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a  b  s  t  r  a  c  t

This  paper  proposes  a multi-objective  approach  to  a  distribution  network  planning  process  that  deals
with  the  challenges  derived  from  the  integration  of  Distributed  Generation  (DG).  The proposal  consists  of
a multi-objective  version  of the  well-known  Evolutionary  Particle  Swarm  Optimization  method  (MEPSO).
A broad  performance  comparison  is  made  between  the  MEPSO  and  other  multi-objective  optimization
meta-heuristics,  the Non-dominated  Sorting  Genetic  Algorithm  II (NSGA-II)  and  a  Multi-objective  Tabu
eywords:
istributed generation planning
ulti-objective optimization

volutionary particle swarm optimization
enetic Algorithm

Search (MOTS),  using  two  distribution  networks  in  a given  DG  penetration  scenario.  Although  the  three
methods  proved  to be applicable  in  distribution  system  planning,  the  MEPSO  algorithm  has  presented
promising  attributes  and  a constant  and  high  level  performance  when  compared  to  other  methods.

© 2012 Elsevier B.V. All rights reserved.
abu Search

. Introduction

Distribution networks with a significant level of penetration of
istributed Generation (DG) can no longer be treated as a marginal
henomenon. The impact of the location of DG at system level must
e evaluated; utilities should develop policies and regulators must
ermit the application of these policies in a fair and justified way.

Evaluating the impact of adding new DG units is clearly a multi-
le criteria problem: it must address issues, such as system power

osses, short circuit levels, system reliability, environmental con-
erns, and electricity markets [1].  One solution is to identify zones
r areas of the system where the combination of various forms
f impact is somehow ‘equivalent’ in terms of trade-off among
ttributes. The zone encompassing the Pareto Front of the set of
ll feasible solutions is one important zone. This identification may
nable the creation of an ‘impact index’ and eventually, a system
f prices/penalties/rewards for investors who wish to place DG in

ny location in the network.

In order to achieve this, an efficient optimization tool is needed
hat is capable of dealing with multiple criteria problems, as well
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as with the complexity added by the integration of DG  in the
planning of distribution systems. Many methodologies based on
multi-objective optimization (MO) meta-heuristics are presented
in an attempt to overcome the difficulties that traditional planning
tools have in adequately incorporating all of these new challenges.
A common MO approach to the DG integration problem is the opti-
mal  allocation of generation units using classic MO  techniques,
such as the Weighted Sum and the �-Constraint, with Evolutionary
Algorithms (EA) [2–6]. Since the �-Constraint and Weighted Sum
methods present well-known limitations [7] and with the devel-
opment of a considerable number of efficient MO methods, other
techniques can be applied to the DG planning problem. In [8],  a sim-
ilar problem formulation from [6] is solved using the NSGA method,
although with changes in the objectives and considering the time-
varying load and generation. More recently, the second generation
methods based on EA, such as the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [9] and the Strength Pareto Evolutionary
Algorithm 2 (SPEA2), have been increasingly used in DG  integra-
tion problems as reported in [10]. For instance, in [11], the NSGA-II
method is used to optimize DG allocation, and in [12], it is com-
pared with a Multi-objective Tabu Search method (MOTS) [13] to
assess the impact of the DG. The SPEA2 method is applied to ana-
lyze the opportunities for distribution planning stemming from
active Distributed Energy Resources (DER) management in [14].

The SPEA2 is also the MO  tool for the planning framework for
the integration of stochastic and controllable DER on a distribu-
tion level proposed by Alarcon-Rodriguez et al. [15]. Therefore, it
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s clear that the use of the EA-based MO methods prevails despite
he existence of various multi-objective versions of popular single-
bjective meta-heuristics [7].

Hence, the contribution of this paper is applying MO  to the new
aradigm of distribution network planning, focusing on the meth-
ds used to define the Pareto optimal set. An original extension
f the Evolutionary Particle Swarm Optimization (EPSO) method
s proposed for the MO,  which is called MEPSO. The aim is to
xploit EPSO improvements in performance that have been verified
n single-objective optimization [16]. Additionally, a broad per-
ormance comparison is done among the following methods with
istinct features: the new MEPSO algorithm, the widely used NSGA-

I, and the Tabu Search based MOTS. The results demonstrated the
igh level of the qualitative and quantitative performances of the
EPSO method.
Section 2 gives basic concepts on MO  and the MEPSO algorithm

s presented in detail. The methodology, problem formulation, and
he MO metrics used to compare the performance are described
n Section 3. The results are presented in Section 4 with a brief
xample of an MO analysis of two distribution networks as well
s a detailed comparison of the performance of the methods. An
dditional discussion of the results is conducted in Section 5, and
he conclusions are drawn in Section 6.

. Proposed method: MEPSO

Before introducing the MEPSO method, an overall presentation
f MO  main concepts is given [7,17].  An MO  problem consists of
imultaneously optimizing a set of objectives that are subject to
onstraints. There is a set of optimal solutions that are known as
he Pareto optimal set. For a final solution, the decision maker must
tate its preferences either prior to, after, or even during the search
or the Pareto optimal set. In terms of dominance, a solution of the
areto optimal set is not dominated by any other solution, and for
his reason, it is also called a non-dominated solution. The Pareto
ptimal set mapped on the objective function space is known as the
areto Front (PF). There are advantages with the MO  [17], such as
he clear distinction between the roles of the planners and decision

akers, or the provision of a set of solutions submitted to decision
akers whose preferences cannot always be represented mathe-
atically. This kind of structure also makes the problem modeling
ore realistic.
The MEPSO structure can generally be seen as a hybrid of the

PSO and NSGA-II mechanisms. It exploits EPSO gains in terms of
erformance. This is verified in the single-objective optimization
hen compared with other meta-heuristics [16,18,19],  which is

btained mainly by combining the Particle Swarm Optimization
PSO) scheme and movement rule with Evolutionary Strategies
ES). The general structure of the EPSO [18,20] is the following:
eplication where each particle is replicated r times (in the basic
odel each particle is cloned once or r = 1 [20]); mutation: each

eplica has its weights mutated; reproduction: each particle, among
he original ones plus the mutated replicas, generates offspring
ccording to the EPSO’s particle movement rule. This step can be
een as recombination in terms of Evolutionary Algorithms [18].
fterwards, there is evaluation where the offspring has its fitness
valuated; and selection: in the basic model [20], this consists of
reserving the best and discarding the worst, considering the off-
pring of both an original particle and its replica.

Hence, based on the basic EPSO algorithm, the replication and
utation procedures were fully preserved in the MEPSO approach.

evertheless, the personal and global best assignment was strongly
hanged in the reproduction of the MEPSO. The evaluation and
election steps were also adapted to deal with multiple objectives.
herefore, the MEPSO inherited a number of improvements from

(
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the NSGA-II method [9],  such as the Fast Non-dominated Sorting
(FNS) procedure, the crowding distance metric, the crowded-
comparison operator for selection and elitism.

The MEPSO movement rule and the strategic parameters that
are affected by mutation are presented in (1) and (2).  Given the
position of a particle i in the iteration k, X(k)

i
, the position in the

iteration (k + 1) is the following:

X(k+1)
i

= X(k)
i

+ V(k+1)
i

(1)

V(k+1)
i

= w∗
i1V(k)

i
+ w∗

i2(Pbi − Xi) + w∗
i3P(Gb∗

i − Xi), (2)

where the symbol “*” indicates the parameters that undergo muta-
tion for the clone particles; Pbi is the personal best or the best
point found by particle i from the beginning up to the current gen-
eration; Gb∗

i is the global best or the referential position in the
swarm, communicated to the particle i, it is better in dominance
or diversity at the current generation (differently from the EPSO
method, the global best is not the same for all of the particles);
Gb∗

i = Gbi + (w∗
i4)N(0, 1) is a position in the neighborhood of Gbi,

where N(0,1) is a random variable following a Gaussian distribu-
tion with zero mean and unitary variance; V(k)

i
= X(k)

i
− X(k−1)

i
is the

velocity of particle i in generation k; wi1 is the weight of the inertia
term (a new particle tends to move in the same direction as the
previous movement); wi2 is the weight of the memory term (the
new particle is attracted to the Pbi position); wi3 is the weight of
the cooperation or information exchange term (the new particle is
attracted to the Gb position); wi4 is the weight affecting dispersion
around the best-so-far; P is a diagonal matrix with elements equal
to 1 with a given communication probability p, or 0 with proba-
bility (1 − p). Weights wik are mutated for the replicated particles
at each iteration according to w∗

ik
= wik + �N(0,  1), where � is an

externally fixed learning parameter that controls the amplitude of
mutations. The learning parameter � was set to 0.2 [18].

In [21], an MO PSO was proposed based on NSGA-II mechanisms.
Differently from MEPSO, that approach does not incorporate EPSO’s
ES. The personal and global best assignment and elitism are also
performed in a distinct manner.

The proposed MEPSO algorithm is presented here, where
IterMax is the maximum number of iterations and Npart is the num-
ber of particles in the swarm, followed by a description of its main
steps.

(i) Parameter and variable initialization;
(ii) FOR k = 1 to IterMax

(iii) Rank and sort the swarm based on the concept of domi-
nance;

(iv) Update the Pareto List (PL), an external list that receives the
non-dominated solutions;

(v) Assign the Global Best (Gb) to each particle of the swarm;
(vi) FOR i = 1 to Npart

(vii) Replicate the particle (i) producing the clone (r);
viii) Execute on the clone (r): mutation of the strategic param-

eters;
(ix) Execute on both particle (i) and clone (r): reproduction

using (1) and (2);
(x) Assign the Personal Best (Pb) to the particle (i) and the

clone (r);
(xi) Add the clone (r) to the Replica List (RL) that retains the

whole set of replicated particles;
(xii) END FOR

xiii) Combine the original swarm with the RL;

(xiv) Perform Selection on the combined list of particles;
(xv) END FOR

(xvi) Print the PL and Pareto optimal set.
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Fig. 1. Global best

The MEPSO begins with an empty PL, the parameters are set and
n initial swarm is randomly created.

The stopping criterion is checked. If this criterion is not satis-
ed, the swarm is ranked and sorted in different layers based on
ominance using the FNS.

The PL is updated with the best ranked particles (non-dominated
articles) in the swarm. This set of particles that will be added

s compared with the current PL in order to avoid repeated and
ominated particles.

The Global Best (Gb) is assigned to each particle in the swarm.
ince in the context of the MO  there is no longer a unique Gb, this
tep was remodeled. Considering that the swarm is divided into dif-
erent fronts after the FNS and the fronts are sorted into ascending
rder where the number “1” corresponds to the best one (formed by
he non-dominated particles in the swarm), the particles belong-
ng to front f assume as the Gb a particle in the front (f − 1) chosen
andomly. The particles in front 1 are the exception since for them
he Gb is chosen randomly from a reduced set of the PL with a size
hat is predefined by the user. These candidate particles for Gb in PL
orrespond to the less crowded regions, they are given by crowd-
ng distance [9] to improve diversity. The global best assignment
rocedure is shown in Fig. 1.

Each particle of the swarm is replicated. Only the replicated
articles have their strategic parameters from the EPSO move-
ent equation mutated. The original and replicated particles then

ndergo recombination, which means that they execute movement
ccording to (1) and (2).

After the movement, the Personal Best (Pb) is assigned: the Pb
s the last non-dominated solution visited by the particle prior to
he current iteration.

In the single-objective EPSO, the original particle is compared
ith its replicated particle after the movement step, and the best

s chosen. Since this comparison is not trivial considering MO,
he elitism procedure employed in [9] is used. The original and
eplicated particle sets are combined. The selection consists of com-
osing the swarm of the next iteration using dominance rank as the
rst criterion and the crowding distance value for particles in the
ame front.

In this work, a traditional constraint handling approach was
sed that consists of penalizing the fitness functions of unfeasi-
le solutions with a constant factor. If the penalization factor is
dequately defined, it ensures that feasible solutions dominate the
nfeasible ones and it does not affect the comparison between fea-
ible solutions. Although it is simple, this idea inconveniently adds

he need to set the penalty parameter for each fitness function.
owever, this constraint handling methodology is not a feature
f the MEPSO, which easily admits the implementation of more
ophisticated approaches, such as the approach proposed in [9].
nment procedure.

This avoids the penalty parameter and introduces more sensitivity
when ranking the unfeasible solutions. The penalization constraint
handling was  also applied in the NSGA-II and the MOTS in order
to focus the performance comparison on the main structure of the
methods.

3. The problem and the methodology

It is widely recognized and reported in the literature that high
penetration of DG in distribution networks can be both beneficial
and have negative consequences [1].  Both positive and negative
impacts depend on various technical features, such as the technol-
ogy used, the size of the units, the operation and control strategies
used to deal with the DG, as well as the capacity and placement
in the network. As mentioned in Section 1, there are a number of
MO approaches that deal with these and many other complexities
[10]. Generally, the aim is to investigate or propose ways of manag-
ing the impact of DG penetration with respect to regulation, costs
and location, size, and the generation pattern of DG units. In terms
of problem formulation, it is common to: define a set of technical
or cost-based objectives, consider the dynamic nature of loads and
generators in the planning period, and treat the DG position and
generation or capacity as decision variables [2,4,6,10,22], although
there are approaches that do not consider all of these elements
mentioned.

This paper focuses on investigation of MO  meta-heuristics per-
formance. Therefore, a simplified model of the problem is assumed.
It consists of studying the impact of the position and size of the
generation units on network losses and short circuit levels. A fixed
amount of DG units is defined. Furthermore, a single generation and
load scenario is used to prepare the problem with discrete decision
variables and a finite number of solutions in the search space.

Two radial distribution networks with different features are
used: the IEEE-34 and IEEE-123 [23]. Both networks were adapted,
excluding nodes and equipments, in order to create a scenario
where only DG is used to ensure the network’s adequacy. It is
assumed that all loads are connected in wye and use the constant
power model. A three-phase backward-forward sweep power flow
method is used [24].

The DG units that will be allocated in the networks are defined
in order to produce a similar penetration level in both grids: almost
50% of the rated load. Two  synchronous generators are chosen for
each network: a 200 kW generator and a 400 kW generator for the
IEEE-123 network; as well as a 100 kW generator and a 200 kW

generator for the IEEE-34 network.

The information about each network and the search space is
summarized in Table 1. The substation node cannot receive a gen-
erator. The value chosen for the stopping criterion MaxEvals, which
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Table 1
Summary of networks, tests and search space features.

Network Vs/s (pu) Nodes (except S/S) DG units Solutions in the search space MaxEvals
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IEEE-123 1.0 113 

IEEE-34 1.05 32 

s the maximum number of evaluations of the objective functions,
epresent almost 40% of the search space size.

.1. Problem formulation for the evaluation of impact of DG

The two objectives that will be minimized, real power loss and
hort circuit level, are represented through two indices [8],  the ILp
nd the ISC3, in order to evaluate the influence of DG on the total
eal power losses in the network and to contribute to the DG impact
valuation concerning the network fault protection strategies. Volt-
ge and capacity limits are considered as constraints in the model
nd the position and size of the DG units are the decision variables.

Both indices follow the distribution utility requirements in
erms of DG unit connections. In some cases, losses and short-
ircuit impacts are the most important variables for connecting DG,
specially for generation technologies connected to the network
ithout power electronic interfaces that may  eliminate genera-

or’s contribution to fault currents. The problem formulation is
resented in (3).

Min  ILp = LossDG

Loss0

Min  ISC3 = max
i=1,NN

(
ISCabcDG

i

ISCabc0
i

)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi =
∑
j ∈ NCi

Pij(Vi, Vj, �i, �j) i = 1, . . . , NN

Qi =
∑
j ∈ NCi

Qij(Vi, Vj, �i, �j)

0.95 · VN ≤
∣∣VDG

i

∣∣ ≤ 1.05 · VN∣∣IDG
k

∣∣ ≤ Imax
k

k = 1, . . . , NB

nDG
i

≤ 1

NDG
network

= NDG
available

(3)

here LossDG is the real power for the network with a given DG con-
guration; Loss0 is the total real power loss without DG; ISCabcDG

i
epresents the three-phase fault current magnitude in node i for
he network with a given DG configuration; ISCabc0

i
stands for the

hree-phase fault current magnitude in node i for the network with-
ut DG; NN is the number of nodes; Pi and Qi are the net injection
f real and reactive power, respectively, in node i; Pij and Qij are,
espectively, the real and reactive power flow in the i–j branch; Vi
nd �i are, respectively, the voltage magnitude and angle in node i;
Ci is the set of nodes connected to node i; VN is the nominal volt-
ge; VDG

i
is the voltage in node i for a given DG configuration; IDG

k
s the current through the branch k for a given DG configuration;
max
k

denotes the maximum rated current for branch k; NB repre-
ents the number of branches; nDG

i
expresses the number of DG

nits connected to node i; NDG
network

is the total number of DG units
onnected in the network; and NDG

available
is the total number of DG

nits available.
This formulation guides distribution companies that own  DG
nits, which is allowed in some places as an investment option [25],
o take advantage of the connection by means of a tradeoff analysis.
he study may  also represent a situation where DG is not owned by
he utility and the information provided aid to identify the impact
2 12,656 5000
2 992 400

on the technical performance of the network. This may  encourage
an incentive policy for DG connection. However, for a full impact
analysis on the protection schemes, the results based on ISC3 must
be complemented with the modeling of all the equipments used in
protection and their settings.

The coding of the NSGA-II and MOTS methods is detailed in [12].
The MEPSO coding is the same used for the MOTS, in which each
particle is represented by a vector with a dimension that is equal
to the number of DG units. Each position j of that vector assumes
a discrete value that corresponds to the node where the DG unit
j is connected. The MO methods applied to the problem stated in
(3) will basically operate the coded vector and decode it to calcu-
late the fitness functions, using the electrical calculation routines
(the calculation of power flow and short-circuit currents) and check
the feasibility. In terms of the MEPSO algorithm presented in Sec-
tion 2, for instance, the data of the distribution networks and DG
are inputs in initialization (step (i)), the decision variables are also
encoded in vector X(k)

i
for each particle and the fitness functions of

the initial swarm are calculated. Afterward, the stages that consist
of decoding the vector of the decision variables for electrical calcu-
lations, assigning fitness function and checking constraint violation
are performed during reproduction (step (ix)).

Occasionally, even the solutions that violate constraints may be
relevant in the tradeoff analysis if the gain in some objective jus-
tifies the investment on making the solution feasible. It depends
on the level of violation and the constraint violated. For this reason
and also in order to assess the performance of the methods for a
larger number of Pareto Fronts, the tests will be performed with
and without the voltage and current constraints.

3.2. Evaluation of the performance of MO  methods

In this work, the MO is classified as a posteriori decision mak-
ing, which means that it is essential to determine a suitable Pareto
optimal set beforehand. Ideally, the decision maker looks for the
true Pareto Front (PF), which is not available due to the methods
limitations or even to the nature of the problem.

Therefore, in order to evaluate an MO  meta-heuristic perfor-
mance, it is important to observe its ability to best represent the
true PF with a finite number of solutions. The performance of the
methods is generally evaluated using the graphics of the obtained
Pareto Fronts and performance metrics, frequently presented using
descriptive statistical measurements of central tendency and dis-
persion (such as mean and variance). In [13], for instance, graphics,
the number of optimal solutions found and the extreme values of
the fitness functions were used to compare the MOTS with the
results reported in the literature. In [9,21] graphics and metrics,
represented by mean and variance after ten runs of the algorithms,
were used to summarize the performance of the methods. More
information about MO meta-heuristic experimentation, such as
other metrics or statistical testing, is provided in [7].

The key criteria for performance evaluation include the follow-
ing: the convergence of the points obtained for the true PF, the
uniform distribution of those points, and the exploration of the

PF boundaries solutions, which means knowing the range of each
objective [10]. A large number of metrics are proposed in the lit-
erature to quantify these criteria [7].  Two performance indices are
used.
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DG on the performance indices, as shown in Fig. 3. From the PF
analysis, it can be observed that the network can be divided into
two major parts: zone I, from S/S node to node 16, including node
18, and zone II that consists of the union of zones II(a) and II(b). In
04 R.S. Maciel et al. / Electric Power

The Error Ratio (ER) metric [7] indicates the number of solutions
n the obtained PF (PFcalc) that do not belong to the true PF (PFtrue)
n relation to the cardinality of PFcalc, as defined in (4).

R =
∑|PFcalc|

i=1 ei∣∣PFcalc

∣∣ (4)

here ei is zero if the ith solution of PFcalc belongs to PFtrue or ei is
ne if the ith solution of PFcalc is not an element of PFtrue. Then, the
alue of ER is between 0 and 1, where zero indicates a solution set
here all of the solutions that are in PFtrue.

Although the ER metric works as an indicator of how success-
ul a method is in pushing its solution set to the real optimal set,
he index alone cannot provide information for a complete per-
ormance analysis. It is possible, for instance, to find an optimal
olution set composed of a small number of solutions with an ER
hat is equal to zero. As the analysts are also interested in finding
s many solutions of the true PF as possible, another performance
etric is proposed.
Eq. (5) defines the PF Ratio (PFR) metric which expresses the

ercentage of the PFtrue obtained.

FR =
∣∣PFcalc ∩ PFtrue

∣∣∣∣PFtrue
∣∣ × 100 (5)

For a comprehensive performance evaluation of a MO meta-
euristic, it is noteworthy to measure the spread of the solutions in
he PF obtained. An example of diversity metric is the � metric in
9], which measures how uniform the spreading of an obtained PF
s and the distance from the extreme points of PFcalc to the extreme
Ftrue ones. Although the � metric may  support important analysis
n the diversity features of a method, it is not quite suitable for the
roblem proposed. It occurs in this case because the PF is a finite
et with a fixed arrangement, which is not necessarily uniform.
hus, convergence may  affect diversity, and the simple comparison
mong diversity metrics that are associated with the PFs obtained
y different methods does not provide a definitive conclusion with
egard to the methods’ diversity features. Therefore, the diversity
etric will not be presented since ER and PFR metrics provide a

ound performance comparison of the performance of the methods.
Knowledge of the true PF is necessary to compute the ER and the

FR metrics. The problem size was conveniently chosen in order to
alculate all of the possible combinations and define the true PF.

Ten different and repeatable experiments are defined using ten
istinct and fixed seeds for the random number generator. The
erformance metrics are applied to each solution set and at the
nd of the ten experiments they are also applied to the combined
olution set, after proceeding with the elimination of repeated and
ominated solutions.

. Results

.1. Evaluation of the impact of DG

This section presents an example of an evaluation of the impact
f DG based on the technical performance indices, ILp and ISC3.
he PF for both networks, with and without current and voltage
onstraints, are shown in Fig. 1.

The characteristics of each network, such as the voltage level and
he length of branches, directly affect the relationship between ILp
nd ISC3. The urban IEEE-123 network does not present relevant
onflict between objectives, as shown in Fig. 2. Despite the huge

ariation in ILp,  the values for the ISC3 do not change significantly.
hus, the decision making for the IEEE-123 network is straightfor-
ard and corresponds to choosing the solution with the minimum

Lp.  However, in accordance with Fig. 2, the rural IEEE-34 network
Fig. 2. Pareto Fronts for IEEE-34 and IEEE-123 networks with and without current
and  voltage constraints.

presents an evident characteristic of conflict. In contrast to the IEEE-
123, there is a variation in the ISC3 index in the IEEE-34 network,
due to the fault profile of this network. In fact, on the original condi-
tion the fault currents decrease considerably from S/S node to final
nodes. With the connection of the DG units, especially those far
from the S/S node, there is then a significant increase in the mag-
nitude of the fault current at those points and, consequently, in the
ISC3 index.

Based on the constrained PF of the IEEE-34 network, an impact
study of DG penetration has been conducted, focusing on the posi-
tion of the generators. The PF points were divided into five sets, as
indicated in Fig. 2 (from A to E). This makes it possible to identify
zones along the network with respect to the impact caused by the
Fig. 3. Adapted IEEE-34 network with DG connections zones based on constrained
PF.
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Table 2
Cardinality of the true Pareto Front for different test cases.

IEEE-123 IEEE-34

CONS UNCONS CONS UNCONS

|PFtrue| 29 91 52 76
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Table 4
Summary of the results for UNCONS34 and UNCONS123 test cases.

UNCONS34 UNCONS123

NSGA-II MOTS MEPSO NSGA-II MOTS MEPSO

|PFcalc| 67 61 70 85 69 91
DSa – 1 – – 5 –
ER  0.0000 0.0164 0.0000 0.0000 0.0725 0.0000
PFR 88.2 78.9 92.1 93.4 70.3 100.0
ig. 4. PFR metric of combined solution set for each method for different problem
ormulations.

eneral, it can be seen that the allocation of DG units in each zone
as opposite effects on the performance indices. For instance, the
oints of set A, with high ISC3 and low ILp,  have the two  generators
onnected in zone II(b), where the major three-phase loads are con-
entrated. Whereas, E set, with low ISC3 and high ILp,  corresponds
o the DG unit 1 connected in the I(c) area and the other generator
n node 18. Therefore, they are both in zone I. The intermediate sets
, C, and D are the combined allocation of the two DG units in nodes

nside zones II(a) and II(b), I(b) and II, I(a) and II(a), respectively.

.2. Comparison of MO  methods

The number of optimal solutions for each network, with and
ithout the constraints, is presented in Table 2. The comparison

f the performance of the methods is initiated by the combination
f solution sets from the ten experiments. Fig. 4 gives a general
verview of the method’s performance using the PFR metric. The
oltage and current constrained problem is indicated by CONS and
he unconstrained problem is indicated by UNCONS, both are fol-
owed by a number, 34 or 123, which refers to the distribution
etwork.

The cases were organized in ascending order of PF cardinal-
ty. In two situations, the true PFs were found: using the MOTS

ethod in CONS123 and using the MEPSO method in UNCONS123.
n the first two test cases, the MOTS method showed the best per-
ormance. However, it presented the worst results in the last two
ases with less than 80% of the true PF being determined. Further-
ore, the MEPSO method had a constant trend in results, with all

ases obtaining more than 90% of the true PF. The NSGA-II method

resented a similar performance, but it did not find the true PF in
ny of the test cases and in two of them it determined less than 90%
f the true PF. The other performance metrics and the results are
hown in Tables 3 and 4.

able 3
ummary of the results for CONS34 and CONS123 test cases.

CONS123 CONS34

NSGA-II MOTS MEPSO NSGA-II MOTS MEPSO

|PFcalc| 26 29 28 50 51 50
DSa – – – – – –
ER  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PFR  89.6 100.0 96.6 96.2 98.1 96.2

a DS means dominated solutions in calculated PF.
a DS means dominated solutions in calculated PF.

The analysis of the convergence of the methods is comple-
mented by observing the ER metric. This index represents how
successful the exploration of the regions visited during the search
was, even if the PFtrue was not completely defined. The NSGA-II and
MEPSO methods yielded the best ER situation, which is zero, in all
test cases. However, the MOTS had non-zero ER values in the last
two test cases. In UNCONS123, for instance, around 7% of the PFcalc
were dominated by points belonging to the PFtrue.

Another method analysis is performed on the solutions obtained
in each one of the ten experiments. The PFR and ER metrics
are explained for the best and worst test case performance of
each method, based on the PFR results shown in Fig. 4. For
the NSGA-II method, the best and worst test cases are CONS34
and UNCONS34, respectively; for the MOTS method they are
CONS123 and UNCONS123, respectively; and for the MEPSO
method UNCONS123 is the best test case and UNCONS34 is the
worst case. In Fig. 5 the results of the ten experiments are summa-
rized for the best test cases using boxplots. The lower side of the
box is the first quartile; the upper side is the third quartile; and
the red line inside is the second quartile or median. The whiskers
represent the maximum and minimum obtained in the data series.
A point is an outlier, drawn as a red cross, if it is larger than the 3rd
quartile plus 1.5× IQR or smaller than the 1st quartile minus 1.5×
IQR, where IQR is the interquartile range.

As shown in Fig. 5(a), the NSGA-II method presented the PFR
metric as being below 30 in more than 75% of the experiments
with the maximum PFR obtained being under 40. The MOTS  method
obtained better extreme PFR solutions than the NSGA-II and 75% of
the experiments had a PFR metric higher than 35. The last method
in Fig. 5(a), MEPSO, clearly achieved the best performance with
the PFR metric being between 70 and 80 in all of the experi-
ments, except the outlier with the PFR close to 60. This means
that between 70% and 80% of the true PF was defined in each
experiment. In Fig. 5(b), the methods with a better PFR perfor-
mance generally found more true PF points amongst the PF points
obtained, as expected. The NSGA-II method presented a larger ER
metric for extreme points and a larger distance between them
when compared to the other methods, with points concentrated
around intermediate ER levels. The ER metric for the MOTS  method
in Fig. 5(b) oscillated around 0.3, without exceeding 0.5, and the
MEPSO method presented an ER that was lower than 0.17 in 80% of
the experiments.

The methods performance is represented for the worst test cases
in Fig. 6. The PFR metric for the NSGA-II method, as seen in Fig. 6(a),
had a similar result to those observed in Fig. 5(a). A clear perfor-
mance decrease was verified in using the MOTS method with PFR
varying between approximately 10 and 20. When compared with
Fig. 5(a), MEPSO has also shown a drop in performance. However, it
maintained larger extreme PFR values than the other methods and
the major part of the experiments had PFR around 30. The ER met-
ric behavior shown in Fig. 6(b) resembles that observed behavior

in Fig. 5(b): NSGA-II has the most dispersed ER values; MOTS has
all points lower than 0.5. The MEPSO method obtained an ER that
was concentrated between 0.25 and 0.36 with three outliers.
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Fig. 5. Detailed performance for general 

. Discussions and remarks

With regard to Fig. 4 and Tables 3 and 4, the MEPSO method
howed a constant and high performance. The MEPSO always pre-
ented the best ER condition; its PFR metric results were always
ver 90 and it found the true PF for the UNCONS123 test case, where
he PF cardinality was the highest. The MEPSO method also demon-
trated a stable behavior with less sensitivity to PF changes when
ompared with the other methods. The NSGA-II method perfor-
ance was similar to the MEPSO with ER always being equal to

ero and PFR being greater than 88. However, NSGA-II had more

ariation in its PFR and was not better than the MEPSO in any test
ase. Only MOTS showed a clear trend in reducing the PFR as the
F cardinality increased: despite finding the true PF in the first test
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Fig. 6. Detailed performance for general worst 
est cases considering the three methods.

case, it was the worst performance for the UNCONS123 with almost
70% of the true PF being defined. The main reason for this situation is
the method structure inherited from the Tabu Search. Unlike NSGA-
II and MEPSO, in MOTS the movement during the search is made
from just one solution to another called the seed. The neighbor-
hood of the seed is explored and candidate solutions for the Pareto
optimal set are preserved on the Candidate List (CL). However, just
one solution is sent to the PL per iteration. This means that in N
iterations, there will be N or fewer solutions in the PL. Then, if the
user wants to define PF in a single run as much as possible, it is
necessary to permit the execution of MOTS until the CL is emptied,

which may  cost a significant number of iterations.

Since CL retains non-dominated solutions that were not taken as
seed solution, another option is combining the PL and the CL when

(b)
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Table 5
Parameters set for each network.

Method Parameters IEEE-34 IEEE-123

NSGA-II Population size 50 250
R.S. Maciel et al. / Electric Power

he MOTS execution is interrupted. This is performed for the test
ases of Fig. 4 and a remarkable improvement can be seen in the
OTS’ performance. The true PF was found in the first three test

ases. Nevertheless, the behavior of the MOTS in the UNCONS123
est case deserved attention because the MOTS performance was
he worst among the other methods. Although it had a PFR that was
igher than 90, the MOTS in UNCONS123 was the only method that
resented an ER other than zero (0.0562). This is caused by the poor
xploration of the CL solution neighborhoods and may  represent a
ecrease in the MOTS’ performance as the PF cardinality increases,
ven when combining the PL and the CL.

The purpose of the results shown in Figs. 5 and 6 is to com-
are the best and worst test case performance for each method.
he NSGA-II generally presented an irregular PFR performance,
specially for the CONS34 test case. This variation is more evident
onsidering the ER metric that shows a huge variation throughout
he experiments and is the highest value found among the meth-
ds. Although the general NSGA-II performance for the CONS34
est case may  indicate the ability to explore different regions of the
earch space on each experiment, the huge ER and the fact that the
rue PF was not found in any test case indicate difficulty in local
xploration. When compared with NSGA-II and MEPSO, the MOTS
ethod performance was intermediate for CONS123 and low for
NCONS123, where the PFR was never higher than 20 in any exper-

ment. This was caused by the already mentioned MOTS structure
s it does not allow for intense PF exploration with a reduced num-
er of iterations. Despite the variations in ER, the metric was  always
maller than 0.5, demonstrating that more than 50% of the found PF
orresponds to solutions from the true PF. It is a desirable behav-
or, but it may  have limited importance if the number of solutions
efined is small. The combination of the CL with the PL affected this
R behavior negatively. Finally, the MEPSO best and worst PFR per-
ormance test cases were generally better than the other methods.
he MEPSO’s high performance in the UNCONS123 test case with
onstant and high level metrics results was remarkable.

There are qualitative aspects concerning the methods that are
gnored or not explicitly perceived in the analysis of the per-
ormance metrics. As MO meta-heuristics do not guarantee the
onvergence to the optimal solution set, one strategy to overcome
his limitation is to consider as a final solution the combination of
he results obtained in a number of algorithm runs, as illustrated
n Fig. 4. Thus, the MEPSO and NSGA-II methods have desirable
ttributes for this purpose: both methods have a fast conver-
ence, which can be exploited making many algorithm runs with a
educed number of iterations. In contrast, the MOTS method has a
lower convergence because it explores the neighborhood of each
andidate solution. If an interruption is needed before the CL is
mptied, it is possible to combine the remaining CL solutions with
he PL in the final solution set. However, if the exploration of all
andidate solutions is wanted for a better local search, all of the
L solutions must be taken as seed, which costs a high number of

terations.
Another important issue to consider when dealing with meta-

euristics is how the results are affected by the parameter tuning
or a method. Since it is not the objective of this paper to conduct

 detailed study on the sensibility of each method to its parame-
ers, the discussion on this topic is specific to the problem being
nalyzed. Some methods parameters were fixed for all of the tests
hereas others were changed according to the size of the search

pace. For NSGA-II, the mutation and recombination probability
ere fixed at 0.05 and 0.7, respectively. The tournament size was

 and the population size was changed depending on the network.

n MEPSO only the number of particles varied. The factor used for
tochastic star communication for the global best position [18] was
.2, and the list size to choose the global best was  5. The MOTS’s
xed parameter was the TL size of 10. The neighborhood size and
MOTS Neighborhood size and stepi 20 and 18 200 and 60
MEPSO Number of particles 20 50

the parameter step i [13], which is used to generate the neighbor-
hood solutions, were defined according to the network.

The parameters values adjusted for each network are shown in
Table 5. The results obtained for the three methods are strongly
dependent on the values defined for those parameters. For MOTS
and NSGA-II, the parameters are different from those used in the lit-
erature [9,13] because of the discrete problem formulation and the
need to find the true Pareto optimal solutions with a reduced num-
ber of objective function evaluations. For the MOTS method, the
parameter tuning is a more difficult task because two values have
to be set together. It is important to stress that the performance
of the MEPSO is sensible to the probability p of the stochastic star
communication, such as the EPSO. However the tuning of p seems
to be strongly dependent on the characteristics of the problem and
it does not seem to be related to the settings of the other parameters
[18].

6. Conclusions

The expected challenge for the years to come will be com-
bining AI techniques in order to solve complex power system
problems, essentially considering the most recent trends, such as
DG, Smart Grids and Microgrids. This paper presented a broad com-
parison of the MO methods based on different meta-heuristics.
A new approach for a multi-objective EPSO, called MEPSO was
also introduced. From the quantitative and qualitative analysis,
MEPSO presented satisfactory performance. The MOTS method
performance was remarkable when the PL and the CL were com-
bined. However, even in this case, the reduction of the performance
was maintained for the test case with the highest PF cardinality
(UNCONS123), which may  indicate a loss in performance for prob-
lems with increased size and complexity. Additionally, the MOTS
required more effort for parameter tuning than the other methods.
The NSGA-II performance does not seem to be affected by the prob-
lem changes, but it generally shows a less efficient convergence
to the true PF, with the highest ER per experiment. In the MEPSO
method, not only can the performance be highlighted, especially for
test case UNCONS123, but its stable behavior must also be noted,
like in Fig. 4. The MEPSO shown fine convergence features to the
true PF with intense exploration of the visited regions of the search
space, as seen through the performance metrics in Figs. 5 and 6. Fur-
thermore, it presented parameter tuning similar the NSGA-II and
more user-friendly than the MOTS.

The proposed approach successfully combined some of the MO
strategies from the NSGA-II with the EPSO algorithm. The compar-
ison with NSGA-II may  indicate the improvement in convergence
provided by the influence of the EPSO movement equation. There-
fore, the MEPSO may  represent an important tool for MO-based
methodologies to evaluate the impact of DG.

Based on these initial results for MEPSO and the methodology
to evaluate MO meta-heuristics, many studies are being performed
in order to investigate other important issues, such as the method’s
performance in problem formulations with continuous decision
variables, the influence of other method parameters and codifica-

tion in performance, and methodology improvements as testing
with a higher number of experiments. In terms of the application
of the method to the proposed problem, improvements are being
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