ence of the EPSO and of the DEPSO algorithms for populations with
0, 30, 50, 80 and 100 particles considering that in each case the
lgorithm was run 100 times. As shown in this Figure, the DEPSO
erforms better than the EPSO for the same number of particles
nd iterations. This indicates that the DEPSO was  able to identify
he best solution more times than the EPSO under the same con-
itions, in terms of the number of particles and iterations. On the
ther hand, for populations with 50 particles or more the DEPSO
dentified the best solution in all the 100 runs of the algorithm.

.2. IEEE reliability test system

.2.1. Data

The IEEE Reliability Test System, RTS, was originally described in

25]. Since 1979 it has been used by several researchers for different
urposes and it was subjected to a number of adaptations in order
o turn it more suitable to test particular applications. The original

able 4
roject list including extreme nodes of possible new branches, type and investment cost.

Branch number From bus To bus Type Resistanc

1 3 24 Transf. 0.0 

2  9 11 Transf. 0.0 

3  10 11 Transf. 0.0 

4  10 12 Transf. 0.0 

5  1 5 Line 0.1090 

6  1 5 Line 0.1090 

7  2 4 Line 0.1640 

8  2 4 Line 0.1640 

9  2 6 Line 0.2485 

10  2 6 Line 0.2485 

11  6 10 Line 0.0695 

12  7 8 Line 0.0795 

13  7 8 Line 0.0795 

14  8 10 Line 0.2135 

15 11  13 Line 0.0305 

16  12 13 Line 0.0305 

17  14 16 Line 0.0250 

18  15 21 Line 0.0315 

19  15 24 Line 0.0335 

20 16  17 Line 0.0165 

21  16 17 Line 0.0165 

22  16 19 Line 0.0150 

23  17 18 Line 0.0090 

24  20 23 Line 0.0140 

25 11  13 Line 0.0305 

26 12  13 Line 0.0305 

27  11 14 Line 0.0305 

28 14  16 Line 0.0250 
Fig. 8. Comparison between the EPSO and the DEPSO for different population sizes
and  iterations.

system includes 24 nodes and 38 branches (lines and transformers)
at the voltage levels of 138 and 230 kV. The original total demand is
2850 MW and the installed generation capacity is 3405 MW.  Sev-
eral tests conducted in the scope of reliability calculations showed
that the transmission system of the RTS network was  lighly loaded
and so in this paper we  increased the demand and the installed
generation capacity to the triple of their original values, that is, to
8550 MW and to 10,215 MW while maintaining the charateristics
of the transmission system, namely in terms of the branch capaci-
ties reported in [25]. This reference also contains the complete data
for this system namely the branch resistance and reactance values
and the generator operating cost values.

On the other hand, when doing the multiperiod analysis we
used a 10% value for the rr rate and we admited that the demand
increased in all buses by 5% per period. Given this demand increase,
we admitted that the transmission system also had to accom-
modate the connection of two  new generators as follows: one

connected to bus 4 with a capacity of 300 MW and another one
to bus 19 with a capacity of 591 MW.  Finally, apart from the oper-
ation and the investment costs, the fitness function also included

e (pu) Reactance (pu) Capacity (MW)  Inv. cost (106 $)

0.4195 400 500
0.4195 400 500
0.4195 400 500
0.4195 400 500
0.4225 175 220
0.4225 175 220
0.6335 175 330
0.6335 175 330
0.9600 175 500
0.9600 175 500
0.3025 175 160
0.0032 175 160
0.0032 175 160
0.8255 175 430
0.2389 500 660
0.2380 500 660
0.1945 500 540
0.2450 500 680
0.2595 500 720
0.1295 500 360
0.1295 500 360
0.1150 500 320
0.0720 500 200
0.1080 500 300
0.2389 500 660
0.2380 500 660
0.2380 500 580
0.1945 500 540
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Table  5
Best identified expansion plans obtained in several runs.

Test npt Inv. cost (M$) Expansion projects included in the best identified plans

3–24 10–12 1–5 1–5 2–6 6–10 7–8 7–8 11–13 11–13 16–17

4 periods 30 2599.16 – 1 1 – 2 1 1 2 1 3 –
4  periods 100 2527.44 – 1 1 – 

4  periods 150 2427.72 4 1 1 – 

1  period 100 1280.00 – – 1 1 
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ig. 9. Evolution of the fitness function for 30, 100 and 150 particles for the four
eriod test.

enalty terms if the number of projects per period exceeded 6 and
f PNS was not zero for the N system and for N − 1 contingencies. In
his case, we used the same values for the penalty terms that were

entioned in Section 4.1.1 for the Garver network.
Regarding the stopping criteria of the DEPSO algorithm, we con-

ucted numerous runs considering a maximum of 5000 iterations.
he algorithm would also stop if 1000 iterations were completed
ithout improving the current best global solution. In order to con-
uct these tests, we admitted that the planner specified a list of
ossible investment projects containing 28 new branches, lines and
ransformers. The main characteristics of these projects are detailed
n Table 4.

.2.2. Single period analysis
In this case, the DEPSO algorithm was tested with populations

ncluding 10, 30 and 100 particles and it was possible to conclude
hat 10 particles was too short to ensure an adequate frequency
f identification of the best solution, even after running 1000 iter-
tions. On the other hand, for a population of 30 particles a 95%
requency of the best solution was achieved after 900 iterations
hile for a population of 100 particles a 100% frequency was

btained after 590 iterations. The best solution that was identi-
ed has an investment cost of 1280 M$  and it includes building the

ollowing 6 branches: two new branches connecting nodes 1 and
, one new branch connecting nodes 6 and 10, two new branches
onnecting nodes 7 and 8 and one new branch connecting nodes
6 and 17. For a population of 30 particles, the algorithm analyzed
30 particles × 2 populations × 900 iterations) = 54 × 103 possible
nvestment plans while the total number of particles in the search
pace was 328 ≈ 22.9 × 1012.

.2.3. Multiperiod period analysis
Finally, the developed DEPSO was also tested considering a four

eriod horizon. In this case, we used the same project list with
8 new possible equipments, meaning that the search space now

ncludes 628 ≈ 6.1 × 1021 potential solutions. In this case, we con-
ucted several tests namely using populations with 30, 100 and

50 particles and Fig. 9 displays 3 examples of the fitness evo-

ution. Table 5 characterizes the solutions that were obtained in
hese three runs together with the solution from the single period
tudy. For each run, this table indicates the period in which each
4 1 1 2 1 3 –
– 1 1 2 1 – 4
– 1 1 1 – – 1

equipment should start operation. The projects not listed are not
considered in any of these solutions. These results deserve some
comments:

- there are significant differences among the single period and the
multiperiod solutions. For instance, building a branch connecting
nodes 16 and 17 is included in the single period solution while it
is only included in period 4 of the multiperiod solution obtained
with a population of 150 particles;

- on the other hand, one of the projects 7–8 is delayed from period
1 to period 2 when going to the multiperiod analysis;

- several projects not elected in the single period solution are
included in the multiperiod solutions that were obtained. These
include installing the transformers 3–24 and 10–12 and the lines
2–6 and 11–13;

- finally, these results and the differences between the solution
obtained for the single period analysis and for the multiperiod
tests confirm that a multiperiod study is not necessarily a combi-
nation of static schedules obtained in sequence for each planning
period. In fact, the set of projects elected for the single period
solution is not equal to the projects included in the first period
of any of the three reported multiperiod solutions. This means
that explicitly modeling in the problem all the periods along the
planning horizon imposes a new dynamic to the solution identi-
fication that is not adequately captured by solving independently
a sequence of yearly planning exercises.

5. Conclusions

This paper describes a discrete approach of the evolutionary par-
ticle swarm optimization, DEPSO, that was used to solve a multiyear
transmission expansion planning problem. This problem is very
complex due to its mathematical characteristics and its typically
large combinatorial nature. This means it is important to develop
models that adequately address this problem, namely in view of the
involved invesment costs that are ultimately reflected in the tar-
iffs paid by newtork users. The results that were obtained and that
are partially reported in this paper demonstrate that the developed
DEPSO approach is accurate and that it allows the identification of
good quality solutions with less particles and less iterations when
compared with classical particle swarm optimization algorithms.
On the other hand, the results that were obtained namely for the
IEEE RTS system also compare in a favorable way to other results
reported by other research teams.

Finally, this research line will be followed in future publications
namely to enhance the TEP model so that it addresses uncer-
tainties that are typically present in this type of exercices. These
uncertainties can affect the evolution of the demand along the
planning horizon and will lead to the inclusion of risk concepts
in this approach. Another point of possible development consists
of enhancing the developed model so that it can accommodate DC
transmission systems given the growing interest on them. Regard-

ing this issue, it is important to notice that the general formulation
of the TEP problem is still valid in case DC transmission systems
are considered. The incorporation of these systems would require
extending the list of candidate projects to be supplied by the user
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nd to modify the operation problem of the transmission network
etailed in Section 3.2 to allow considering DC systems. These two
opics correspond to new research areas justifying a renewed inter-
st on the TEP problem.
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