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State Estimation Based on Correntropy: A Proof of Concept
Vladimiro Miranda, Fellow, IEEE, André Santos, and Jorge Pereira

Abstract—This letter proposes a new concept applied to state es-
timation based on replacing traditional regression models by a cri-
terion of maximizing error correntropy introducing a novel way to
identify and correct large errors.

Index Terms—Correntropy, entropy, Parzen windows, state es-
timation.

I. INTRODUCTION

T HIS letter opens the discussion on an alternative to regres-
sion models based on least squares or minimum square

error (MSE) criterion in state estimation (SE) [1]. MSE is an
optimal approach to estimate parameters only if the underlying
distribution of errors is Gaussian. A gross error will distort this
distribution and may be seen as an outlier that should be isolated
and removed. With the MSE criterion, this is not possible: any
gross error will contaminate the estimation of all parameters and
all other errors. The new paradigm for SE will be based on max-
imizing the information that one can extract from the available
measurements. The information content of a probability density
function (pdf) is measured by its entropy, and therefore, instead
of looking just at the variance of the error distribution, the new
paradigm will look at properties related with its entropy.

This letter presents a proof of concept in terms of a theoret-
ical model and examples on how the adoption of entropy-related
concepts allow the natural identification and correction of gross
errors.

II. ENTROPY, PARZEN WINDOWS, AND CORRENTROPY

An ideal method would lead to an error distribution with min-
imum entropy—a Dirac function. If this Dirac function is cen-
tered at zero, it will mean that all errors are zero. A way to
measure entropy of an error distribution represented by its pdf
is Renyi’s [2] quadratic entropy definition of a discrete proba-
bility distribution . This definition can be gen-
eralized for a continuous random variable with pdf as
follows:

(1)

The estimation of the pdf of data from a sample constituted
by discrete points , in a -dimensional
space may be done by the Parzen window method [3]. This tech-
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Fig. 1. Measured values of active power flows in busbars and in line 3–4.

nique uses a kernel function centered on each point; it looks at
a point as being locally described by a probability density Dirac
function, which is replaced or approximated by a continuous
set whose density is represented by the kernel. If a Gaussian
kernel is used, the expression of the estimation for the
real pdf of a set of points is a summation of individual
contributions

(2)

where is the covariance matrix (here assumed with indepen-
dent and equal variances in all dimensions).

The information theoretic learning approach combines (1)
with (2) to obtain an operational function representing the en-
tropy of the error distribution that can be massaged into an al-
gorithm [4]. However, a related concept based on a generalized
similarity measure called correntropy [5] leads to similar results
and much faster algorithms. The maximum correntropy crite-
rion (MCC) may be translated by

(3)

This has the effect of maximizing the value of the error pdf
at zero, which will tend to approach a Dirac function at that lo-
cation. However, the properties of MCC [5] make it behave like
MSE for small errors and become insensitive to large errors—it
is this effect that will be beneficial to detect gross errors, while
keeping the known properties of SE based on least squares for
small errors.

III. ILLUSTRATION FOR DC STATE ESTIMATION

The desired effect can be found in a DC model of an SE
problem (DC-SE). Take the system and data represented in
Fig. 1, where all lines have an impedance of p.u. A gross
error has been introduced in line 3–4, because the flow coherent
with power injections has been reversed.

In the DC model, the errors are given by

(4)

where is the vector of measurements from the SCADA, is
the vector of calculated values, is the matrix of equation co-
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TABLE I
ESTIMATED POWER INJECTIONS AND LINE FLOW

Fig. 2. Pdf of errors in both cases: the MCC criterion concentrates errors near
0 and defines one outlier. Parzen windows size in (2): � � ����. The �-axis
represents error values in p.u.

efficients (from the DC model), and is the vector of estimated
nodal voltage angles. The MSE criterion corresponds to the ap-
plication of the classical least squares solution to this problem.
The application of the MCC criterion to DC-SE leads to the fol-
lowing objective function:

(5)

where is line of , is the number of measurements (and
errors), and is the size of the Parzen windows. Equation (5) is
a nonlinear criterion requiring an iterative algorithm.

The application of both models to Fig. 1 leads to the estimated
power injections and line flow in Table I, with errors (solution
with a gradient algorithm and ).

It is clear from Fig. 2 that the MSE criterion distributed the
gross error to all other errors: all estimation is contaminated,
which is a well-known effect. Instead, the MCC criterion ig-
nored the measurement with a gross error and concentrated all
other errors close to 0. It can be shown that it gives the same
result as for an SE using MSE when only the four first data are
taken as available measurements and the fifth one is excluded.

This remarkable result gets confirmation in a full AC
problem. A test has been conducted with the IEEE-RST 24-bus
system [6] with minor modifications. A set of measurements
was composed from a power flow solution, and a gross error
is introduced in line 3–9 by reversing its active power flow
from 4 to MW (an error of 8). The SE problem was solved
with the MSE criterion using a least squares routine and was
also solved maximizing the MCC criterion using an EPSO
algorithm [7] and . Fig. 3 compares the pdf of the error
distribution for both criteria and shows the error for each of

Fig. 3. Top: abs. errors (in MW) assigned by each method to each of the 50
measurements. Bottom: pdf of errors with MSE and MCC. Parzen windows
size in (2): � � ���. The �-axis represents error values in MW.

the 50 measurements considered. The MCC criterion led to the
correction of the gross error in 8 MW (measurement P39) and
produced a state estimation with no other significant errors,
while the least squares criterion led to errors in a large number
of buses and line flows. The error pdf for MCC approaches a
Dirac function at 0, and the gross error does not influence the
estimation.

IV. CONCLUSIONS

This letter provides experimental results as proof of concept
to the adoption of a new criterion in SE. One proposes that cor-
rentropy, instead of least squares, shall be used as the function
of errors to be optimized. Correntropy behaves like MSE (or a
L2 metric) for small errors but like a L0 metric for large errors
and allows the natural isolation of gross errors as outliers, while
keeping small random errors compensated. The task now will
be to develop an efficient algorithm for online use taking advan-
tage of these properties. Because correntropy is a differentiable
function, suitable Newton algorithms are likely to come to light
soon.
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