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Abstract: - Feature subset selection is a central issue in a vast diversity of problems including classification,
function approximation, machine learning and adaptive control. On a wide variety of applications, especially
when using real data, input features may be not independent and output variable depends on the relationship
among inputs rather than on input values themselves. Feature selection methods that assume independence of
attributes will fail on these cases. On the other side, most of alternative approaches are quasi-exhaustive,
requiring large CPU processing time. In this paper, an alternative methodology based on sensitivity analysis of
trained artificial neural networks (ANN) is analyzed. Results so far attained on illustrative toy examples and on
real data support the validity of the developed approach.
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1 Introduction
Feature subset selection (FSS) consists of identifying
a subset of significant attributes, discarding the
remaining ones, to represent adequately the system
state, initially characterized by a larger set of
redundant features. FSS is a essential task when
using a wide variety of tools like artificial neural
networks (ANN), fuzzy sets, the k-nearest neighbors
method or regression trees for classification, function
approximation, machine learning and adaptive
control

When the number of attributes is small, exhaustive
or quasi-exhaustive search may be used to select the
best attributes set in order to accomplish the desired
task. But the number of possible combinations grows
quickly with the number of attributes – the curse of
dimensionality. As higher is the number of attributes
the faster and straitforwarder should be the FSS
approach. Typically, FSS methods that assume
independence of attributes like correlation analysis,
F measure, or information gain, are simple and fast,
but may fail on a wide sort of applications. On the
other side, there are the FSS time-consuming
approaches, using quasi-exhaustive or genetic like
search, or needing the repeated training of ANN,
while less significant features are discarded one by
one [4-7]. Besides, some FSS techniques can only
deal with binary inputs and/or outputs.

This paper describes an alternative FSS approach
that is simple, straitforward, and, as far as our
examples had shown, has no hard application
limitations.

2 A Failing Example: Rank
Correlation

A common FSS approach adopted frequently is
based on computing a input marginal importance
measure, i.e., considering each input in isolation. As
an example, if rank correlation method is adopted,
the following algorithm is followed:

a) Computation of the individual correlation’s
factors (xi; y),where xi represents possible
feature i (i=1,..,number of features) and y is the
output;

b)Ranking input variables according to its
correlation factor with respect to the output;

c) Selection of the N variables with highest values.
As a matter of illustration of how this algorithm

mail fail, consider Table 1, where the variables xi
where randomly generated in the interval [-2; 2].
2000 random patterns were produced. The output
variable y was computed for each input pattern
(x1,..,x8) using the following equation:
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Table 1 – Sample of generated training set
x1 x2 x3 x4 x5 x6 x7 x8 y

0.31 1.68 -1.46 1.37 -0.56 -0.72 1.49 -0.03 1.72

Equation (1) shows that output variable y does not
depend on x1, x3, x5 and x7. Table 2 results from the
calculus of a correlation analysis and ranking the
variables according to the absolute value of the
correlation indexes.



Table 2 – Ranked correlation modules indexes
Ranking Variable Correlation index

1 x4 0.043
2 x1 0.042
3 x5 0.025
4 x6 0.014
5 x8 0.012
6 x3 0.008
7 x7 0.006
8 x2 0.002

Variables x1 and x5, that were not used in the
computation of y, appear in the group of 4 highest
correlated with output. These results prove that, at
least for a certain type of functions, correlation
analysis does not provide correct answers on FSS
phase. It is clear, when analyzing function (1), that
there are variables intimately coupled (e.g., x2 and
x4). FSS methods based on measures that relate
individually each input xi with output y may fail.

3 Feature Subset Selection Based on
ANN Sensitivity Analysis

Now, let’s experience another approach. Our
proposal comprises the following steps:

a) Train an ANN to learn y function, using all
possible candidate features. ANN will present
an output value O that should be close to y. As
before, we suppose we don’t know which
variables are important or not;

b)For all training patterns, compute ∂O/∂xi, that is,
the derivative of the output with respect to each
input i. Later on this paper, we describe a
simple algorithm for computing these vales;

c) Compute the mean absolute value of derivatives
for each input, defining our sensitivity index si:
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where p represents the pattern index.
Why should one expect this index give something
useful? Suppose we compute the output freezing all
input variables except xa and we put the result in a
graphic. The same operation is repeated to variable
xb. If tangent along the curve f(xb) presents generally
a higher slope than for f(xa), then:
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Following the definition of sensitivity given by
equation (2), one can state that sb>sa. Concluding, if
a robust technique might be used for computing
these indexes, we’ll have an alternative methodology
for FSS.
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Fig. 1 - ANN general feedforward architecture

Computing these derivatives using a trained ANN is
in fact quite simple. Suppose Fig. 1 represents the
ANN trained to approximate a given function y=f(x),
where y and x represent, respectively, output and
input vectors. During learning, ANN weights are
changed such way its outputs Oj get closer and closer
to the targets yj. Each unit of hidden or output layers
comprises two functions: a weighted sum and a
transfer function:
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Transfer function are generally sigmoid type
function, like hyperbolic tangent, for hidden layer(s)
and linear for output layer. Input units just distribute
input values xi.
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Fig. 2 - ANN “one unit per layer” scheme

Fig. 2 shows just one unit for each layer of the ANN.
The derivative of the output Oj with respect to Ok,
the output of unit k, is given by:
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where f’j is the derivative of fj at point nj. Using a
chain rule:
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where index k represents all units fed by input xi. If
the ANN is a fully connected one, index k refers to
all units in the hidden layer. This simple and elegant
procedure is similar to the one used for weights
adaptation on Backpropagation Algorithm [1,2].
Table 3 shows the si indexes obtained by applying
formula (2). Dummy variables (x1, x3, x5 and x7)
present the lowest si values showing that proposed
methodology was successfully on this example.



Table 3 – ANN sensitivity indexes
Ranking Variable si index

1 x8 1.625
2 x4 0.893
3 x2 0.879
4 x6 0.685
5 x5 0.087
6 x7 0.035
7 x1 0.019
8 x3 0.015

3.1 Some more details about used ANN
The 2000 patterns were normalized to have zero
mean and a standard deviation of one. This removes
of offset issues and measurement scales. 1500
patterns were used for training and 500 for testing.
Training algorithm was the Adaptive
Backpropagation [3]. A description of ANN
architectures experienced is reported on a further
section on this paper.

4 Sensitivity Analysis Under Noise
Results presented before concern to a clean well
defined mathematical function y=f(x1, .., xN). That
is not the case of real world applications. In fact, on
practical applications, there’s no “function” and data
is affected by noise caused by errors on measuring,
failing of data acquisition system, recording
problems, and so on. Being so, it is licit to suspect
that presented sensitivity calculus approach may fail
under these circumstances, that is, when one has just
a collection of points to be dealt with to perform a
multiregression task.
In the following analysis, random noise has been
added to function variables under the succeeding
hypothesis:

a) 10% of noise added to output y;
b) 20% of noise added to output y;
c) 20% of noise added to both inputs (x1,.., x8)

and output y.
As ANN output has been normalized to have zero
mean and a standard deviation of 1.0, one may

roughly admit that output values are mostly
contained in the interval [-1.0;1.0], and consider 10%
of noise when random noise is generated in the
interval [-0.1;0.1]. That’s what was considered on
case a). On case b), random noise in the interval [-
0.2;0.2] was added to output. Finally on case c),
random noise in the interval [-0.2;0.2] was added to
all inputs and output. Results obtained are presented
on Table 4, were performance refers to the mean
absolute percentage error. ANN was trained during
5000 epochs in all cases. Sensitivity indexes are
calculated using all patterns of the training set. As
can be observed, the ranking of si allows, in all cases
reported, to select the real features (x2, x4, x6 and x8),
with the highest index values. Despite the
degradation of ANN performance as noise increases
(note more than 20% error on c) case), si ranking still
provides a correct emplacement of features, with the
dummy variables having the lowest values. At the
same time, as noise level increases, the differences
on si values among real features and dummy ones
become smaller, which is also an expected result.
One may also expect that if noise too high, one
might no more obtain a correct ranking of si. But, in
this case, the ANN performance will also be poor.
As conclusion, it seems that if ANN is able to
perform reasonably, it can also provide the correct si
ranking, which is a very interesting result.

5 Si Calculus With Smaller Datasets
The number of patterns (1500) used for training on
previous studies with 8 potential input features may
be a little too much when compared to some real
applications, when the number of training examples
may be scarce. So, the analysis were repeated  but
using this time the second set (the previous test set
with 500 patterns). Results obtained are presented on
Table 5.

Note that performance error on test set increases
from epoch 4000 to 5000 showing that overfitting is

Performa
case training (1500)
a) 4.97
b) 9.22
c) 23.45

T
Performa

epoch training (500)
3000 3.84
4000 3.54
5000 3.46
Table 4 – Sensitivity indexes calculus under noise
nce (%) ANN sensitivity indexes

test (500) s1 s2 s3 s4 s5 s6 s7 s8

5.73 0.004 0.875 0.005 0.877 0.005 0.665 0.004 1.590
10.31 0.009 0.881 0.013 0.883 0.008 0.675 0.005 1.592
26.90 0.259 0.880 0.032 0.831 0.321 0.691 0.060 1.557

able 5 – Sensitivity calculus on a smaller training set
nce (%) ANN sensitivity indexes

test (1500) s1 s2 s3 s4 s5 s6 s7 s8

5.59
5.09
5.16 0.009 0.796 0.008 0.794 0.008 0.681 0.010 1.554



occurring. Even so, si ranking still provides the
wanted results. If dummy features are eliminated and
training is repeated using only the remaining ones,
the performance errors attained after 2500 training
epochs are 3.11% on training set (500 patterns) and
3.66% on test set (1500 patterns). These results,
showing smaller errors on both training and test sets
and obtained after fewer training epochs, confirm the
advantages of eliminating dummy variables that just
introduce noise.

6 Dependence on ANN architecture
Previous results refer to an ANN architecture (set
initially by chance) of 8-10-6-1: i.e., 8 inputs, 10
units in the first hidden layer, 6 units in the second
hidden layer and 1 output unit. The study described
on this section aims to infer the possible limitations
of ANN architecture choice on the calculus of
sensitivity indexes. First, we analyze how ANN
architecture simplification may affect the results.
After, we go on the opposite direction increasing the
number of ANN parameters and interpreting the
results. Table 6 presents the performance errors and
sensitivity indexes for several ANN architectures.
With the exception of ANN 8-2-1, that provide a bad
ranking of si, all the other perform satisfactory under
this issue. The performance error for the 8-2-1 case
is about 60%, which is really a poor approximation
to the desired function. Next case, 8-4-1, despite the
still poor 50% error, already provides a correct
ranking of si. The next 2 architectures , 8-20-10-1
and 8-50-20-1, provide good results in both
performance and si ranking issues. The last case
reported, on bottom of Table 6, also concerns to
ANN 8-50-20-1, but this time a smaller training set
(with 500 patterns) was used. A larger number of
epochs was also considered in order to force the
growth of the overfitting phenomena – note the 0.3%
of error in the training set against 33.2% in the test
set. In spite of overfitting, si ranking is still suitable.
Note also that derivatives are generally higher
because excessive training leads to higher non-
linearity mapping surfaces.

7 Some More Testing
7.1 Equality relations among inputs
Similar procedure was performed with the following
function:
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All input variables, except x1, x17, x18, x19 and x20
were randomly generated within the interval [-2; 2].
The following relations were established:

x1=3x2     x17=x4     x18=x19=x20=x6 (9)

First, a correlation analysis was performed to
eliminate correlated variables. This step is necessary
when using the proposed FSS approach because
sensitivity indexes may be distorted. Note, for
instance, that function (8) depends on x6 and not on
x18, x19, and x20, and it is impossible just by
analyzing data patterns to infer that conclusion. As
x18=x19=x20=x6, the ANN may use indifferently any
one of these inputs, depend a lot, for instance, on x19
and just a bit on x6, x18, and x20. So, index s6, we
wish to be included in the set of the highest ones,
may be distributed by s6, s18, s19 and s20. This fact is
probably the main argument against FSS based on
sensitivity analysis [10]. However, this problem can
be easily overwhelmed by using a simple technique
like correlation analysis for discarding linked
variables before proceeding with the si calculus. In
this case, correlated features (x2, x17-20) were
discarded. The application of the proposed FSS
approach to the remaining variables provides the
results summarized on Table 7. si indexes were
normalized to give the sum one. This way relative si
values that can be perceived as percentages of the
whole. A gray shadow marks dummy variables. In
this case, after 4000 training epochs, real attributes
have already the highest si values, despite of the
difference between s1 (the real feature with lowest si)
and s15 (the dummy feature with highest si) is not
relevant. However, as long as training proceeds, one
can witness the growth of that difference.

Per
ANN architecture trai

8-2-1
8-4-1
8-6-1

8-20-10-1
8-50-20-1

Per
ANN architecture tra

8-50-20-1
Table 6– Sensitivity calculus on different ANN architectures
formance (500 epochs) (%) ANN sensitivity indexes

ning (1500) test (500) s1 s2 s3 s4 s5 s6 s7 s8

59.0 62.3 0.023 0.747 0.031 0.732 0.031 0.034 0.024 0.005
49.5 51.4 0.020 0.800 0.031 0.802 0.026 0.398 0.039 0.735
21.3 22.3 0.009 0.803 0.015 0.801 0.019 0.591 0.013 1.318
6.1 6.5 0.015 0.846 0.012 0.847 0.009 0.660 0.010 1.547
3.4 4.7 0.017 0.856 0.019 0.864 0.017 0.664 0.015 1.586

formance (1100 epochs) (%)
ining (500) test (1500) s1 s2 s3 s4 s5 s6 s7 s8

0.3 33.2 0.255 0.901 0.222 0.911 0.241 0.724 0.276 1.558



Table 7 – si variation with training epochs
4000 epochs 5000 epochs 6000 epochs

i si i si i si

10 0.163 10 0.170 10 0.171
16 0.120 16 0.147 16 0.156
12 0.113 12 0.144 12 0.155
14 0.110 14 0.143 14 0.154
4 0.069 4 0.070 4 0.071
8 0.064 8 0.068 8 0.070
6 0.064 6 0.068 6 0.070
1 0.059 1 0.066 1 0.068

15 0.057 15 0.029 15 0.020
5 0.042 5 0.021 5 0.015
9 0.042 9 0.022 9 0.015

13 0.028 13 0.015 13 0.010
7 0.026 7 0.014 7 0.010
3 0.022 3 0.011 11 0.008

11 0.021 11 0.010 3 0.008

7.2 Functional relations among inputs
In this study, function to be analyzed is still given by
equation (8), but relations among variables are given
by the following equations:

( )







==
−=

−=
=

62019
1210418

2417
21

xxx
xxsinxx

2xxx
x3x

(10)

This FSS problem is harder than previous one
because correlation analysis may not eliminate all
functional related variables. In this case, only
eliminates variables x2, x19 and x20. As x1=3x2, it is
equivalent to eliminate either x1 or x2, despite of x2
appear on equation (8) and x1 not. The remaining 17
variables were used as inputs of a new ANN. Table 8
shows si results obtained after 1500 training epochs.
The performance attained was 2.6% on training and
2.8% on test sets.

Table 8 – si indexes ranking for eq. (8) and (9)
Ranking Variable si index

1 x14 0.1773
2 x12 0.1761
3 x10 0.1750
4 x16 0.1146
5 x8 0.0975
6 x4 0.0850
7 x6 0.0841
8 x1 0.0836
9 x18 0.0026

10 x17 0.0011
11 x13 0.0008
12 x15 0.0006
13 x5 0.0005
14 x11 0.0004
15 x7 0.0004
16 x3 0.0004
17 x9 0.0004

7.3 Friedman series
This example is based on Friedman series [12]:

 ( ) ( ) )1,0(N5x54x105.03x202x1xsin10y 2 +++−+= (11)

where N(0,1) represents normal distributed noise.
Data set has ten input variables x1,..,x10 but the
response only depends on x1,..,x5. Performance
obtained in this case was 3.1% on the training and
4.4% on test sets. Table 9 shows si indexes obtained.
In [13] authors conclude that FSS methods based on
sensitivity analysis fail on this series. Table 9 shows
that isn't true: dummy variables have the lowest si.

Table 9 – si indexes ranking for eq. (8) and (10)
Ranking Variable si index

1 x4 0.2913
2 x3 0.2662
3 x5 0.1456
4 x2 0.1317
5 x1 0.1207
6 x8 0.0151
7 x6 0.0132
8 x10 0.0060
9 x7 0.0058

10 x9 0.0046

8 Si Analysis On Logic Functions
Suppose we train an ANN to emulate function (12):

if ( ) ( )( ) ( ) ( )( )1x15.0x0x5.0x 8642 <<−∨−<∧>∨−<
      y=1
else y=0 (12)

where ∨  stands for logic OR and ∧  for AND.
If ANN units transfer functions are continuous, the
result is a continuous function (the ANN), trying to
imitate a no-continuous one. It would still be
possible to compute the finite derivatives of the
output with respect to inputs. The same approach
used for the first example was applied here. Results
are shown on Table 10:

Table 10 – si indexes for function (12) and (13)
Function (12) Function (13)

Ranking Variable si index Variable si index
1 x6 1.192 x4 0.2846
2 x2 1.166 x2 0.2782
3 x8 0.962 x6 0.2236
4 x4 0.505 x8 0.2108
5 x5 0.086 x5 0.0009
6 x1 0.066 x1 0.0008
7 x7 0.060 x7 0.0006
8 x3 0.050 x3 0.0005

Another study was carry out using the same patterns
generated for function (12) but resolving first the
inner parenthesis. For instance,

if (x2<-0.5) then x2=1
else x2=0 (13)



Dummy variables were set to 1 if greater than zero;
and zero otherwise. The si attained are also shown on
Table 10. Some authors, like in [11], argue that
derivatives are not suitable for discrete inputs. This
is surely true for non-continuous ANN, like when
units have a step for transfer function. However, as a
continuous ANN is being used, it is mathematically
sensible to compute derivatives, even when one is
trying to reproduce a non-continuous function.

9 FSS on A Real Data Case
This analysis is based on data of power system from
Crete, Greece. Patterns data was generated by
changing several system parameters and computing
simulation of a security measure [8,9], when power
system is shaken by a given disturbance d1. The
whole process was repeated for a second disturbance
d2. Initial set comprises 60 attributes. A correlation
analysis was performed and for each attribute pairs
with a correlation index higher larger than 0.90, a
variable was discarded. This procedure eliminates 41
variables. An ANN was trained with the remaining
19 and si calculus was performed. si indexes were
normalized to give the sum one and features with si
index below 0.02 were discarded. This heuristic has
eliminated 12 more variables. A new ANN was
trained with the remaining 7 features. Performance
was computed and compared to older values reported
on [8,9], were 22 attributes were used (Table 11).

Table 11 – Results for the Crete case d1

case d1 case d2
old perf. new perf. old perf. new perf.

train test train test train test train test
0.044 0.043 0.033 0.036 0.059 0.064 0.023 0.034

10 Conclusion
A practical study of an alternative FSS approach
based on correlation analysis and ANN sensitivity
analysis was carry out. The method is simple,
straitforward and fairly insensitive to noise and ANN
chosen architectures. It requires some time for the
initial ANN training but, unlike some concurrent
methods, allows the discarding of several (or even
all) dummy features at a time. Results attained so far
on function approximation studies support the
validity of proposed approach and encourage further
developments and tests.
However, its application to time series should be
evaluated because each value is strongly correlated
with previous one. As the first step of the method
consists of deleting all correlated variables, it means
that all variables would be deleted except one. Then,

each forecast would be only dependent on previous
one, what is, for sure, not consistent with experience.
Notice however that on real time series like load
forecasting, noise display an important role. In this
case, it is important to use several correlated inputs
in order to decreased sensitivity to this factor.
Nevertheless, further developments on the method
should be made to overcome this limitation.
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