
Computers & Operations Research 35 (2008) 2388–2405
www.elsevier.com/locate/cor

Beam search algorithms for the single machine total weighted
tardiness scheduling problem with sequence-dependent setups

Jorge M.S. Valentea,∗, Rui A.F.S. Alvesb

aLIACC/NIAAD - Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal
bFaculdade de Economia, Universidade do Porto, Portugal

Available online 11 January 2007

Abstract

In this paper, we consider the single machine weighted tardiness scheduling problem with sequence-dependent setups. We present
heuristic algorithms based on the beam search technique. These algorithms include classic beam search procedures, as well as the
filtered and recovering variants. Previous beam search implementations use fixed beam and filter widths. We consider the usual fixed
width algorithms, and develop new versions that use variable beam and filter widths.

The computational results show that the beam search versions with a variable width are marginally superior to their fixed value
counterparts, even when a lower average number of beam and filter nodes is used. The best results are given by the recovering beam
search algorithms. For large problems, however, these procedures require excessive computation times. The priority beam search
algorithms are much faster, and can therefore be used for the largest instances.

Scope and purpose

We consider the single machine weighted tardiness scheduling problem with sequence-dependent setups. In the current competitive
environment, it is important that companies meet the shipping dates, as failure to do so can result in a significant loss of goodwill.
The weighted tardiness criterion is a standard way of measuring compliance with the due dates. Also, the importance of sequence-
dependent setups in practical applications has been established in several studies.

In this paper, we present several heuristics based on the beam search technique. In previous beam search implementations, fixed
beam and filter widths have been used. We consider the usual fixed width algorithms, and also develop new versions with variable
beam and filter widths.

The computational tests show that the beam search versions with a variable width are marginally superior to their fixed value
counterparts. The recovering beam search procedures are the heuristic of choice for small and medium size instances, but require
excessive computation times for large problems. The priority beam search algorithm is the fastest of the beam search heuristics, and
can be used for the largest instances.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Scheduling; Weighted tardiness; Sequence-dependent setups; Beam search

1. Introduction

In this paper, we consider the single machine weighted tardiness scheduling problem with sequence-dependent
setups. Formally, this problem can be stated as follows. A set of n jobs {J1, J2, . . . , Jn} has to be scheduled without

∗ Corresponding author. Tel.: +351 22 557 11 00; fax: +351 22 550 50 50.
E-mail address: jvalente@fep.up.pt (J.M.S. Valente).

0305-0548/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2006.11.004

http://www.elsevier.com/locate/cor
mailto:jvalente@fep.up.pt

J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405 2389

preemption on a single machine that can handle at most one job at a time. The machine and the jobs are assumed
to be continuously available from time zero onwards. Job Jj , j = 1, 2, . . . , n, requires a processing time pj , and
has a due date dj and a positive weight or penalty wj . The weight wj may represent rush shipping costs that are
incurred when an order is overdue, or even a contractual penalty for late delivery. This weight can also be asso-
ciated with the importance of a specific customer to the company, as well as with a loss of goodwill and future
lost sales.

For any given schedule, the tardiness of Jj is defined as Tj = max{0, Cj − dj }, where Cj is the completion time of
Jj . If job Jj is processed immediately after job Ji , a setup time sij is incurred. The setup times are therefore sequence-
dependent, since they depend on both the job that is to be processed next, and the job that precedes it. If job Jj is
processed first, it is assumed that it requires a setup time s0j . The objective is then to find a sequence that minimizes
the total weighted tardiness

∑n
j=1wjTj .

In the current competitive environment, it is important that companies meet the shipping dates submitted to their
costumers, as failure can result in rush shipping costs, lost sales and a significant loss of goodwill. The weighted
tardiness criterion has been a standard way of measuring compliance with the due dates. Several studies have also
established the importance of sequence-dependent setups in practical applications. Wilbrecht and Prescott [1] point
out that sequence-dependent setups are important when a job shop is operated at or near full capacity. In a survey
of industrial managers, Panwalkar et al. [2] found that approximately three quarters of the managers reported that
at least some operations required sequence-dependent setup times, while about 15% reported that all the operations
they scheduled involved sequence-dependent setups. Wortman [3] emphasized the importance of explicitly considering
sequence-dependent setups for an appropriate management of the production capacity.

The single machine weighted tardiness scheduling problem with sequence-dependent setups is strongly NP-hard,
since it is a generalization of weighted tardiness scheduling [4]. The problem with sequence-dependent setups has been
previously considered by Raman et al. [5] and Lee et al. [6]. Raman et al. presented a dispatching heuristic. Lee et
al. proposed a three-phase heuristic solution procedure. In the first phase, some instance statistics are calculated. The
second phase uses the Apparent Tardiness Cost with Setups (ATCS) dispatching procedure to schedule the jobs. The
parameters required by this dispatching rule are calculated using the results of the first phase. Finally, an improvement
procedure is used to improve the schedule obtained in the second phase. The computational results showed that the
ATCS heuristic outperformed the dispatching rule proposed by Raman et al. [5]. The ATCS heuristic was adapted for
the problem with identical parallel machines by Lee and Pinedo [7].

A survey of machine scheduling problems involving setup considerations is given by Allahverdi et al. [8]. Potts and
Kovalyov [9] review the literature on problems that integrate scheduling and batching decisions. This literature review
includes some scheduling problems with setup times, more specifically scheduling models with job families. The single
machine total weighted tardiness problem with no setups has received considerable attention. A recent survey of the
state of the art in weighted and unweighted tardiness scheduling can be found in [10].

In this paper, we present several heuristic algorithms based on the beam search technique. These algorithms include
the classic beam search procedures, with both priority and total cost evaluation functions, as well as the more recent
filtered and recovering variants. Previous implementations of the beam search approach use fixed beam and filter
widths. We consider the usual fixed width algorithms, and also develop new versions that use variable beam and filter
widths. In these versions, the number of beam or filter nodes is determined at each level of the search tree, based on
the quality of the competing nodes. The proposed algorithms are compared with the three-phase heuristic solution
procedure presented by Lee et al. [6].

The remainder of the paper is organized as follows. In Section 2, we describe the beam search approach and its several
variations. The fixed and variable width alternatives are discussed in Section 3. The proposed heuristic procedures and
their implementation details are presented in Section 4. The computational results are reported in Section 5, and some
concluding remarks are given in Section 6.

2. The beam search approach

Beam search is a heuristic method for solving combinatorial optimization problems that consists in an adaptation
of the branch-and-bound algorithm (for a description of the branch-and-bound algorithm for scheduling problems, see
for instance Brucker [11]). In the beam search method, only the most promising nodes at each level of the search tree
are retained for further branching, while the remaining nodes are pruned off permanently. Since only a few nodes are

2390 J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405

selected for further branching at each iteration (with the remaining nodes being pruned), the running time of beam
search heuristics is polynomial in the problem size.

The beam search approach was first used in the artificial intelligence community for the speech recognition [12]
and image understanding [13] problems. Since then, several applications to scheduling problems have appeared in the
literature. Fox [14] and Ow and Smith [15] incorporated beam search algorithms in scheduling systems for complex
job shop environments. Sabuncuoglu and Bayiz [16] proposed a beam search algorithm for job shop problems with
the makespan and mean tardiness objective functions. Ow and Morton [17,18] developed a variation of this technique
called filtered beam search, and tested it on the single machine early/tardy problem.

Another variation of the beam search approach, denoted as recovering beam search, was proposed by Della Croce
and T’kindt [19] and Della Croce et al. [20]. Della Croce and T’kindt apply this new approach to the single machine
completion time problem with release dates, while Della Croce et al. consider both the two-machine total completion
time flow shop scheduling problem and the uncapacitated p-median location problem. The recovering beam search
approach has since then been applied to several other problems. Valente and Alves [21] presented both recovering and
filtered beam search heuristics for the single machine early/tardy problem, while Ghirardi and Potts [22] proposed a
recovering beam search algorithm for the problem of scheduling jobs on unrelated parallel machines to minimize the
makespan. Recently, Esteve et al. [23] developed a recovering beam search procedure for a just-in-time scheduling
problem with multiple criteria. In the next subsections, we describe the classic beam search technique, as well as the
more recent filtered and recovering variants.

2.1. Classic beam search

The classic beam search approach consists in a truncated branch-and-bound algorithm where only the most promising
� nodes are retained for further branching at each level of the search tree; � is the so-called beam width. Since the intent
of this technique is to search quickly for a good solution, the other nodes are simply discarded and backtracking is not
allowed. This means beam search cannot recover from a wrong decision, and therefore is not guaranteed to find an
optimal solution. A wider beam width reduces the risk of eliminating a node that would ultimately lead to the optimal
solution, but at the cost of increased computational effort.

The node evaluation process plays a major role in the effectiveness of a beam search algorithm. Two different
types of evaluation functions have been used: priority evaluation functions and total cost evaluation functions. Priority
evaluation functions simply calculate a priority or urgency rating, typically by using a dispatching heuristic to calculate
a priority index for the last job added to the current partial schedule. Total cost evaluation functions calculate an
estimate of the minimum total cost of the best solution that can be obtained from the partial schedule represented by
the node. This is usually done by using a dispatching rule to schedule the remaining jobs and complete the existing
partial sequence. A priority evaluation function only considers the next decision to be made (i.e., the next job to
schedule), and therefore has a local view of the problem. A total cost evaluation function, on the other hand, has a
global view of the problem, since it projects from the current partial solution to a complete schedule in order to obtain
a cost estimate.

The priority evaluation functions can pose a slight problem. The priority index of the dispatching rules used to
calculate the urgency rating of the last scheduled job depends necessarily on the specific scheduling problem under
consideration. Also, this priority index is usually a function of the current partial schedule, namely a function of the
current time. Different nodes on the same tree level correspond to different partial sequences, and contain a possibly
different set of scheduled jobs. Therefore, the completion time of the last scheduled job in the current partial sequence
may be different for two nodes, even when those nodes are on the same level of the search tree. The priorities are then
context-dependent, and the priorities calculated for the offspring of a node cannot be legitimately compared with those
obtained from the expansion of a different node. This problem can be solved by initially selecting the best � children of
the root node (i.e., the node containing an empty sequence). At lower levels of the search tree, only the best descendant
of each beam node is kept for the next iteration. Total cost evaluation functions are not affected by this problem, since
cost estimates are context-independent and can be compared.

We now present the main steps of both priority beam search and detailed beam search algorithms. Priority beam
search uses a priority evaluation function, while detailed beam search uses a total cost evaluation function. In the
following, B is the set of nodes retained at each level of the search tree for further branching, C is a set of offspring
nodes and n0 is the root node.

J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405 2391

Priority beam search:

Step 1: Initialization:
Set B = ∅, C = ∅.
Branch n0 generating the corresponding children.
Calculate the priority of the last scheduled job for each child node.
Select the best � child nodes and add them to B.

Step 2: Node selection:
For each node in B:
(a) Branch the node generating the corresponding children.
(b) Calculate the priority of the last scheduled job for each child node.
(c) Select the best child node and add it to C.
Set B = C and C = ∅.

Step 3: Stopping condition:
If the nodes in B are leaf (they hold a complete sequence), select the node with the lowest total
cost as the best sequence found and stop.
Otherwise, go to step 2.

Detailed beam search:

Step 1: Initialization:
Set C = ∅ and B = {n0}.

Step 2: Branching:
For each node in B:
(a) Branch the node generating the corresponding children.
(b) Calculate an upper bound on the optimal solution value for each child node.
(c) Select the best � child nodes and add them to C.
Set B = ∅.

Step 3: Node selection:
Select the best � nodes in C and add them to B.
Set C = ∅.

Step 4: Stopping condition:
If the nodes in B are leaf, select the node with the lowest total cost as the best sequence
found and stop.
Otherwise, go to step 2.

2.2. Filtered and recovering beam search

The two alternative types of evaluation function used in the classic beam approach have different advantages and
weaknesses. The priority evaluation functions are computationally cheap, but are potentially inaccurate, and may lead
to the elimination of good nodes. The total cost evaluation functions, on the other hand, provide a more accurate
evaluation, but require a much higher computational effort. The filtered and recovering beam search variants use
a filtering step and a two-stage approach that takes advantage of both crude and accurate evaluations. These two
methods thus try to provide a node evaluation process that gives high quality evaluations without requiring excessive
computation times.

The filtered and recovering beam search algorithms first apply a computationally inexpensive filtering proce-
dure in order to select only some of the offspring of each beam node for a more detailed evaluation. The cho-
sen nodes are then evaluated more accurately using a total cost function, and the best � nodes are kept for further
branching.

Two different types of filtering procedure have been previously used. Ow and Morton [17,18] proposed a filtering
procedure that uses a priority evaluation function to calculate an urgency rating for each offspring. The best � children
of each beam node are then chosen for the detailed evaluation step, where � is the so-called filter width. Recently,

2392 J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405

Della Croce and T’kindt [19] and Della Croce et al. [20] introduced a new type of filtering procedure in conjunction
with the development of the recovering beam search algorithm. This new procedure uses problem-specific properties to
determine, with a reduced computational effort, the nodes that advance to the detailed evaluation step. More specifically,
problem dependent dominance conditions, denoted as valid dominance conditions, when available for the problem under
consideration, are applied together with so-called pseudo-dominance conditions, which hold in a heuristic context only.
Whenever a valid dominance condition or a pseudo-dominance condition applies for a given node, that node is then
eliminated from further consideration.

The priority function approach was then originally applied in filtered beam search algorithms, while the dominance
conditions filtering procedure was developed for the recovering beam search heuristic. Nevertheless, either of these
two filtering procedures can be used in both filtered and recovering algorithms. Therefore, it is possible to apply a
dominance conditions procedure in a filtered beam search approach, and the priority function filter can also be applied
in recovering beam search algorithms.

The recovering beam search procedure differs from the filtered beam search approach in two major ways. First,
in filtered beam search the accurate evaluation step uses an upper bound on the total cost of the best solution that
can be obtained from the partial sequence represented by the node. In the recovering variant, on the other hand, the
accurate node evaluation process uses both lower and upper bounds. These bounds are used in an evaluation function
V = (1 − �)LB + �UB, where 0���1 is a user-defined parameter. The evaluation function V is then a weighted sum
of the lower and upper bounds, with the weight of the upper bound being given by the parameter �.

Second, an additional recovering step is present in the recovering beam search approach. This step is applied on the
best � nodes retained after the detailed evaluation step at each level of the search tree. The recovering step typically
consists in applying neighbourhood operators to check whether a current partial solution � is dominated by another
partial solution � having the same level of the search tree. If a better partial solution � does exist, then � becomes the
new current partial solution.

The recovering step often allows the recovering beam search procedure to recover from previous wrong decisions.
This feature is not available in the classic and filtered beam search variants, which cannot recover from a wrong decision:
if a branch leading to the optimal solution is pruned, there is no way to reach afterwards that solution. The recovering
step in the recovering beam search approach seeks to overcome this issue by searching for improved partial solutions
dominating those selected by the beam. Since the recovering step only replaces a partial solution with another partial
solution with the same depth of the search tree, the total number of explored nodes is still polynomial in the problem
size. We now present the main steps of both filtered and recovering beam search algorithms.

Filtered beam search:

Step 1: Initialization:
Set C = ∅ and B = {n0}.

Step 2: Filtering step:
For each node in B:
(a) Branch the node generating the corresponding children.
(b) Add to C all the child nodes that are not eliminated by the filtering procedure.
Set B = ∅.

Step 3: Node selection:
Calculate an upper bound on the optimal solution value for all nodes in C.
Select the best � nodes in C and add them to B.
Set C = ∅.

Step 4: Stopping condition:
If the nodes in B are leaf, select the node with the lowest total cost as the best sequencefound and stop.
Otherwise, go to step 2.

Recovering beam search:

Step 1: Initialization:
Set C = ∅ and B = {n0}.

J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405 2393

Step 2: Filtering step:
For each node in B:
(a) Branch the node generating the corresponding children.
(b) Add to C all the child nodes that are not eliminated by the filtering procedure.
Set B = ∅.

Step 3: Node selection:
For all nodes in C:
(a) Calculate a lower bound LB and an upper bound UB on the optimal solution value of that node.
(b) Compute the evaluation function V = (1 − �)LB + �UB.
Select the best � nodes in C and add them to B.
Set C = ∅.

Step 4: Recovering step:
For each node in B:
(a) Let � represent the partial solution associated with the current node.
(b) Search for a partial solution � that dominates � by means of neighbourhood operators.
(c) If � is found, set � = �.

Step 5: Stopping condition:
If the nodes in B are leaf, select the node with the lowest total cost as the best sequence
found and stop.
Otherwise, go to step 2.

3. Beam search with a variable width

3.1. Motivation

In previous implementations of beam search procedures, fixed beam and filter widths have been used. Usually,
preliminary tests are first performed in order to determine appropriate values for these parameters. In fact, there is a
trade-off between solution quality and computation time, since increasing the beam or filter width usually improves
the objective function value (ofv), but at the cost of an increased computational effort. The computation time usually
increases linearly with the beam and filter width, while the solution quality improves, but with diminishing returns (i.e.,
the improvement in the solution quality becomes smaller as the parameters increase). Therefore, computational tests
are first performed to determine beam and filter width values that provide a good balance between solution quality and
computational effort.

The beam and filter width values determined in these preliminary tests are then used throughout the beam search
procedure. This means that the chosen parameter values are used for all instances. More importantly, for each specific
instance the same beam and filter width values are used at all levels of the search tree.

In this paper, we propose a new implementation for the beam search procedure that can be used in the classic
versions, as well as in the filtered and recovering variants. This new implementation uses variable beam and filter
widths. Therefore, the number of beam or filter nodes is not necessarily constant in these new versions, and may change
from one iteration to another.

The new implementation was motivated by the fact that different beam or filter width values may be appropriate at
different levels of the search tree. In fact, a smaller or a larger width may be preferred at each iteration, according to
the quality of the currently competing nodes, measured by their evaluation values. At each level of the search tree, the
new versions then select the nodes that are close to the best, that is, the nodes whose evaluation values are close to the
evaluation value of the best node.

In the previous implementations, on the other hand, a fixed number of nodes is always selected. Therefore, it is
possible that some of the selected nodes are quite inferior to the best node. Also, high quality nodes may be discarded,
since only a fixed number of nodes is chosen, even when there are additional nodes that are rather close in quality to
the best node. As an example, assume a fixed beam width of 3 was selected, and consider the two scenarios given in
Table 1. This table gives hypothetical total cost evaluation values (i.e., upper bounds) for the five best nodes, along
with the worst, at a given tree level. In scenario A, the upper bound for the 3rd best node is clearly much higher than
the values obtained for the two best nodes, so a beam width of 2 would likely be sufficient. On the contrary, a beam

2394 J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405

Table 1
Variable width example

Scenario Best 2nd 3rd 4th 5th … Worst

A 100 102 150 160 165 200
B 100 102 105 106 150 200

width of 4 might be a better choice in scenario B. In this scenario, the upper bound for the 3rd and 4th best nodes are
nearly identical, so the 4th node could indeed lead to better solutions than the 3rd best.

3.2. Implementation details

We now present the implementation details of the beam search versions with a variable width. First, we formally
describe the procedure used to select beam nodes. Let best and worst denote the evaluation values of the best and worst
nodes, respectively. Also, let 0�bdev �1 be the (user-defined) beam relative deviation parameter. The beam threshold
evaluation value Tb is then calculated as:

Tb = best + bdev × (worst − best).

The nodes with an evaluation value not larger than Tb are then selected. However, due to both computational efficiency
and solution quality concerns, we also impose user-defined minimum and maximum limits on the number of selected
nodes. Let bmin and bmax denote the minimum and maximum beam width values, respectively. Then, if the number
of nodes that satisfies the beam threshold value Tb is lower than bmin, the best bmin nodes are selected. Similarly, if
the number of nodes within the threshold exceeds bmax, only the best bmax nodes are chosen. The previous discussion,
as well as the expression given for Tb, assumes that we are dealing with a minimization problem and a total cost
evaluation function. In this case, the best nodes are those with a low evaluation value (i.e., a low cost). The adaptation
to maximization problems, and/or priority evaluation functions, is straightforward.

The procedure used to select filter nodes is quite similar. Again, let best and worst denote the evaluation values of
the best and worst nodes, respectively. Also, let 0�fdev �1 be the (user-defined) filter relative deviation parameter.
The filter threshold evaluation value Tf is then calculated as follows:

Tf = best − fdev × (best − worst).

The nodes with an evaluation value not lower than Tf are then selected. Once more, we impose user-defined minimum
(fmin) and maximum (fmax) limits on the number of selected nodes. Therefore, the number of chosen nodes is never
lower than fmin, or greater than fmax. The previous discussion, as well as the expression given for Tf , assumes that
the evaluation function assigns larger evaluation values to the more urgent jobs, as is usually the case with priority
evaluation functions. The adaptation to other evaluation functions is straightforward.

Beam search versions with a variable width have a significantly larger set of available choices in the trade-off between
solution quality and computation time. For instance, if a fixed beam width of 3 is currently used, and a larger beam
is being considered, the closest choice is a beam width of 4. If a variable width is used instead, a wide number of
intermediate choices is available by appropriately setting the relative deviation parameter. In fact, the average beam
width (over all search tree levels) can be changed smoothly between three and four by increasing the maximum allowed
relative deviation.

4. The proposed heuristic procedures

In this section, we describe the implementation details concerning the application of the beam search algorithms to
the specific single-machine weighted tardiness problem with sequence-dependent setups. We first present the lower
bounding method that is used in the recovering beam search algorithms. The improvement procedures that were
considered for the recovering step in the recovering beam search heuristic are then described. Finally, we provide
additional implementation details concerning the proposed beam search algorithms.

J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405 2395

4.1. The lower bounding procedure

The detailed evaluation step in the recovering beam search procedure requires a lower bound on the total cost
of the best solution that can be obtained from the partial schedule represented by the node. We now describe the
procedure that is used to calculate a lower bound for the unscheduled jobs at each node. This procedure relaxes the
sequence-dependent setups and modifies the jobs’ processing times, converting the problem into a total weighted
tardiness problem with no setups. A lower bounding procedure for the problem with no setup can then be applied to the
modified data.

Let Q represent the current partial sequence of a given node at tree level l, and let Q(k) be the kth job in this sequence.
The modified processing times of the unscheduled jobs are then given by

p′
j = min

{
min
i /∈Q

{sij }, sQ(l)j

}
+ pj .

Since the minimum possible setup time is assumed for each job, any of the lower bounding procedures available for
the problem with no setup can then be applied to the modified data, in order to obtain a lower bound for the original
problem. The lower bounding procedure proposed by Potts and Van Wassenhove [24] was chosen, since it provides
adequate results and is also computationally efficient.

4.2. Improvement procedures

The recovering step in the recovering beam search algorithm requires an improvement or neighbourhood search pro-
cedure. We considered three simple improvement procedures: adjacent pairwise interchange (API), 3-swaps (3SWAP)
and the insertion method (INS) proposed by Lee et al. [6].

The API procedure, at each iteration, considers in succession all adjacent job positions. A pair of adjacent jobs is
then swapped if such an interchange improves the ofv. This process is repeated until no improvement is found in a
complete iteration (i.e., until the sequence is locally optimal and cannot be further improved by adjacent swaps).

The 3SWAP procedure is similar, but it considers three consecutive job positions instead of an adjacent pair of jobs.
All possible permutations of these three jobs are then analysed, and the best configuration is selected. Once more, the
procedure is applied repeatedly until no improvement is possible.

The INS method selects at each iteration the job with the largest weighted tardiness. The selected job is then inserted
after the nearest �n/3� jobs. The best insertion in then performed if it improves the ofv. This process is repeated until
no improving move is found.

4.3. Beam search implementation details

The implementation details of the proposed beam search procedures are presented in this section. Both priority and
detailed classic beam search algorithms were considered, as well as filtered and recovering beam search procedures. For
each of these algorithms, we developed versions with fixed and variable widths. From now on, the priority and detailed
classic beam search algorithms will be identified as PBS and DBS. Similarly, the filtered and recovering procedures
will be denoted as FBS and RBS. The versions with fixed and variable widths will be identified by appending _F and
_V, respectively, to the beam search procedures identifiers.

In order to apply these algorithms to the specific weighted tardiness problem with sequence-dependent setups, it is
necessary to specify their main components, such as branching scheme, evaluation function, filtering procedure and
recovering step. In the following, we first describe the branching scheme, which is common to all the algorithms. Then,
we provide the remaining implementations details for each type of algorithm.

Branching scheme: The same branching procedure is used for all algorithms. The branching scheme consists in the
usual n-ary forward branching: the sequence is constructed by adding one job at a time starting from the first position.
Therefore, a branch at level l of the search tree indicates the job scheduled in position l.

Priority beam search: The PBS algorithms require a priority evaluation function. This function is provided by the
priority index of the ATCS dispatching rule. The evaluation value of a node is therefore obtained by calculating the
ATCS priority index of the last scheduled job in that node.

2396 J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405

Detailed beam search: The detailed beam search algorithms require a total cost evaluation function, i.e., an upper
bounding procedure. This upper bounding procedure is provided by the ATCS dispatching heuristic. For a given node,
the ATCS rule is used to sequence the remaining unscheduled jobs, therefore completing the existing partial schedule.
The evaluation value of the node is then equal to the cost of the complete schedule obtained with the ATCS heuristic.

Filtered beam search: The FBS algorithms require a filtering procedure and an upper bounding procedure. The upper
bounding procedure is provided by the ATCS dispatching heuristic, just as previously described for the detailed beam
search algorithms. The filtering step uses a priority evaluation function filter. Therefore, a priority evaluation function
is used to calculate an urgency rating for each offspring of a given node, and the best � children are then chosen for the
detailed evaluation step. The priority evaluation function is given by the priority index of the ATCS dispatching rule,
just as previously described for the PBS algorithms.

Recovering beam search: The RBS algorithms require a filtering procedure, upper and lower bounding procedures
for the detailed evaluation step, and an improvement procedure for the recovering step. The filtering and upper bounding
procedures are identical to those used in the FBS algorithms. The lower bound procedure is provided by the method
presented in Section 4.1. For a given node, this procedure is used to calculate a lower bound for the remaining
unscheduled jobs. The lower bound of the node is then equal to the sum of the cost of the existing partial schedule
and the lower bound calculated for the remaining unscheduled jobs. For the recovering step, we considered the API,
3SWAP and INS procedures described in Section 4.2. We performed preliminary computational tests to determine
an adequate choice for the improvement procedure. The API method was chosen, since it provided the best balance
between computation time and solution quality.

Early termination: The DBS, FBS and RBS algorithms use an upper bounding procedure, as mentioned above. For a
given node, this procedure provides an upper bound on the total cost of the best solution that can be reached from that
node. Therefore, if the upper bound of a node is equal to 0, it is possible to immediately terminate the algorithm. In
fact, the current partial schedule of the node with an upper bound of 0 can be completed by scheduling the remaining
unscheduled jobs with the upper bounding procedure. This yields a solution with a cost equal to 0, and therefore optimal.

Improvement step: The beam search algorithms are compared with the three-phase heuristic solution procedure pre-
sented by Lee et al. [6]. This procedure initially calculates some instance statistics, and then uses the ATCS dispatching
heuristic to schedule the jobs. Finally, the INS improvement procedure is applied to improve the schedule obtained
by the ATCS rule. For simplicity, this three-phase procedure will be simply denoted as ATCS. The INS improvement
procedure was also applied, as an improvement step, to the beam search algorithms. Therefore, once the beam search
heuristics have generated a solution, the INS procedure in then used to improve that solution.

5. Computational results

In this section, we first describe the set of test problems and the preliminary experiments that were performed to
determine adequate values for the parameters used by the several algorithms. Then, we present the computational
results and compare the proposed beam search procedures. Throughout this section, and in order to avoid excessively
large tables, we will sometimes present results only for some representative cases.

5.1. Experimental design

The computational tests were performed on a set of problems with 15, 20, 25, 30, 40, 50, 75, 100, 250 and 500 jobs.
These problems were randomly generated using a scheme similar to the one adopted by Lee et al. [6]. For each job
Jj , an integer processing time pj and an integer penalty wj were generated from the uniform distributions [50, 150]
and [1, 10], respectively. The integer setup times sij were obtained from the uniform distribution [0, 2s], where s is the
average setup time. The average setup time is set at �p, where � is the setup time severity factor, set at 0.50, 1.00, 1.50
and 2.00, and p is the average processing time.

The integer due dates dj were generated from the uniform distribution [Ĉmax(1 − � − R/2), Ĉmax(1 − � + R/2)],
where Ĉmax is a makespan estimate, � is the tardiness factor and R is the due date range factor. Both � and R were set at
0.1, 0.3, 0.5, 0.7 and 0.9. The makespan clearly depends on the schedule, due to the existence of sequence-dependent
setup times. Therefore, the makespan can only be calculated once a specific sequence is determined. Consequently, a
makespan estimate Ĉmax is required for the uniform distribution that is used to generate the due dates. Following [6,7],
the makespan was estimated as Ĉmax = n(p + �s), with ��1. The makespan, as well as its estimate, consists of two

J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405 2397

parts: the processing time of the jobs and the setup times between the jobs. Since every job must be processed once, np

represents the processing time component of the makespan. By setting ��1, we assume that the setup time component
of the makespan is usually much smaller than ns, since during the generation of a schedule a job with a smaller setup
time is more likely to be selected. The value of � is calculated using the function � = 0.4 + 10/n2 − �/7, once more
following [6,7].

Different problem sets were used for the preliminary experiments and for obtaining the computational results. The
set used for comparing the procedures included 50 instances for each parameter combination, yielding 5000 instances
for each problem size. A smaller set, with five instances for each combination, was used in the parameter adjustment
tests. Due to the large computation times that would be required, the DBS algorithms were only used to solve instances
with up to 100 jobs, while the FBS and RBS procedures were not applied to the 500 job instances. All the algorithms
were coded in Visual C + + 6.0 and executed on a Athlon 64 3000+ personal computer.

5.2. Preliminary tests

Extensive computational tests were first performed to determine appropriate values for the parameters used by
several algorithms. As mentioned before, there is a trade-off between solution quality and computation time, since
increasing the parameter values usually improves the ofv, at the cost of increased computational effort (the upper bound
weight parameter � is an exception). For the fixed width versions, the following values were considered for the several
parameters:

� = {1, 2, . . . , 10},
� = {1, 2, . . . , 8},
� = {0.1, 0.2, . . . , 0.9}.

The fixed width algorithms were applied to the test instances for all combinations of the relevant parameter values.
The mean ofv’s and runtimes were then calculated and plotted. A thorough analysis of these charts, as well as the
underlying data, revealed the usual behaviour: the computation time increased linearly with the beam and filter width,
while the solution quality improved, but with diminishing returns. The parameter values that seemed to provide the
best trade-off between solution quality and computation time were then chosen after a detailed analysis of these results.
The beam and filter width were set at 3 for all fixed width algorithms, while a value of 0.5 was chosen for the upper
bound weight in the RBS procedures.

Preliminary tests were also performed to set the parameters used in the variable width versions. We considered values
of 1 and 2 for the minimum beam and filter widths, while for the maximum width we tested the values 4, 5 and 6. For the
beam and filter width relative deviation parameters, we considered a different set of values for each instance size. These
values were selected in order to generate a range of average beam and filter widths that encompassed the chosen fixed
value of 3. The mean ofv’s and runtimes, as well as the average number of nodes, were calculated and analysed. We
then selected the values that not only yielded an average width usually quite close to (and sometimes even lower than)
the fixed values of 3, but also provided a good balance between the solution quality and computation time. This would
allow a better first comparison between fixed and variable width versions, since similar average widths are usually used
in both, while at the same time taking into account the trade-off between ofv and runtime. The minimum and maximum
beam widths were set at 2 and 4, respectively, for all algorithms. The filter width minimum and maximum values were
set at 1 and 5 for both the FBS and RBS procedures, while a value of 0.5 was chosen for the upper bound weight in
the RBS algorithms. The values chosen for the beam and filter relative deviation parameters were different for each
instance size, and are given in Table 2.

5.3. Beam search results

We now present the computational results for the heuristic procedures. In Table 3, we present the average ofv for
each heuristic, as well as the percentage number of times a heuristic produces the best result when compared with the
other heuristics (%best). We also give the relative improvement in the ofv over the ATCS procedure (%imp), calculated
as (ATCS − Heur)/ATCS × 100, where ATCS and Heur are the average ofv’s of the ATCS rule and the appropriate
heuristic, respectively. The number of times the variable width algorithms perform better (<), equal (=) or worse (>)

2398 J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405

Table 2
Beam and filter relative deviation parameter values

n Beam Filter

DBS FBS PBS RBS FBS RBS

15 0.115 0.3 0.91 0.3 0.96 0.95
20 0.105 0.3 0.90 0.3 0.86 0.90
25 0.095 0.3 0.85 0.3 0.83 0.82
30 0.095 0.3 0.83 0.3 0.81 0.80
40 0.080 0.3 0.82 0.3 0.75 0.75
50 0.080 0.3 0.75 0.3 0.73 0.72
75 0.070 0.3 0.70 0.3 0.68 0.67

100 0.065 0.3 0.73 0.3 0.62 0.60
250 – 0.3 0.63 0.3 0.50 0.53
500 – – 0.58 – – –

Table 3
Heuristic results

Heur. n = 15 n = 25 n = 50 n = 75 n = 100 n = 250

ATCS ofv 22798 50233 155141 313169 520814 2841684
%best 8.20 9.92 17.70 22.28 24.68 28.92

DBS_F ofv 19584 43968 140642 289026 487173 –
%best 51.66 35.68 32.46 32.96 33.00 –
%imp 14.10 12.47 9.35 7.71 6.46 –

DBS_V ofv 19546 43790 140053 288184 485792 –
%best 54.90 40.04 35.86 35.48 35.22 –
%imp 14.26 12.83 9.73 7.98 6.72 –

FBS_F ofv 19559 43831 140090 287366 483626 2734793
%best 52.24 38.64 35.14 36.38 37.94 40.04
%imp 14.21 12.75 9.70 8.24 7.14 3.76

FBS_V ofv 19520 43691 139250 286186 481770 2725027
%best 51.72 37.46 39.16 40.24 41.36 43.00
%imp 14.38 13.02 10.24 8.62 7.50 4.11

PBS_F ofv 21589 48091 151034 306371 511447 2812278
%best 11.12 11.48 19.04 23.16 25.38 29.78
%imp 5.30 4.27 2.65 2.17 1.80 1.03

PBS_V ofv 21550 47993 150913 306260 511018 2811313
%best 10.96 11.18 18.88 22.98 25.28 29.78
%imp 5.47 4.46 2.73 2.21 1.88 1.07

RBS_F ofv 19537 43689 139448 286394 481140 2711569
%best 53.24 42.38 39.28 39.94 42.14 48.58
%imp 14.30 13.03 10.12 8.55 7.62 4.58

RBS_V ofv 19486 43566 139149 285532 481156 2711348
%best 55.38 43.94 42.94 45.90 47.76 56.38
%imp 14.53 13.27 10.31 8.82 7.61 4.59

than the corresponding fixed width versions is given in Table 4. In Table 5, we present the average beam and filter
width values for the beam search versions with a variable width. We also performed a test to determine if the difference
between the fixed and variable width versions is statistically significant. Given that the heuristics were used on exactly
the same problems, a paired-samples test is appropriate. Since not all the hypothesis of the paired-samples t-test were
met, the non-parametric Wilcoxon test was selected. The significance values of this test, i.e., the confidence level values

J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405 2399

Table 4
Comparison of beam search objective function values

n DBS FBS PBS RBS

< = > < = > < = > < = >

15 16.4 73.5 10.0 27.6 45.2 27.1 7.4 87.2 5.4 27.0 48.7 24.3
20 22.7 64.1 13.3 33.3 33.4 33.3 8.5 85.9 5.7 33.0 39.0 28.1
25 27.1 56.5 16.4 37.0 28.9 34.1 9.1 84.6 6.3 35.6 31.3 33.1
30 29.8 50.6 19.5 39.5 26.5 34.0 9.4 84.8 5.9 39.1 27.4 33.5
40 34.6 40.3 25.1 41.7 23.9 34.4 9.1 85.0 5.9 40.0 24.5 35.6
50 38.2 35.4 26.3 43.4 24.1 32.5 8.7 84.8 6.5 40.5 24.4 35.0
75 39.7 29.1 31.2 41.3 25.5 33.2 7.9 85.6 6.5 41.0 25.3 33.7

100 40.7 28.1 31.1 40.3 27.0 32.7 9.5 85.5 5.1 38.4 27.0 34.6
250 – – – 40.6 29.6 29.8 9.7 83.4 6.9 37.5 29.6 32.9
500 – – – – – – 11.4 79.3 9.3 – – –

Table 5
Average beam and filter width values

n Beam Filter

DBS FBS PBS RBS FBS RBS

15 3.07 3.10 3.23 2.98 3.08 3.04
20 3.15 2.93 3.28 2.98 2.67 3.00
25 3.15 2.99 3.18 2.86 2.75 2.77
30 3.22 3.05 3.16 2.92 2.84 2.85
40 3.12 3.05 3.21 2.95 2.81 2.88
50 3.19 3.12 3.06 2.98 2.93 2.94
75 3.12 3.17 2.98 3.03 3.03 3.03

100 3.08 3.13 3.12 2.97 2.96 2.91
250 – 3.12 3.02 3.11 3.04 3.20
500 – – 2.97 – – –

above which the equal distribution hypothesis is to be rejected, were nearly always equal to 0.000, and they were never
larger than 0.01.

The beam search versions with a variable width are marginally superior to their fixed value counterparts. The variable
width versions provide a lower ofv, and they give better results for a larger number of test instances. The Wilcoxon
test values also indicate that the difference in distribution between the fixed and variable width implementations is
statistically significant. The superior performance of the variable width algorithms was achieved with an average beam
width that is quite close to the value used in the fixed width versions, while the average filter width is nearly always
lower than the corresponding fixed value (we recall that both the beam and filter widths were set at 3 in the fixed width
versions). The preliminary tests described in the previous subsection also showed that the variable width versions are
still superior to the fixed width alternative even if somewhat lower average beam and filter widths were used. Therefore,
the variable width versions provide marginally better results, even when they use lower average beam and filter widths.

The proposed beam search algorithms outperform the ATCS dispatching heuristic. The best results are given by the
recovering beam search algorithms, followed by the FBS and DBS procedures. This may seem somewhat surprising,
since DBS algorithms perform a detailed evaluation for all nodes, while recovering and filtered beam search procedures
use a two-stage evaluation and only the nodes that pass the filtering procedure are accurately evaluated. The two-stage
evaluation procedure used in the FBS and RBS algorithms, however, can benefit from a synergy between the priority
and total cost evaluations. In fact, the filtering procedure can eliminate poor nodes that would erroneously lead to good
detailed evaluation values. The early elimination of these nodes can therefore improve the performance and lead to
better results than those that would be obtained if only a detailed evaluation was performed.

The recovering beam search algorithms also perform a more accurate detailed evaluation than either the DBS or FBS
procedures, since RBS uses both lower and upper bounds in the detailed evaluation step. Moreover, at each iteration

2400 J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405

Table 6
Relative improvement over the ATCS rule for the RBS_V heuristic and 50 job instances

� � R = 0.1 R = 0.3 R = 0.5 R = 0.7 R = 0.9

0.50 0.1 48.50 100.00 – – –
0.3 23.28 27.87 41.21 41.41 77.28
0.5 12.89 18.16 21.15 17.53 5.25
0.7 7.35 9.29 4.63 4.01 2.35
0.9 3.40 3.78 3.22 3.23 2.73

1.00 0.1 100.00 100.00 100.00 – –
0.3 34.98 37.16 62.92 76.13 51.93
0.5 17.62 22.78 31.59 22.79 11.41
0.7 10.48 13.16 13.59 11.32 7.16
0.9 5.26 6.11 5.40 5.16 5.40

1.50 0.1 85.12 100.00 100.00 100.00 100.00
0.3 34.36 37.16 50.78 56.95 55.67
0.5 19.11 26.28 27.37 28.81 19.73
0.7 12.73 14.50 17.71 15.82 14.36
0.9 7.39 7.63 6.94 7.41 6.91

2.00 0.1 64.08 82.87 75.11 97.61 99.99
0.3 36.61 35.83 42.29 41.67 38.13
0.5 21.56 26.67 30.13 31.55 23.98
0.7 14.19 18.03 17.30 15.45 12.31
0.9 7.36 8.12 7.61 7.30 8.90

the RBS algorithms can improve the current partial solutions during the recovering step. Therefore, the superior
performance of the RBS algorithms when compared with the FBS procedures can then be explained by the more
accurate detailed node evaluation, on the one hand, and by the local improvement performed in the recovering step, on
the other hand. The PBS algorithms, which use only priority evaluations, cannot match the performance of the DBS
and FBS procedures, but they still improve upon the ATCS results. The relative improvement over the ATCS procedure
decreases with the instance size. For the RBS, FBS and DBS procedures, this improvement is quite large (over 10%)
for the smaller instances, and even for problems with 75 and 100 jobs these algorithms give a substantial improvement
of about 7–9%.

In Table 6, we present the effect of the �, R and � parameters on the relative improvement over the ATCS procedure
for the RBS_V heuristic and instances with 50 jobs. The relative improvement over the ATCS heuristic increases as
the tardiness factor � decreases. Some of the relative improvement values, however, are somewhat misleading. When
� = 0.1 or 0.3, most jobs will be early, and the average weighted tardiness is low. Therefore, the quite large relative
improvement values that are given for some parameter combinations with ��0.3 are deceptive, since they correspond
to situations where the variation in the average weighted tardiness is small when measured in absolute terms. For
some parameter combinations, the average weighted tardiness is actually 0 for both the ATCS and the beam search
procedures, thus making the calculation of the relative improvement impossible. A—sign is used to identify those
parameter combinations in Table 6.

As � increases, more jobs will be tardy, and the average weighted tardiness is high, so a positive relative improvement
then represents a significant absolute reduction in the ofv. The high relative improvement values for � = 0.5 or 0.7
therefore mean that the beam search algorithms provide substantial savings over the dispatching heuristic. The relative
improvement also increases with the setup time severity factor �.

The heuristic runtimes (in s) are given in Table 7. The runtimes are similar for the fixed and variable beam width
versions, since the average widths in the variable versions were set close to the value selected for the fixed value
implementations. The DBS algorithms are computationally quite demanding, and can only be used for small or medium
size instances. The RBS procedures are a superior alternative, since they not only provide better results, but are also
faster and can be applied to somewhat larger instances. The PBS procedure is the fastest of the beam search algorithms,
and is therefore an alternative to the ATCS dispatching rule for the largest instances.

J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405 2401

Table 7
Heuristic runtimes (in s)

Heur. n = 75 n = 100 n = 250 n = 500

ATCS 0.001 0.001 0.007 0.032
DBS_F 1.722 5.337 – –
DBS_V 1.933 6.059 – –
FBS_F 0.107 0.246 3.924 –
FBS_V 0.128 0.281 4.313 –
PBS_F 0.019 0.043 0.728 8.443
PBS_V 0.020 0.043 0.715 7.643
RBS_F 0.130 0.294 4.488 –
RBS_V 0.152 0.320 5.143 –

6. Conclusion

In this paper, we considered the single machine weighted tardiness scheduling problem with sequence-dependent
setups, and presented heuristic algorithms based on the beam search technique. These algorithms include the classic
beam search procedures, as well as the filtered and recovering variants. Previous implementations of the beam search
approach use fixed beam and filter widths. We considered the usual fixed width procedures, and also developed new
versions that use variable beam and filter widths. The proposed algorithms were compared with a heuristic procedure
presented in [6].

The beam search versions with a variable width provide marginally better results than their fixed value counterparts.
This superior performance is achieved even when they use a lower average number of beam and filter nodes. Also,
the beam search versions with a variable width provide a much larger set of available choices in the trade-off between
solution quality and computation times. The new versions therefore seem promising and appear to be a good alternative
to the current fixed width implementations. As a possible step for future research, it seems worthy to investigate their
behaviour on other problems.

The best results are given by the recovering beam search algorithms, followed by the filtered beam search procedures.
The priority beam search algorithms cannot match the solution quality of the other beam search heuristics, but are
superior to the dispatching heuristic. The RBS procedures are the heuristic of choice for the small and medium size
instances, but they require excessive computation times for large problems. The PBS procedure is the fastest of the
beam search algorithms, and can then be used for the largest instances.

Acknowledgement

The authors would like to thank an anonymous referee for several, and most useful, comments and suggestions that
were used to improve this paper.

Appendix A

A.1. Introduction

Following the acceptance of this article for publication, two additional papers [25,26] proposing heuristic procedures
for the single machine total weighted tardiness scheduling problem with sequence-dependent setups have come to our
attention. Cicirello and Smith [25] consider four improvement-type algorithms, namely limited discrepancy search
(LDS), heuristic-biased stochastic sampling (HBSS), value-biased stochastic sampling (VBSS) and hill-climbing using
VBSS (VBSS-HC), as well as a simulated annealing algorithm. These procedures were tested on a proposed set of
120 benchmark problem instances. Liao and Juan [26] present an ant colony optimization (ACO) algorithm. This
algorithm was tested on the problem set proposed in [25], and compared with the best-known solutions achieved by
the Cicirello and Smith procedures. The computational tests show that the ACO algorithm performs better than the
existing procedures.

2402 J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405

Table A1
Heuristic solutions for the benchmark instances

CCRL ACO RBS # CCRL ACO RBS # CCRL ACO RBS

1 978 894 1760 41 73176 73578 77081 81 387148 387866 389607
2 6489 6307 8065 42 61859 60914 64839 82 413488 413181 412206
3 2348 2003 2810 43 149990 149670 154046 83 466070 464443 460946
4 8311 8003 12128 44 38726 37390 41771 84 331659 330714 330176
5 5606 5215 6844 45 62760 62535 65102 85 558556 562083 560892
6 8244 5788 11282 46 37992 38779 40505 86 365783 365199 365297
7 4347 4150 5419 47 77189 76011 83659 87 403016 401535 407977
8 327 159 628 48 68920 68852 75240 88 436855 436925 437999
9 7598 7490 8058 49 84143 81530 87273 89 416916 412359 417407

10 2451 2345 2745 50 36235 35507 36869 90 406939 404105 405445
11 5263 5093 9306 51 58574 55794 61763 91 347175 345421 341196
12 0 0 0 52 105367 105203 104463 92 365779 365217 364758
13 6147 5962 8542 53 95452 96218 106848 93 410462 412986 410520
14 3941 4035 5968 54 123558 124132 124848 94 336299 335550 336118
15 2915 2823 4375 55 76368 74469 88827 95 527909 526916 533909
16 6711 6153 8961 56 88420 87474 94040 96 464403 461484 466019
17 462 443 844 57 70414 67447 74734 97 420287 419370 422835
18 2514 2059 3087 58 55522 52752 58645 98 532519 533106 527512
19 279 265 624 59 59060 56902 67941 99 374781 370080 368398
20 4193 4204 6124 60 73328 72600 83571 100 441888 441794 438498
21 0 0 405 61 79884 80343 101292 101 355822 355372 354620
22 0 0 0 62 47860 46466 52994 102 496131 495980 497212
23 0 0 0 63 78822 78081 83555 103 380170 379913 387540
24 1791 1551 5732 64 96378 95113 112549 104 362008 360756 359022
25 0 0 558 65 134881 132078 147626 105 456364 454890 458510
26 0 0 763 66 64054 63278 71587 106 459925 459615 458459
27 229 137 1340 67 34899 32315 38946 107 356645 354097 357073
28 72 19 1804 68 26404 26366 31249 108 468111 466063 467088
29 0 0 224 69 75414 64632 81838 109 415817 414896 419244
30 575 372 1375 70 81200 81356 90278 110 421282 421060 425096
31 0 0 0 71 161233 156272 164161 111 350723 347233 351540
32 0 0 0 72 56934 54849 71005 112 377418 373238 372473
33 0 0 0 73 36465 34082 48624 113 263200 262367 271314
34 0 0 0 74 38292 33725 55999 114 473197 470327 479053
35 0 0 0 75 30980 27248 48219 115 460225 459194 459742
36 0 0 0 76 67553 66847 72685 116 540231 527459 539292
37 2407 2078 4161 77 40558 37257 51069 117 518579 512286 515037
38 0 0 0 78 25105 24795 36889 118 357575 352118 366235
39 0 0 0 79 125824 122051 156197 119 583947 584052 575773
40 0 0 0 80 31844 26470 40775 120 399700 398590 401236

In this appendix, we consider the best of our beam search algorithms, namely the recovering beam search heuristic
with a variable width (here denoted simply as RBS). This procedure is applied to the benchmark problem set, and
the results are compared with those obtained by the procedures developed by Cicirello and Smith and the ant colony
algorithm of Liao and Juan.

A.2. Computational results

The 120 benchmark instances proposed by Cicirello and Smith [25] can be obtained at http://www.ozone.ri.cmu.edu/
benchmarks. These problem instances are characterized by the same three factors �, R and � used in our test problems.
The following values are considered for these parameters: � = {0.3, 0.6, 0.9}, R = {0.25, 0.75} and � = {0.25, 0.75}.
The benchmark set contains 10 problem instances, each with 60 jobs, for each combination of these parameter values.
The RBS heuristic was applied to these instances on a Pentium IV 2.8 GHz personal computer.

http://www.ozone.ri.cmu.edu/benchmarks
http://www.ozone.ri.cmu.edu/benchmarks

J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405 2403

Table A2
Objective function values

CCRL ACO RBS

ALL 100.00 99.28 101.85

� = 0.3 R = 0.25 � = 0.25 100.00 90.70 127.92
� = 0.75 100.00 95.72 147.51

R = 0.75 � = 0.25 100.00 77.95 457.48
� = 0.75 100.00 86.33 172.87

� = 0.6 R = 0.25 � = 0.25 100.00 99.10 105.12
� = 0.75 100.00 98.38 107.40

R = 0.75 � = 0.25 100.00 97.25 112.80
� = 0.75 100.00 94.93 121.28

� = 0.9 R = 0.25 � = 0.25 100.00 99.81 100.04
� = 0.75 100.00 99.77 99.72

R = 0.75 � = 0.25 100.00 99.77 100.28
� = 0.75 100.00 99.12 100.16

The filter relative deviation parameter in the RBS algorithm was set at 0.7. This value was determined by performing
an interpolation between the values chosen for our instances with 50 and 75 jobs. The values of the remaining parameters
required by the RBS procedure were identical for all our instance sizes, and those same values were therefore also used
in this experiment.

The results given by the RBS algorithm are compared with those obtained by the procedures developed by Cicirello
and Smith [25] and the ACO algorithm of Liao and Juan [26]. The Cicirello and Smith results (henceforth denoted by
CCRL) correspond to the best of the solutions generated by the four improvement-type heuristics (LDS, HBSS, VBSS
and VBSS-HC) and the simulated annealing algorithm.

In TableA1, we provide the objective function values given by the CCRL,ACO and RBS procedures for each instance
in the benchmark set. In Table A2, we present the average objective function values for all instances, as well as for each
combination of the �, R and � parameter values. The average objective function values are calculated relative to the
CCRL results, and are therefore presented as index numbers. More precisely, these values are calculated as heur_ofv /
ccrl_ofv * 100, where heur_ofv and ccrl_ofv are the average objective function values of the appropriate heuristic and
the Cicirello and Smith procedures, respectively. The number of times the RBS algorithm performs better (<), equal
(=) or worse (>) than the CCRL and ACO procedures is given in Table A3.

The results presented in these tables show that the RBS heuristic is outperformed, as far as solution quality is
concerned, by both the CCRL and ACO procedures. In fact, the CCRL and ACO procedures not only provide a lower
average objective function value, but also give better results for around 75% of the benchmark instances. Moreover,
the RBS algorithm fails to obtain an optimal solution for 4 of the 16 instances with a zero weighted tardiness.

The tardiness factor � has a significant effect on the relative performance of the RBS algorithm. Indeed, the relative
performance of the RBS heuristic is worse when the tardiness factor has a low or medium value. In fact, when �=0.3 or
0.6, the RBS procedure is outperformed in most of the test instances, and its average objective function value is much
higher. However, the average objective function values for � = 0.3 are somewhat misleading. When � = 0.3, most jobs
are early, and the weighted tardiness is low. Therefore, the large differences in the relative objective function values for
� = 0.3 are somewhat deceptive, since they correspond to situations where the variation in the objective function value
is small when measured in absolute terms.

The RBS algorithm, on the other hand, is competitive for the instances with a high tardiness factor. In fact, when
� = 0.9, the RBS heuristic provides an average objective function value that is quite close, and for one parameter
combination actually better, than the CCRL and ACO procedures. Also, the RBS algorithm provides better results for
about half of the instances with � = 0.9.

The computation times required by the CCRL procedures are not provided in the benchmark library, so no comparison
is then possible. However, it is possible to compare the computation times of the RBS and ACO heuristics. Indeed, the
ACO procedure of Liao and Juan [26] was also executed on a Pentium IV 2.8 GHz personal computer. Liao and Juan
report that each run of their ACO procedure required an average computation time of 4.99 s. For each instance, the

2404 J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405

Table A3
Comparison of objective function values

RBS vs. CCRL RBS vs. ACO

< = > < = >

ALL 21 12 87 16 12 92

� = 0.3 R = 0.25 � = 0.25 0 0 10 0 0 10
� = 0.75 0 1 9 0 1 9

R = 0.75 � = 0.25 0 2 8 0 2 8
� = 0.75 0 9 1 0 9 1

� = 0.6 R = 0.25 � = 0.25 0 0 10 0 0 10
� = 0.75 1 0 9 1 0 9

R = 0.75 � = 0.25 0 0 10 0 0 10
� = 0.75 0 0 10 0 0 10

� = 0.9 R = 0.25 � = 0.25 5 0 5 4 0 6
� = 0.75 6 0 4 6 0 4

R = 0.75 � = 0.25 4 0 6 3 0 7
� = 0.75 5 0 5 2 0 8

ACO algorithm was run 10 times, and the best solution was then selected. Therefore, the ACO results were achieved
with an average computation time of about 50 s.

The RBS procedure is significantly faster, since its average computation time is just 0.18 s. Therefore, the RBS
heuristic is considerably more efficient, and can be applied to much larger instances. Indeed, the RBS procedure can
solve even large instances with 250 jobs in under 10 s.

References

[1] Wilbrecht JK, Prescott WB. The influence of setup time on job shop performance. Management Science 1969;16:B274–80.
[2] Panwalkar SS, Dudek RA, Smith ML. Sequencing research and the industrial scheduling problem. In: Elmaghraby SE, editor. Symposium on

the theory of scheduling and its applications. New York: Springer; 1973. p. 29–38.
[3] Wortman DB. Managing capacity: getting the most from your firm’s assets. Industrial Engineering 1992;24:47–9.
[4] Lenstra JK, Rinnooy Kan AHG, Brucker P. Complexity of machine scheduling problems. Annals of Discrete Mathematics 1977;1:343–62.
[5] Raman N, Rachamadugu RV, Talbot FB. Real time scheduling of an automated manufacturing center. European Journal of Operational Research

1989;40:222–42.
[6] Lee YH, Bhaskaran K, Pinedo M. A heuristic to minimize the total weighted tardiness with sequence-dependent setups. IIE Transactions

1997;29:45–52.
[7] Lee YH, Pinedo M. Scheduling jobs on parallel machines with sequence-dependent setup times. European Journal of Operational Research

1997;100:464–74.
[8] Allahverdi A, Gupta JND, Aldowaisan T. A review of scheduling research involving setup considerations. Omega 1999;27:219–39.
[9] Potts CN, Kovalyov MY. Scheduling with batching: a review. European Journal of Operational Research 2000;120:228–49.

[10] Sen T, Sulek JM, Dileepan P. Static scheduling research to minimize weighted and unweighted tardiness: a state-of-the-art survey. International
Journal of Production Economics 2003;83:1–12.

[11] Brucker P. Scheduling algorithms. Berlin: Springer; 2004.
[12] Lowerre BT. The HARPY speech recognition system. PhD thesis, Carnegie-Mellon University, USA, 1976.
[13] Rubin S. The ARGOS image understanding system. PhD thesis, Carnegie-Mellon University, USA, 1978.
[14] Fox MS. Constraint-directed search: a case study of job-shop scheduling. PhD thesis, Carnegie-Mellon University, USA, 1983.
[15] Ow PS, Smith SF. Viewing scheduling as an opportunistic problem-solving process. Annals of Operations Research 1988;12:85–108.
[16] Sabuncuoglu I, Bayiz M. Job shop scheduling with beam search. European Journal of Operational Research 1999;118:390–412.
[17] Ow PS, Morton TE. Filtered beam search in scheduling. International Journal of Production Research 1988;26:35–62.
[18] Ow PS, Morton TE. The single machine early/tardy problem. Management Science 1989;35:177–91.
[19] Della Croce F, T’kindt V. A recovering beam search algorithm for the one-machine dynamic total completion time scheduling problem. Journal

of the Operational Research Society 2002;53:1275–80.
[20] Della Croce F, Ghirardi M, Tadei R. Recovering beam search: enhancing the beam search approach for combinatorial problems. Journal of

Heuristics 2004;10:89–104.
[21] Valente JMS, Alves RAFS. Filtered and recovering beam search algorithms for the early/tardy scheduling problem with no idle time. Computers

and Industrial Engineering 2005;48:363–75.

J.M.S. Valente, Rui A.F.S. Alves / Computers & Operations Research 35 (2008) 2388–2405 2405

[22] Ghirardi M, Potts CN. Makespan minimization for scheduling unrelated parallel machines: a recovering beam search approach. European
Journal of Operational Research 2005;165:457–67.

[23] Esteve B, Aubijoux C, Chartier A, T’kindt V. A recovering beam search algorithm for the single machine just-in-time scheduling problem.
European Journal of Operational Research 2006;172:798–813.

[24] Potts CN, van Wassenhove LN. A branch-and-bound algorithm for the total weighted tardiness problem. Operations Research 1985;33:
363–77.

[25] Cicirello VA, Smith SF. Enhancing stochastic search performance by value-biased randomization of heuristics. Journal of Heuristics 2005;11:
5-34.

[26] Liao CJ, Juan HC.An ant colony optimization for single-machine tardiness scheduling with sequence-dependent setups. Computers & Operations
Research 2007;34:1899–1909.

	Beam search algorithms for the single machine total weighted tardiness scheduling problem with sequence-dependent setups
	Introduction
	The beam search approach
	Classic beam search
	Filtered and recovering beam search

	Beam search with a variable width
	Motivation
	Implementation details

	The proposed heuristic procedures
	The lower bounding procedure
	Improvement procedures
	Beam search implementation details

	Computational results
	Experimental design
	Preliminary tests
	Beam search results

	Conclusion
	Acknowledgement
	Appendix A
	Introduction
	Computational results

	References

