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Abstract

Power system regulators and operators are creetimgjtions for encouraging the participation of the
demand-side into reserve markets. The electricclelfEV), when aggregated by a market agent, holds
sufficient flexibility for offering reserve bids. éVertheless, due to the stochastic nature of tiverdr
behavior and market variables, forecasting andnopétion algorithms are necessary for supporting an
EV aggregator participating in the electricity metrtkThis paper describes a new day-ahead optimizati
model between energy and secondary reserve bidsaandperational management algorithm that
coordinates EV charging in order to minimize difieces between contracted and realized values. The
use of forecasts for EV and market prices is inethdis well as a market settlement scheme thatdes|
a penalty term for reserve shortage. The optinopafiamework is tested in a test case construcidd w

synthetic time series for EV and market data frhelberian market.

Keywords. Electric vehicle, aggregator, optimization, elegtyi market, secondary reserve, regulation
reserve.
Nomenclature
W: ratio between upward and downward secondaryveser
¥: costs associated to deviations between actuadjictipand accepted bids;
@: convex loss function;
@: costs associated to reserve shortage;
a: penalization coefficient for secondary reserveacity shortage;
y: penalization coefficient for reserve not supplfetictrical energy);
At: time step (length of the time interval) of tinmearvalt;
E.: optimized electrical energy for time interval

E;: optimized electrical energy for charging tHe5V in time intervat;

*Correspondence to: Ricardo Bessa, INESC Porto,fDamda FEUP, Rua Dr. Roberto Frias, 378, 4200 -Rt8% Portugal. Telf:
+351 22 209 4208. Fax: +351 22 209 4050. E-madélssh@inescporto.pt
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E*t,j: electrical energy consumed by tHegV in time intervat;

H: set of time intervals from the optimization haig

H jp'”g: forecasted availability (or plugged-in) periodtbé fh EV;
H jp'“g: availability (or plugged-in) period of th& EV;

2" number of equivalent minutes of dispatched upwasgrve in intervat

%" number of equivalent minutes of dispatched dowdwaserve in interva

M;: total number of EV plugged-in at time intertal
7 : negative imbalance unit cost of time interzal
m . positive imbalance unit cost of time interval

P,™ maximum charging power of th8 EV;

ﬁomax: maximum, constant and feasible charging pow¢hefEV fleet in time intervat.
5%”“” : minimum, constant and feasible charging powehefEV fleet in time intervat.
F{f’fW“: downward secondary reserve power of theY for time intervat;

F{f*j”: upward secondary reserve power of th&Y for time intervat;

R; : operating point (or actual preferred operatinmpo

R;d"‘”“: available downward secondary reserve power;

Pt(')“": available upward secondary reserve power;

ﬁod"‘”“: downward secondary reserve power that can baisestduring intervat

ED“”: upward secondary reserve power that can be sastaiuring intervat;

PlOL'pper: upper power limit that guarantees full availakibf downward reserve power in time intertal

§t0'°we’: lower power limit that guarantees full availatyilof upward reserve power in time intergal
pSU"s price for positive imbalances of time interval
shortage

o - price for negative imbalances of time interijal

p, : day-ahead energy price forecast for time intetval

acap. H H .
p;**: forecasted capacity price of secondary reserve;

plovn: forecasted price for dispatched downward reserve;
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p,": forecasted price for dispatched upward reserve;
p.: day-ahead energy price for time intertjal

Iij : forecasted charging requirement of th&);
F{O,j : residual charging requirement of tffe§V at beginning of time instaty;
RNS"™": downward reserve not supplied in time intettyal

RNS": upward reserve not supplied in time interyal

T: time interval of the last plugged-in EV to depart
tinai: last time interval of the availability period;
tinitia - first time interval of the availability period;

V. slack variable;

1. Introduction

The participation of loads in ancillary servicesrkeds has gained relevance in the recent yearsn[1],
particular with the deployment of the smart-gridncept with bidirectional communication [2]. The
electric vehicle (EV), when aggregated by a mad@tnt, is a suitable candidate for selling reserve
services in the electricity market [3].

Secondary (or regulation) reserve consists in l@msgenerators under direct real-time controhef t
system operator (SO), via automatic generation robnfAGC), for increasing or decreasing
generation/consumption. The response time is v&sy (e.9., less than 30 seconds) and is usedng bri
back the frequency and the interchange prograniketio nominal values (i.e., reduce the area control
error — ACE).

The current market rules do not allow the partitgra of small loads and generators (e.g., the
minimum bid is generally around megawatts),and évemall bids are allowed, the AGC would need to
send control signals to each EV supplying secondzsgrve.

The solution proposed by several authors is an gyfegator acting as an intermediary between EV
drivers, the electricity market and the SO [4][Blmeida [6] describes a control scheme for intdgrat
aggregated EV in the AGC operation of interconméatgstems. In this framework, the AGC sends set-
points to aggregators that, afterwards, distribntividual set-points among the plugged-in EV. This
reduces significantly the communication burden iacdeases its reliability.

The work of this paper explores a solution wheee BV aggregator controls directly the charging of
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EV plugged-in in slow charging points and sellsos@lary reserve power in the electricity market.

The vehicle-to-grid (V2G) mode was not considemedhis paper. Instead, the reserve is supplied by
establishing a preferred operating point (POP) T POP consists in the EV consumption level ¢hat
be increased (downward reserve) or decreased (dpneaerve) limited by zero and by the maximum
charging power. For instance, an EV charging at 2iald provide 2 kW of upward regulation until it
reaches “zero load” and 1 kW of downward regulatibthe maximum charging power is 3 kW.
Compared to V2G, this solution does not requireitamdhl investment in equipment, and it reduces the
costs with battery wear and losses in the chaiger [

Different algorithms for supporting the particigatiof EV in the reserve market were proposed in the
literature. Sortomme and El-Sharkawi [8] proposee¢hheuristic strategies and equivalent optimal
analogues to define the POP and regulation rededgeof an EV aggregator. Han et al. [9] describe a
dynamic programming based algorithm to calculatpulaion power bids from EV. Rotering and llic
[10] describe two dynamic programming optimizatadgorithms for an optimal controller installed in a
EV. One algorithm optimizes the charging rates gedods for minimizing the cost, and the other
maximizes the profit from selling regulation powe/u et al. [11] discuss pricing schemes to indinee t
participation of EV in frequency regulation sendce

All the aforementioned algorithms assume that petfi@recasts are available for all the variables. |
fact, when designing bidding optimization modetssinecessary to consider the need to forecasethe
variables and the occurrence of forecast erromtoBg12] presents a stochastic optimization atbori
for the participation in the electricity market éegy and regulation reserve), which includes uadeties
related to the market price and driver's behavidan et al. [13] propose a probabilistic model for
modeling the achievable power capacity of an EVtegator when providing regulation reserve. Bessa et
al. [14] described an optimization model for eneagyd secondary reserve bids. A naive forecasting
approach was used for producing forecasts for ggded values of the EV variables. Bessa and Matos
[15] compared two alternative approaches to opgntie participation of an EV aggregator in the day-
ahead energy market (reserve was not considerbd)tWo algorithms use, as input, forecasts forgte
variables produced by statistical models. The saotbors present in [16] a day-ahead optimization
model and operational management algorithms foradead and hour-ahead manual (or balancing)
reserve bids.

Compared to Pantos [12] and Han et al. [13], th@mopation approach proposed in this present paper
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characterizes the EV individually, which as showr{15], provides a more accurate representation and
coordinates the EV individual charging for mitigngtiforecast errors. Furthermore, the formulatiothef
optimization models proposed in this present papetemplates the specific characteristics of seagnd
reserve. For instance, the models that will be rilesd in section 3 are formulated to be robusthi® t
variability (in size and direction) of the net dlézal energy from the secondary reserve dispaftie
influence of forecast errors is also studied, intipalar its impact on reserve shortage situati@am] a
market settlement scheme with a penalty term feemee shortage situations is also proposed. Finafly
operational management algorithm is also describdiich is essential to coordinate the EV charging
during the operating hour to comply with the markemmitments, while in [12] this was identified as
future work.

Compared to the approach described by Bessa [@dlthe present paper makes several innovations:
the formulation of the optimization problem inclisdthe possibility of offering a reserve band inhbot
upward and downward directions; it disregards thednto forecast the reserve direction and partiopa
factor; the optimization uses forecasts for each &\Voperational management algorithm is proposed f
coordinating EV charging and for minimizing thefdience between contracted and realized values of
energy and reserve. Compared to the approach beddry Bessa and Matos [16] for the manual reserve,
the day-ahead and operational management problesasilded in this paper are different, since thegewe
developed taking into account the characteristicsegondary reserve. For example, the proposed day-
ahead optimization model does not derive the reskids based on the forecasted reserve directian (t
was found to be almost random), but it offers a&emes band in both directions and the operational
management algorithm is based on a strategy tligfires the EV fleet’'s operating point in order to
maximize the available secondary reserve.

The remaining of the paper is organized as follosextion 2 describes the problem and the specific
characteristics of secondary reserve; section @dtates the day-ahead optimization problem; section
describes the operational management algorithm teowl the aggregator redefines the EV fleet's
operating point; section 5 proposes two new masktttement schemes; the test case results aranfedse

and discussed in section 6; section 7 presentsvidigll conclusions.

2. Problem Description
2.1  Electricity Market Framework

The EV aggregator participates in the day-aheaatredal energy market with bids to purchase energy,
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which are paid at a single marginal price.

In addition to this market session, a day-aheadimesfor secondary reserve capacity is also
considered. Two examples of market sessions ferr#serve type are the secondary reserve markt in
Iberian electricity market (MIBEL) [17] and the ndgtion reserve market in CAISO (California 1SO)
[18].

This reserve is generally contracted in a day-alesesis (e.g. Portugal, Spain, Italy and the Alberta
region), and even in markets with hour-ahead sass@& major fraction of the reserve is contractag d
ahead (see the case of CAISO [18]). There are tgsiple market-clearing schemes: a sequential marke
(typically European markets) where the energy ntatk&es place first, followed by a market for
secondary reserve; a market where energy and eesequirements are jointly cleared (typically U.S.
markets). The approach described in this paper snakedistinction between these two schemes, but a
sequential market-clearing is assumed in this psipee the Iberian market is used as test casectioa
6.

The aggregator presents a bid with a reserve bhard\{/) that is divided into upward and downward
directions, and the reserve is remunerated withgriges: available capacity price (in €/ MW) thasults
from the capacity allocation of the secondary nesenarket; dispatched capacity price (in € MWh) tha
may result from the balancing market.

The aggregator is a price-taker, which means tmattds made by the aggregator do not affect the
market-clearing price of energy and reserve. Theegaker assumption is valid when there is sigfiti
competition in the market and a single market aghkmgs not have a large quota of the market (i.e.,
market power). Nevertheless, if the size of theregator’'s bid becomes significant, even if it remsaa
price-taker, it will shift the merit order curve dachange the market-clearing price. In this céasis, not
possible to decouple the price forecast from thgirtyiselling bids computed with the optimization
problem.

In general, the electricity markets have hourlyhatf-hourly time steps. For the secondary reserve
market, the power in the reserve bid is assumebetaconstant during the market interval. An EV
aggregator may not be able to offer constant palueng a complete hour because several EV can tlepar
and arrive during that interval. For instance, diggregator can have 1000 EV plugged-in during & hal
hour and 800 EV during the second half-hour. IfEM are charging at 2 kW (but with a maximum

charging power of 3 kW), the aggregator can offdi\ of downward reserve in the first half-hour and
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0.8 MW in the second. However, in an hourly timeimal, the average power would be 0.9 MW, which
can only be attained during the first half-hour.

Therefore, in this paper a change in the curremketaules is assumed to promote the participation
EV in secondary reserve. The market time intergadains one hour, which means that from the market-
clearing it results an hourly price, but the se@pdreserve bid submitted by the EV aggregator is
decomposed in sub-hourly intervals of predefinedgile 4t and with constant power. In the
aforementioned example, assumiftgequal to 30 minutes, the downward reserve bid dée: 1 MW
for the first half-hour and 0.8 MW for the secoiithe time lengthit is a predefined value and it should
be defined in accordance to the average trip durdiime. Note that most of the electricity markets
created complex bids to accommodate specific cheiatics of conventional generation units (e.g.,
minimum run times). Thus, this can be seen as ditiadal complex bid designed for EV aggregators
(and also for other types of flexible loads). Thiange demands a new market-clearing algorithm that

takes into account complex bids from the EV aggamga

2.2  Characteristics of the Secondary Reserve

In the absence of perturbations, the events harmlestcondary reserve are usually minute-to-minute
random fluctuations inside the operating period,ibsome cases, this reserve can also be usezhtiieh
large deviations between load and generation (mglanned outage or loss of synchronism from a
generator). Despite being contracted on an houalish the secondary reserve is mobilized for short
periods-of-time (e.g., 5 minutes). Secondary resemust only be used to correct the ACE and not for
other purposes, such as to minimize unintentionaigy imbalances [19].

This contrasts with manual (or balancing) resehat is frequently used for periods of more than one
hour to solve energy imbalances, such as forecastsdrom renewable energy. According to Hirst][20
manual reserve (called load-following by the au}hdiffers from secondary (called regulation by the
author) in two important aspects: (a) it is usedrdeng periods of time compared to secondary veser
(b) the changes in reserve direction are frequeamtdgictable and have similar daily patterns [16].

This reserve has specific characteristics that festonsidered when developing optimization models
for an EV aggregator.

The first characteristic is that, despite beingtmmied on an hourly basis, secondary reserve is
normally not dispatched in the same direction dutime complete hour. In an hourly period, the neser

can be dispatched in one direction during a pelietbw one hour (e.g., upward reserve during 40
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minutes), while in other cases, it can be dispatdheboth directions (e.g., 10 minutes of upward &6
minutes of downward reserve).

Figure 1 depicts the histograms for the number of equivtadenutes of dispatched secondary upward
reserve of a hydro and a thermal power plant iriugat. The number of equivalent minutes corresponds
to the ratio between the dispatched reserve poemergy in MWh) and its available reserve power
(power in MW).

Figure 1: Histogramsfor the number of equivalent minutes of the upward secondary reserve of a hydro

(Alqueva) and thermal (Lares) power plantsin Portugal for the year 2011.

The two histograms show a wide variation of the henof equivalent minutes. This means that, when
making a reserve bid, the aggregator does not kmath, certainty, the reserve dispatch duration. For
example, for a downward reserve bid of 1 MW, a gabfi 20 minutes in the histogram corresponds to
dispatching this reserve power only during 20 nesutnd no dispatch in the remaining 40 minutes and,
in this case, the EV fleet only charges 0.33 MWhklettrical energy (instead of the expected 1 MVih).
contrast to generation units, this creates a prolflar EV since their charging requirements must be
satisfied and the aggregator does not know befashaith certainty, the quantity of electrical eger
charged as downward reserve. The same is valigpieard reserve.

The number of equivalent minutes of dispatched rs@@xy reserve is generally low. For instance, the
annual average value of the hydropower plant isn2futes for upward and 24 minutes for downward
secondary reserve.

A second characteristic, and in contrast to thermpsion made in literature about the EV aggregator
participation in the secondary reserve market (seénstance reference [9]), is that the net elealr
energy from reserve provision in each hour is d#fft from zeroFigure 2a depicts the histogram of the
total net energy of secondary reserve in Portujaing the year 2011. As shown in the histograra, th
net energy is frequently different from zero. Arymsnetrical regulation signal adds uncertainty te th
battery state of charge after each hour.

Figure 2: (a) Histogram of the net electrical energy of secondary reservein Portugal for theyear 2011
(negative value is upward reserve, positive isdownward reserve); (b) Autocorrelation function (ACF) of the

net electrical energy of secondary reservein Portugal for theyear 2011.
A third characteristic, and linked to the seconeé,dn that it is challenging to produce forecasith w

acceptable accuracy for this net enefgigure 2b depicts the autocorrelation plot of the total eeergy

of secondary reserve in Portugal, during the y@4rn2This plot shows an autocorrelation below &5
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all time lags, and the value féil is only around 0.25. This low value of serial degency suggests that
there is a low amount of information in the padtiea of the time series, which makes it challendng
produce forecasts with acceptable accuracy. Theoisistent with the expected random nature of the
secondary reserve dispatch.
To conclude, the analyses conducted in this sestiomved the following:
» the duration period of the dispatched reserveiimbke, and in general, lower than one hour;
< the net energy from the reserve dispatch is fretyelifferent from zero, and it is difficult to
forecast its value with acceptable accuracy.
Therefore, the formulation of the day-ahead optatiim problem, which will be presented in section
3, should include constraints that allow a degrefleaibility in handling situations where the alable
reserve in the previous intervals was not dispat¢hene direction (on the contrary to what was\pkd

by the aggregator) or was dispatched only for @&didhperiod of time in one direction.

2.3 Participation in the Electricity Market
Figure 3 depicts the sequence of tasks for the participatiothe day-ahead energy and secondary
reserve markets. The gate closure and period famiting bids are the ones from the Iberian elettri
market.

Figure 3: Sequence of tasksfor the participation in the day-ahead energy and secondary reserve markets.

In the first phase, the aggregator, at day D, fasecthe EV charging requirement and availabittig,
energy, and reserve prices (described in sectibn Bhis forecasted information is the input, iseecond
phase, of a day-ahead optimization model (for mext D+1) that computes the bids for the energy and
secondary reserve markets (described in sectign 3.2

During the operating day (day D+1), before the beigig of each time interva} (with length4t), the
aggregator redefines the EV fleet operating paiomputes the available upward and downward reserve
power, and communicates this information to the(8&&3cribed in section 4.1). The aggregator disgstch
the EV for meeting the fleet’s operating point &ach time intervalt, to.1,...) and places the plugged-in
EV on standby to supply upward and downward resgrvesponse to an AGC request. An operational
management algorithm is used to coordinate the lErging (described in section 4.2). A penalty té&sm

applied for cases with reserve power shortage.

3. Day-ahead Energy and Reserve Optimization

Section 2.2 discussed the characteristics of seagméserve and concluded that it is not possible t
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produce forecasts with acceptable quality for therly AGC regulation signal. Thus, the formulatioh
the day-ahead optimization problem described is $eiction disregards this information, and the goal
to obtain robust solutions that assure an acceptatibbility of the secondary reserve provisionaas
as an attractive income to the aggregator and ‘thim s portfolio.

The algorithm uses, as input, forecasts for sewendhbles that are briefly described in sectidh 3.

3.1 Input Variables and Forecasts

The EV load is modeled with two variables: avallifpiperiod and charging requirement. The EV
availability is the time-period when the EV is phggl-in for charging. It is a binary variable indiog
whether or not the EV is plugged-in for chargingach time interval with lengtit.

The charging requirement of the EV is the totalrgneneeded to get from the initial state-of-charge
(SOC) (i.e., when the EV arrives for charging) he target SOC defined by the EV driver for the next
trip, including the losses from the charger. A diag requirement value is always associated to an
availability period. For example, an EV with bajtesize of 24 kWh parking with a 50% SOC (12 kWh)
and with target SOC of 100%, needs 12 kWh to rdalthvattery plus 1.33 kWh of charger losses. Thus,
the charging requirement is 13.33 kWh.

These variables are obtained from the advancedrimgt@frastructure installed in households. Irsthi
framework, it is assumed that the EV driver, whamgged-in for charging, communicates the target SOC
and expected departure hour to the aggregatohidfinformation is not communicated, the aggregator
will assume a target SOC of 100% by default.

The availability period is a binary time seriesefoaisted with a generalized linear model (GLM) [21]
with the response variable following a binomialtdimition. After forecasting the availability pedpthe
corresponding charging requirement is forecasteth wion-parametric bootstrapping. A complete
description of the forecasting algorithm can benfbin [15].

The day-ahead energy price is forecasted with aitiael model (using cubic splines) and using the
following variables as explanatory variables: lafygariables of the price (i.e-1, t-2, t-3), forecasted
wind power penetration, periodic function for theuhof the day and day of the week.

The secondary reserve has two prices: price folladla reserve capacity and price for dispatched
reserve. The price for available reserve capasitipiecasted with an ARIMA model selected using the
functionauto.arimaR packagdorecast[22]. The price for dispatched reserve is an utagtime series

forecasted with the Holt-Winters model with trigonetric functions [23].

10
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3.2 Formulation of the Optimization Model

The decision variables of the optimization probl@ra: optimized energye(;) for charging the'] EV
in time intervalt (i.e., the preferred operation point — POP), theard and downward secondary reserve
power P,;*""andP,;"") of the [" EV for time intervalt. The energy and reserve bids are the sum of the
individual values of each EV (i.e., the decisioniatles associated to each E®;, P,;""andP,;").

The optimization problem is formulated assumingt tteere is a single reserve capacity price. In
markets with separated sessions for upward and @wawdsecondary reserve, the modification would be
a different capacity price for each direction.

The objective function is the minimization of thad cost, and it has the following components: (a)
cost of purchasing energy; (b) income from redudhmg consumption (dispatched upward reserve); (c)
cost from charging EV as downward reserve; (d) mmedrom having available secondary reserve power.

It can be written as:
ﬁt @']v:l(Etl )_ IStup @?ﬂztl(a?jp uY[)-'-
> (R )~ ey (R + R™)

where p, is the forecasted energy priceh is the forecasted price for dispatched upwardrvese

minz‘DH o (1)
P

plon is the forecasted price for dispatched downwasgmee, pé* is the forecasted price for available

reserve capacityyl, is the number of EV plugged-in at time interyalt is the length of time intervalH
is the set of time intervals of the optimizationipd (e.g., for one day witht=0.5 hr,H ranges between 1
and 48).

The constraints of the optimization problem arecdbed in the following paragraphs.

The method for computing the reserve band is dsvst first, the charging requirements are satisfie
considering the purchased energy and the upwastvwedand, and then, the downward capacity is the
remaining capacity (below the maximum charging po®g®) in each time interval

The first point leads to the following constraint:
Y (B R =R, 0 Of1, M) @
where FAQJ. ; is the forecasted charging requirement of theY, and i JP'ug is the forecasted availability

period of the ] EV.

The second point leads to the following constriandownward reserve:

11
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E.;/Ot+RY™ < P™, 0jO{L--, M}, OtOH 3)
The upward reserve band is limited by the energdyirbeach time interval:
R < (g, /at) 0iO{L-,M ), Ot OH @)
and its total is limited by the charging requiremi@neach availability period:
Zuﬁfw(ﬁ”}’ )< R, 0 0L+ M) (5)

Constraint (5) is included to avoid the aggregétom offering a total upward reserve greater than t
total energy that the EV fleet can consume (ilge, ¢harging requirement). For example, without this
constraint, an EV parked for 10 hourly intervalshna forecasted charging requirement of 1.5 kWHcou

offer upward reserve in 9 intervals. This would e;'g]ivzmmmg (E(,j):loﬂ.5:15kWh and
ZDM (R“,-p mt):gﬂ_5:135k\/\/hfor meeting the charging requirement. If in onetbése intervals
tOHPY AL

upward reserve is not dispatched, this strategyldvbarm significantly the reliability of upward &ve

and increase the penalty costs for reserve shoftagie that will be discussed in section 5); thelusion

o (R D) < 15 kWh.

of constraint (5) Iimitsz
tOH

plug
]

The total downward reserve is also constrainechbycharging requirement:
d hy .
Zmﬁ,’"“g (R,jown uM)S R, 0 D{l""Mt} (6)

With the constraint (7), the aggregator can onfgrofipward reserve in a specific interval if the BV
able to offer an energy bidg(;) with the corresponding quantity both in the saanéd subsequent time
intervals. This increases the robustness of théitddoptimization since it forces the EV to be dapaof
consuming the quantity that is offered as upwakemee. Otherwise, considerable penalization (topic
discussed in section 5) could be incurred if upwasgrve cannot be supplied. This constraint ctmsis

postponing EV charging by offering upward reserve:

K=t final p K=t final :
S (e at)< Y (€, )2, DiOfL, M}, DtOH @
wheret;s,, is the last time interval of the forecasted avality period, i.e.tﬁnalmﬁjp'“g.

In (7), the total consumption reduction betwéamdts,, must be below or equal to half of the energy
bid in the same period. For example, if the aggega time intervalt=1 offers an energy and upward
reserve bid of 1.5 kW, it must present an addifiarergy bid of 1.5 kWh in any intervé&tl of the

availability period, otherwise the constraint islated.
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In order to illustrate this constraint,able 1 presents two candidate solutions for offering umva
reserve with an EV plugged-in during six hours, (=1 hour) and with a charging requirement of 9
kWh and maximum charging power of 3 kW.

Table1: Set of charging solutions of an EV offering upward reserve power in a six-hour availability period with a charging

requirement of 9 kWh.

Solution (a), with constraint (7), is unfeasiblechese the charging requirement is already satisfied
after interval H3, and the aggregator makes an uvweserve offer in intervals H5 and H6 where g
able to supply if requested by the TSO.

Solution (b) is feasible. For instance, in intert#8 the EV offers 3 kW of upward reserve, and it
consumes additional 3 kW in the remaining timerivaés (H4 in this case).

It is important to stress that constraint (7) affeobust solutions since the available reserve pawe
the current interval is not affected even if thevapd reserve is dispatched in lower quantities rapri
previous intervals. For instance, if the reservantarval H1 of solution (b) is not fully dispatahethere
would be a surplus of consumed electrical energgpared to what was planned, but the aggregator can
consume less in interval H2 (if necessary) to campte this surplus at a cost of an energy imbalance
penalty.

The reserve band is divided into upward and dowdwiénections with the following equality:
— d .
Rfl]_p - :UDR,,'OW”’ Oj D{l...,Mt}, OtOH, (8)

In the Iberian market, the reserve band is diviod 2/3 for upward and 1/3 for downward, so the
value ofp is 2. In markets without a rule for splitting theserve band, the value pfcan be defined by
considering the reserve prices, or the reservahidity (e.g., estimate p from historical data that leads
to the minimum reserve shortage), or a trade-dfivben both criteria.

The optimization problem of Equations (1)-(8) is BR problem that can be solved using any
commercial or non-commercial LP solvers.

After, solving the LP problem, a post-processinggghis applied to the downward reserve band. In
order to create sufficient flexibility for supphgrupward reserve, the purchased energy is higherttie
charging requirement [see equation (2)]. Thus, at-poocessing phase is necessary to eliminate
downward reserve bids from the time intervals whéee total purchased energy is above the charging
requirement. This is performed with the valuesgfcalculated by solving the LP problem and with the

following equation:
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minlf -5, (B )R RS (B )<R
t

0,if RF™IAL+Y, E,)>R

down _
Ry =

wheret;ia is the first time interval of the availability ped, i.e.t

- DI:I J_plug .

After adjusting the downward reserve band, the ugweserve band is also adjusted with equality (8).

Equation (9) increases the robustness of the dowhweserve bid since, even in cases where the
upward reserve from the previous intervals is nispatched, the aggregator is able to supply the
downward power in the subsequent intervals regasdié the dispatched upward reserve.

Table 2 presents a potential solution for energy and wesbids of one EV with charging requirement
of 9 kWh. In this example, the downward reserve @oWwid in interval H5 is removed in the post-
processing phase, since the sumkpfbetween intervals H1 and H4 is already equal ® dharging
requirement. Therefore, there is a risk that ther®¥ not be able to make available a downward veser
power of 1 kW in interval H5. For instance, if intérval H2 only 0.5 kWh is dispatched as upward
reserve and in interval H3 only 0.2 kWh, the tatkctrical energy after interval H4 would be 8.3 kW
and, since it can only charge additional 0.7 kWig EV is unable to guarantee a downward reserve
power of 1 kW in interval H5. In this case, the sgggator only offers downward reserve during thst fir
four intervals.

Table 2: Example of a charging solution of an EV offering upward and downward reserve power in a six-hour availability
period with a charging requirement of 9 kWh.
4. Operational Management Algorithm

The previous section described the day-ahead ation model for deriving the energy and
secondary reserve bids. During the operating deyatggregator coordinates the EV charging to comply
with the AGC signal and deliver secondary reseritd wcceptable reliability. This section descrilaes
operational management algorithm to meet this gilaik algorithm is divided into two phases: firte
redefinition of the EV fleet operating point ancethalculation of the available reserve power (sacti

4.1), and then, the coordination of the EV chargmgomply with the AGC requests (section 4.2).

4.1 Redefinition of the Operating Point and Calculatidrthe Available Reserve Power
The aggregator, 15 minutes before the beginninginod intervalt, (e.g., necessary time to activate
tertiary or balancing reserve if necessary), usthg information from the plugged-in EV (i.e.,

communicated target SOC and expected departurg,hzalculates the available reserve power in both
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directions for that interval and communicates thfermation to the SO. These values are updateihglur
the operation hour since the available reserve po@ae be reduced if the reserve is dispatched @ on
direction during a long period.

The first step for computing the available reserossists in determining the operating pd#y of the
EV fleet. The operating point is a constant chaydievel that the aggregator can sustain during the
complete intervat, by coordinating the EV fleet charging and from ethithe upward and downward
reserves are supplied.

Without the presence of uncertainty, the operagiagnt would be equal to the accepted energy bid.
However, because of forecast errors, the opergiiigt will deviate from the energy bid, which cresat
energy imbalances and decreases the availabiliseodndary reserve. Therefore, the aggregator ghoul
define an operating point during the operationagghthat guarantees the contracted reserve at afcos
increasing the energy imbalances. The followingageaphs describe a procedure that re-calculates the
operating point (using the energy bid as refergniceprder to maximize the availability of secongar
reserve.

First, the aggregator, before the beginning oétintervalty, and using the information of all plugged-

in EV, computes two variableR™

0

, minimum, constant and feasible charging poweahefEV fleet in

time intervalty; Eoma", maximum, constant and feasible charging pow¢h®EV fleet in time interva,.

The value ofﬁtomin is computed by solving an LP optimization problerthwhe following objective

function:

min(>"(E. )0} Xl -2 (e ) (0

WhereEk,j* is the decision variable and corresponds to theahenergy consumed by tHREV, t, is
the first time interval of the optimization perioB, is the result (or accepted bid) from the day-ahead
optimization modely is a piecewise loss function aids the time interval of the last plugged-in EV to
depart. The loss functignis a convex function with the following form:

uldy ,u=0
= 13
#u) {—uD?k',u<0 )

where " and m, are the forecasted penalization prices for pasitand negative deviations
respectively. These two prices are forecasted thighHolt-Winters model for irregular time serieS]2

This convex function can be converted into a lirfeaction by using its epigraph form [24].
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The constraints of the optimization problem are:

e the total energy consumed during the availabiligrigd must be equal to the charging

requirement;
ZkDijlug (Ek'): Rmi’ 0 D{l“"Mt}’ Ok O Hiplug (11)

whereRy; is the residual charging requirement (calculatednfthe communicated target SOC) at the
beginning of time interval,, H,—plug is the availability period of th¢"™ EV (calculated from the

communicated expected departure hour).

e the consumed energy in each time interval mustddewbor equal to the maximum available

power for charging:
E,,/At<P™, 0j0{1- M}, OkOH ™ (12)

This optimization problem consists in charging E\éfleet as close as possible to zero in time water

to, and the value ofstomin is given byz“"l:[E‘oJJ
=At

The value ofR ™ is calculated with:

R =Z?”:i(min( Fi;‘ PB (14

which means that it is equal to the maximum chagiower constrained by the residual charging

requirement. For instance, an EV with charging negment equal to 1 kWh in a half-hour period and

with a maximum charging power of 3 kW can only deaat constant 2 kW (Tatmax) during that interval.

0
These two variables, together with the acceptastggnbid €y), are used to define the operating
point. Figure 4 depicts three situations that may occur in terinere@rgy bid value and the variables
required to calculate the EV fleet operating point.

Figure 4: Variablesrequired to redefine the operating point of the EV fleet.

In situation (a), the accepted energy bid is wittiie minimum and maximum consumption power
limits. In order to guarantee full availability tfie reserve power, the operating point should Hhimvi

two limits: upper power limit that guarantees faMailability of downward reserve power in time nva

to (RUPP =Pm™ - RdOW”), and lower power limit that guarantees full azhility of upward reserve
0 0 0
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power (ﬁ:wer = ED”"" + Pt;”’). Depending on the accepted energy bid valuefalfemwving can occur:
o if ﬁto””perz ﬁto"’we“ (any operating point betweelﬁo'ovver and ﬁt:ppe‘ allows full availability of the
reserve, thus it is selected the closest poirtteéaehergy bid)
+ i B aO[pr R P =E,
= f ﬁt(:ower >E, /At =P\, = ﬁt(:ower (the operating point is made equalﬁéower since
it is the closest point to the energy bid)
= f ﬁou”per <E, /At =P\ = ﬁou"per(the operating point is made equal@”ppersince
it is the closest point to the energy bid)
o if ﬁtou”pe‘< ﬁo'°wer, P = EO/At (any change in the operating point value woulddase the

reserve availability in one direction, at the cokthe other direction; the choice is to maintain
the operating point equal to the energy bid value)
In situation (b), the accepted energy bid is beltw minimum consumption power level. The

operating point is defined as follows:
« if BYP> ﬁto"’wer =P\ = ﬁo"’wer (the operating point is made equal f{ioc’wer since it is the
closest point to the energy bid);
.« if B™'< §;°W"’r, P\, = min(ﬁto‘lpper, ﬁto’"‘”) (it is not possible to offer the full contractesserve

in both directions; ifﬁo”"p”is greater tharﬁom‘” , it is not possible to offer upward reserve power

and the operating point is made equaﬁoﬂi‘”; if it is lower, the operating point is made eqtal

ﬁ:pper and it is possible to offer upward reserve betvibenpoint andP™" ).

In situation (c), the accepted energy bid is gretitan the maximum consumption power level. The

operating point is defined as follows:
o if ﬁtou”perz ﬁto"’wer =P, = ﬁto“"per (the operating point is made equal f{?j”pe‘since it is the
closest point to the energy bid);

o if E:‘pper < ﬁto"’wer, P\ = min(ﬁto'ower, ﬁomax) (it is not possible to offer the full contractesserve
in both directions; ifﬁto'weris greater tharistomax, it is not possible to offer downward reserve

power and the operating point is made equaftﬁ?x; if it is lower, the operating point is made
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equal to ﬁtlower and it is possible to offer downward reserve betwthis point and? ™).

The goal of this approach was to change the opergitdint in order to comply with the contracted
reserve power, while at the same time, it trieavoid a significant increase of energy imbalandéss
change in the operating point creates an energglanbe which the TSO solves by calling balancing or
tertiary reserve, and the aggregator pays a fiahpenalty for this energy imbalance.

The operating point is used to calculate the abkdlaipward and downward reserve power. The

available upward reserve poweﬁ"&") is given by:
PP= min(P'tO , Pt;‘p) (15)
This equation means that the aggregator can omiyedse a charging rate that is attainable. Foaricst,

if the upward reserve bid is 5 MW and the operapaint is only 3 MW, then the available reserve

capacity should be 3 MW.

The available downward reserve pow&'&own) is given by:

wdown H down max '

P —mm(F{o S )—P%J (16)
jOK

whereK is the set of plugged-in EV ity with Ry > 0 (i.e., the charging requirement is not fully

satisfied), andz (|:>Jmax) the maximum instantaneous charging power of theflédt in time interval,.
jOK

The available reserve power is the minimum betwaecepted bid and the difference between the

maximum instantaneous charging power of the EM fieel the operating point.
It may happen that bot'” and P'i*"become depleted after some tive(), and in this case, the

secondary reserve is replaced by the tertiary veséiote that this does not jeopardize the powstesy
security since the SO, in order to replace thideted reserve (i.e., free up additional secondesgnve),
calls tertiary reserve, which is translated intdrammeasing use of tertiary reserve.

The stochastic nature of the EV behavior contribuie this reserve depletion, but it should be
underlined that EV supply reserve within the bagtenergy constraints and the driver’s preferenEes.
instance, in upward reserve provision, since thanmaority is to satisfy the charging requiremerfithe
EV drivers, it may not be possible to reduce thargimg rate for a long period of time. For the dewand
reserve, reserve depletion happens when the lesttefi some EV become full duringf. The same

problem is valid for storage devices and other radlable loads.
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4.2  Operational Management
The aggregator, in the beginning of time interigaldispatches the EV for consuming the operating
point (P'y) in to and minimizing the deviations to the accepted g@nbéids (ink>tg). This is accomplished

with the following objective function as follows:

min ¢ P'to-Z?i‘i’[%J +ZLO+1(¢(EK-Z?12(EE,1))) (17)

The two constraints (11) and (12) are also coneitler
When upward reserve is needed, the AGC sends alsignthe aggregator, and the aggregator

dispatches the EV to supply the requested reseing the following objective function:

minlg (e -e)- 2 S S Me e )] o

wheredt’ (< 4t) is the length of the period where the secondesgnve was activated (i.e., equivalent
number of minutes).

When the AGC sends a signal requesting downwagtvesthe following objective function is used:

minlg (mee)- S S o bR

The constraints (11) and (12) are also considerethése two objective functions.

This optimization problem can be solved in realgjmsing any commercial or non-commercial LP
solver, with an average execution time below oneoseé (Intel Core i5 CPU M450 @ 2.40 GHz
processor and 4 GB of RAM and for 1500 EV).

As mentioned before, in some cases after supply@sgrve during some time, the optimization
problem may become unfeasible because of consttHint and the reserve is considered to be depleted
In this case, the aggregator communicates the meailahle reserve power to the SO, which can mabiliz
tertiary reserve to free up additional secondasgmee or dispatch additional reserve power fronemoth
resources. The aggregator incurs in a financiablmation for not being able to supply the required
reserve (topic discussed in section 5).

The operational management algorithm is sequeaniélcan be summarized as follows:

1. new information is available from the recently med-in EV (i.e., that connected for

charging betweety-1 andty) and is included in equation (11) of the optimiaatmodel;
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2. using this information, the aggregator computesdperating point, available upward and

downward reserve power: td?F;;“p and F;;d"W” [equation (11)]. This information is

communicated to the SO;
3. during time intervaty:

o the AGC sends signals requesting upward or downwesdrve. The aggregator
solves the optimization problem from (18)-(19) amehds set points to the EV fleet.
The pricest," andn, are made equal to a large number (e.g); 10

o0 the aggregator updates the residual charging remeint of each EV based on the
operating point plus dispatched reseng+ﬁ,j=Rto,j—EtO,j*). Moreover, it updates and
communicates the new values of available reserilest&O;

4. this process is repeated for the next time intewdl with the recently arrived EV.

5. Market Settlement

After the operating day, there is a settlement ghalsere the penalty costs related to deviation from
the purchased energy and reserve shortage are addéd cost from purchasing energy and to the
income from having available reserve capacity. Saeetricity markets already have penalties for
reserve shortage [25][26], and four different peragion schemes are discussed in [13].

In this paper, two alternative penalization scherf@sreserve shortage are considered: (1) the
aggregator is penalized when it is unable to supgmyfull reserve capacity during the completerivae
At (based on the scheme adopted in Portugal [25)])th@ aggregator is only penalized when it fails to
respond with sufficient reserve capacity to a difnmem the AGC (based on a scheme proposed in [13])

For settlement scheme (1), in each direction ofmes the aggregator is penalized by the difference

between the accepted reserve bid and the resewer ploat can be sustained during the completeviater

t. The downward reserve power that can be sustaingdg intervalt, (ﬁtodow") is given by:
ﬁtdown — min(edown’ ﬁtmax _ Plt) (20)
For the upward reserve, t%”pis given by:
R = min(R", P\, -R"") (21)

The system operator and regulator may audit thakees to avoid fraud.

The total cost has the following terms:
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' d d d
Ptmt Ept + Ptownlztown town_
TotalCost=3"|  PW@P i - p R+ B*) (22)
LIJ(PII At E[)'*' (D(Ptdown, Ptup’ ﬁtdown, ﬁtup)
where 2% and 4 are the number of equivalent minutes of dispatciednward and upward
secondary reserv®'.4t.p, is the cost of energy consumed by the EV (i.eerafing point paid at the

down )Ldown down

energy price),P' P is the consumption corresponding to the dispatcbednward

secondary reserv®; . A;"*.p"" is the income from dispatched upward reser E’[ﬁﬁtd"wn + 5[“") is the

income from having available reserve capacify,are the costs associated to deviations from the

purchased energy (i.e. deviation betw&ef'®andE,), @ are the costs associated to reserve shortage.
The cost tern¥ works as follows: when the aggregator has surplenergy it has to sell this extra at

a regulation pricep™™"9, in general below the energy price; if the situais shortage of energy, it has

to pay a regulation pricg{"°"™99, in general above the energy price. This is teded into the following:

LIJ _ (E[ _ Plt mt) [ﬁpt _ tSUrp|US), E( S Plt mt (23)
(P'tmt - Et)Eﬁ tShortage_ pt)’ E < P[At
where the price differenga-pS"™"is the positive deviations price;{), and the differencp"°"*%p,

is the negative deviations pricg’.

In terms of reserve income, the aggregator is fraithe available reserve capacity and a penatiy te

down

proportional to the deviation betwedh"® and P (and betweerP and p®"") is imposed. The

penalty termD is as follows:

©= a I:ptcap Eﬁp{down _ ﬁti)wn
a, Eptcap [ﬁaup - Rup

) P[down > Ptdown

— 24
s B (24)

wherea is a penalization coefficient that takes valueif.this paper (i.e., value used in Portugal and
Spain).
In settlement scheme (2), the total cost is given b
' rdown —down down
P.AtLp, + R D1t o™ —

Total Cost=Y PP O Cp® — pe LR % + PP (25)
qJ(PIt mt E[) + (-D(Rdown, Rup' erown' Rrup' RN$Ip, Rstown)

down

Note that in this case the reserve capacity payiseatfunction ofP' """ andP'*. Furthermore, the

reserve shortage penatbyhas two components: one that penalizes the urdniaiteserve capacity using
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equation (24), but for the deviation betweR!f and P (and betweeP " and P'%°""; and another
that penalizes the reserve not supplied (i.e., edegl reserve) -RNS™® and RN This gives the
following:
cap fpdown _ prdown) pdown r down
q,:{am e Reo) R > R
a D LR - R7) R > RO 29)
+y 0 (fRNS”)+ (p, - p)cRNS ™)
wherey is a penalization coefficient similar to Inspired by the Demand Response Reserves Pilot
Program at ISO New England [26], in this papervhkie ofy is made equal to one. For upward reserve,
this means that the aggregator must supply mone H@#6 of the contracted reserve. Otherwise, the
penalty term is greater than the payment for pirtsupplying the reserve. For the downward reserve

down

the penalization term is different. It is equathe difference betweegn™"" andp;, otherwise hours with

po"equal to zero (i.e., expensive reserve hours) dvoat be penalized.

down

Finally, note that the pricgs™” andp """ are the prices of tertiary reserve in Portugat thaised to

replace the depleted secondary reserve.

6. Test Case Results
6.1 Description

The test case uses electricity market data fromyears (2010 and 2011) of the Iberian electricity
market [27]. This market data consists of the felfgy variables: market prices for energy; prices fo
available and dispatched secondary reserve; twanpivariables indicating the direction of the
dispatched secondary reserve; number of equivakmites of dispatched reserve of the thermal power
plant of Lares (seEigure 1). The time interval length is half-houttE30 min).

Synthetic time series for the availability and aemgtion of 3000 battery EV along one year was
simulated using a discrete-time-space Markov chaimccordance with the traffic patterns in Portuga

The simulation time step is half-hour. Details atitve simulation method can be found in [28].

6.2 Sampling Process for Evaluation
A sampling process based on [29] is used to gemeB@t random repetitions of an evaluation
experiment. The objective is to test the optimmatinodels for different market data randomly sawhple
(but maintaining the temporal sequence) from the-year period.
Since the forecasting algorithms require training gesting datasets, a fixed length for these s s

was defined: 9 months for training and 3 months dwaluation. Then, a sampling process without
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replacement is used to draw the first hour of th, & from the candidate set. This sample is usedlib sp
the three years of data in training (betwaemdx-9 months) and evaluation (betweeandx+3 months)
datasets. The process is repeated 30 times, amdébrsample, the optimization models are testdiein
evaluation dataset.

In order to test the optimization methodologiesliifierent EV data, the synthetic time series fo®@0
EV are divided into two groups with 1500 EV: fleétsand B. The main difference between both flegts i
that the drivers of fleet B drive more km on averaghe battery size and consumption per km of both
fleets are from the same database (i.e., haveathe snagnitude).

The following sampling process, based on the bintame series of the direction of dispatched
secondary reserve in Portugal, is used to creffrelit realizations of the number of equivalenhutés
of dispatched secondary reserve:

» if upward secondary reserve is activated (i.e.binary time series for upward reserve has value
1), a sample is taken from the distribution of tmember of equivalent minutes from the
histogram ofFigure 1 (thermal power plant). This gives the valueftfin equation (19) an#"?
in (22);

« if downward secondary is activated, a sample iernakom the histogram for downward
secondary reserve, and it gives the valugtoi equation (18) ang™""in (22);

« when the reserve is not dispatched in one directiom values oit' and A are zero in that

direction.

6.3 lllustrative Example
Figure 5 depicts the output of the day-ahead optimizatgatijon 3), the redefinition of the EV fleet
operating point (section 4.1) and the output ofdperational management algorithm (section 4.2pfer
day (with hourly intervals) from the test case.

Figure5: (a) Output of the day-ahead optimization (energy and secondary reserve power bids); (b)
calculation of theredefined EV fleet operating point; (c) operating point, available upward and downward

reserve power, and electrical energy consumed by the EV fleet during the operating interval.
In Figure 5a, the aggregator mostly presents reserve poweribite period between hourly intervals
1 and 4 and intervals 20 and 24, while during #maining intervals the offered reserve is rather. lo
Note that, in order to offer secondary reserve powte aggregator must offer an energy bid thalhes

reference operating point from which supplies ugland downward reserve. For instance, in houre, th
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energy bid is 1.01 MW, from which a regulation pow€&0.9 MW is offered in upward direction (upward
band is between 1.01 MW and 0.11 MW) and half o tfalue is offered in the downward direction
(reserve band is between 1.01 MW and 1.46 MW).

This bids pattern is consistent with the drivershavior. The available power for secondary reserve
higher when the number of plugged-in EV is high aigb when the charging requirements are not yet
fully satisfied. For instance, in intervals 5 andtBe secondary reserve bid is zero, since either t
charging requirement of the EV is almost satisfiedhere is no flexibility to postpone charging,the
EV will depart in the next intervals. The aggregadffers upward power earlier (between intervals 19
and 24 and between 1 and 4) to consume after thtewals the necessary energy to meet the charging
requirement.

The estimated total cost, calculated from the dbjedunction (1), and assuming that the upward and
downward reserve are 100% dispatched, is 182.7h& dost is just an estimate and only after the
operational phase is it possible to calculate ¢ta wholesale total cost.

Figure 5b depicts the redefinition of the operating point, which the accepted energy bid, the

consumption limits, and the redefined operatingipare depicted for each hour. The first grey &sdhe

interval betweenﬁomin and Eomax, which defines the range of feasible values far BV fleet charging

power taking into account its constraints. The dgmy area is the interval betwe@{fwgr and ﬁt:ppe‘

which defines the range of charging power valuas éissure a compliance with the contracted secgndar
reserve levels.

All the operating points are within these two bafabkich means no reserve power shortage), while

the accepted bids in intervals 6, 7 and 12 are albg limit ﬁtomax. Thus, in these three intervals the

operating point cannot be equal to the acceptedygr®d (i.e., it is lower). In interval 1, the ated

energy bid (that corresponds to 0.6 MW) is belogvltnit ﬁtl"we“ (0.655 MW), thus the operating point is

made equal to the lower limit.

The operational algorithm concludes the managemedess of the EV fleet charging. The output (or
result) of this last phase is the electrical enexggysumed by the EV fleet in each hour, which gicted
in Figure 5c. The operating point and the available upward dodnward reserve power are also
depicted. For instance, in hour 1, the number afivadent minutes of dispatched reserve was 42.24

minutes for downward and 17.76 minutes for upward the electrical energy consumed by the EV fleet
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by the end of that interval was 0.68 MWh, whichresponded to increasing the charging level frons 0.6
MW (P'g) to 0.68 MW by supplying more downward than upwaederve power. In hour 24, the
secondary reserve was also activated in both @rect(46 minutes for upward and 8.5 minutes for
downward reserve), and the consumed electricaggneas below the operating point.

The market settlement described in section 5 isliegp@ posteriori (i.e., after the operational
management phase) and it gives the “true” coshefaggregator. In this illustrative example, thilto
cost, after the operational management phase, @49 £ (in contrast to 182.7 € estimated the day
before). This cost difference is explained by godished reserve power below 100%, price forecast

errors, and imbalance costs.

6.4 Results
The participation of the two EV fleets in the eneend secondary reserve market was simulated for
the test periods resulting from the sampling precés evaluation of the forecast quality is presdrin
the appendix.
Figure 6a depicts the total cost reduction in fleets A andwith settlement scheme (1)], using as
reference the total cost from optimizing only theeryy bid (i.e., no secondary reserve bids) with th

divided approach described in [15]. The resultdfier30 samples are presented with a boxplot.

Figure6: (a) Total cost reduction in fleets A and B for settlement scheme (1), using the participation in the

energy market asreference; (b) total cost reduction of scheme (2) compared to scheme (1).

The results for scheme (1) show that the partimpain the secondary reserve market decreases the
total cost in 31% for fleet A and 37.1% for fleet Bhese results show that the proposed optimization
framework is able to provide a considerable cadticdon to the aggregator.

Figure 6b compares the total cost reduction of settlemeheme (2) compared to the total cost
calculated with scheme (1). Scheme (2) penalizses ike situations with reserve shortage, since the
aggregator only loses part of the income whenribisable to follow the AGC regulation signal. Tdwst
reduction is higher in fleet B, which, as it wikk lshow in this section, is the case with the higreserve
shortage magnitude. Therefore, settlement schejrie {@ancially more attractive to the EV aggremat
and creates more incentives for the EV participasimce it takes into account the stochastic naifitke
EV supplying secondary reserve. Scheme (1), froem T8O’s viewpoint, is more attractive since it
demands a higher compliance is terms of reserveigion (or penalizes more reserve shortage events).

Nevertheless, since EV is a cheap and fast respgmréiserve resource, compared to the conventional
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ones, the TSO can adopt scheme (2) to better acfmits specific characteristics.

In addition to evaluating the cost reduction, itniscessary to evaluate the magnitude of reserve
shortage events that result from using the propagimnization framework. This indicates, from the
TSO'’s viewpoint, the degree of reliance on thigres resource.

The percentage of reserve capacity shortage (pRB@8mputed as follows:

s SR

For the upward reserve, the pRCS on average id &m02005% for fleet A and 0.0% for fleet B. For

100% (27)

the downward reserve, the pRCS on average is ¢q0al 7% for fleet A and 2.42% for fleet B.
For scheme (1), equation (27) can be used to camphe pRCS of the difference between

Rdown _ ﬁtdown .

Figure 7 depicts the pRCS of upward reserve in fleets A Bniir scheme (1) and for each SOC
tolerance level. An additional option is tested wisepplying upward reserve. In the contract betvthen
driver and the aggregator, a degree of flexibifity the SOC is established. The aggregator only
guarantees 95% or 90% of SOC (instead of 100%) wlinene is a risk of upward reserve shortage. Thus,
the pRCS results are presented for three poss tSlerance levels: 100%, 95% and 90%.

With a 100% SOC, the average pRCS is 0.05% in flieahd 1.19% in fleet B. In fleet B, when the
SOC tolerance is 90%, the pRCS presents a signifaecrease, showing an average value of 0.01%.

Figure 7: Percentage of reserve capacity shortage (pRCS) in fleets A and B.

To evaluate the upward reserve reliability unddresee (2), the percentage of upward reserve not
supplied (pRNS) is depicted Figure 8. In this case, and in contrast to scheme (1)reberve shortage
from not following an AGC signal is lower compared-igure 7.

Figure 8: Percentage of upward reserve not supplied (pRNS) in fleets A and B.

It is important to underline that the different ults obtained for each test sample are exclusively
because of different realizations (or test samptéshhe number of equivalent minutes of dispatched
reserve, and because of the forecasted and reatiagkiet prices. These different realizations lead t
distinct energy and secondary reserve bids, whitimately lead to distinct results in terms of nese
shortage.

Figure 9 presents the pRCS and pRNS for the downward res@Vith exception of pRCS in fleet B,

all cases show a low pRCS and pRNS meaning thatévétion between available and contracted
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reserve power is low. The higher values of pRCSléet B can be explained by the negative bias
(overestimation) of the charging requirement fost¢aeeTable 3 in the appendix), which is translated
into an overestimation of the actual charging valas shown in [31]. An overestimation of the chaggi
requirement contributes to an overestimation of doginward reserve power and consequently to an

increase of the reserve shortage due to forecasser

Figure 9: pRCSand pRNS of downward reservein fleets A and B.

Finally, Figure 10 depicts the cost reduction for two cases: peftaeicast for the EV variables used
in the day-ahead optimization; perfect forecastdtrvariables. The reference for computing thet cos
reduction is the energy and secondary reservevittisforecasts for all the variables [i.e., theulesrom
Figure 6b using scheme (2)].

The use of perfect forecasts for the EV variabl@dg accomplishes a cost reduction of 4.1% in fleet
and 6.7% in fleet B on average. This suggeststtigatincertainty of the EV variables has a smallaotp
in the total cost. The impact on cost reductiosubstantial when perfect forecasts are used fahall
variables (e.g., market prices, dispatched rese&eb% in fleet A and 67.1% in fleet B. Neverttssle
this “perfect forecast” assumption is only thearatisince variables, such as the reserve direatemot
be forecasted with acceptable accuracy (as disgugssection 2.2), which shows that neglecting this

uncertainty may lead to very optimistic results.

Figure 10: Reduction in thetotal cost for both fleetswith two different sets of availableinformation: perfect
forecast for the EV variables; perfect forecast for all the variables. Thereferenceistheresult obtained with
forecastsfor all the variables.
7. Conclusions
This paper presents a new optimization model fergynand secondary reserve bids in the day-ahead
market. Moreover, following the day-ahead biddimghew operational management algorithm that
coordinates the EV charging for minimizing the eiffnce between contracted and realized valuesas al
described. Using the day-ahead and operationatitdgyg the total wholesale cost of the EV aggregato
decreased on average between 30% and 35%, contpaaestrategy that only optimizes the energy bids.
The algorithms are also capable of assuring théracted reserve with acceptable reliability (etbe
percentage of reserve capacity shortage range®értdfo and 1.8% on average). This high reliahiity
important from the TSO's viewpoint.

The results show that the role of the forecastrsrin the market and EV variables cannot be
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neglected. These forecast errors create deviabetseen purchased and consumed energy and impact
the reliability of the reserve provision. The asgtion of perfect forecast, or the incorrect evahmabf

the algorithm performance (e.g., neglecting thedrteecalculate the true available reserve poweightn

lead to excessively optimistic results.

The presence of reserve shortage events emphase@sportance of defining suitable market rules
and protocols for creating financial incentivesatmid these situations. Nevertheless, at the same t
these rules should take into account the stochaatiere of the EV behavior. To overcome this proble
several SO in the USA are adopting two solutiortactvare briefly described here.

The first solution consists in designing a new AGDtrol signal (in addition to the traditional sain
to improve the participation of fast respondingorgses (e.g., flywheels, batteries) [31]. The dimetof
this new signal changes rapidly in order to ensusbort-term net energy around zero after a skeoibg
(e.g., 5 minutes). This means that EV can supplyang and downward reserve power during each
operating period without any energy constraintatesl to the depth of discharge or maximum storage
capacity.

The second solution follows FERC (Federal EnergguRgory Commission) Order 755 and consists
in creating a performance score that rewards ressuhat provide reserve more quickly. For instance
the score created by PJM includes a componeninikasures the difference between the energy the SO
requests and how much the resource provides fiemalizes reserve shortage), but also a component
measuring the delay (i.e., ramp capability) in teserve response [31]. In this case, the EV agtpega
can present a lower performance in the precisionpoment compared to conventional resources, but on
the other hand, presents a higher performancesidéfay component.

It is important to underline that even with thekrisf reserve shortage, the EV aggregator is an
important asset to the SO since it provides fagpaading reserve, it is a resource that alreadst®im
the system (i.e., it does not require incentivesifigestment), and it is greenhouse gas emissimes f
compared to conventional power plants.

Finally, the optimization framework proposed instliaper can be adapted to other type of flexible
loads (e.qg., electric boilers). Topics for futuesearch are the participation in intraday markats the

inclusion of probabilistic information of pricem@dEV variables in the day-ahead optimization model

Appendix — Forecast Quality

Table 3 presents the mean absolute percentage error (MAR&)percentage bias (PBIAS) of the
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778 availability and charging requirement forecasts floe whole EV fleet (i.e., sum of the individual
779 forecasts for each EV). A detailed evaluation o florecasts for the EV availability and charging
780  requirement can be found in [30] for these twotBee

Table3: MAPE and PBIAS of the aggr egated availability and charging requirement forecast of fleets A and B.

781 A detailed evaluation of the forecasts for the BMikbility and charging requirement can be foumd i
782  [30] for these two fleets.

783 Table 4 presents the mean absolute error (MAE) and roatnnsguare error (RMSE) of the forecasted
784  energy and reserve prices.

Table4: MAE and RM SE of theforecasted energy and reserve prices (average values of 30 samples).
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Table 1: Set of charging solutions of an EV offering upward reserve power in a six-hour availability
period with a charging requirement of 9 kWh.

(@)

H1 H2 H3 H4 H5 H6

Ex [KWh] 3 3 3 0 3 3

PP [KW] 0 0 0 0 3 3
(b)

H1 H2 H3 H4 H5 H6

Ex [KWH] 3 3 3 3 3 3

PP [KW] 3 0 3 0 3 0

Table 2: Example of a charging solution of an EV offering upward and downward reserve power in
a six-hour availability period with a charging requirement of 9 kWh.

H1 H2 H3 H4 H5 H6
E. [kWh] 2 2 2 3 2 2
PP [KW] 0 1 1 0 2 0

P2 [kW] 0 0.5 0.5 0 1 0

Table 3: MAPE and PBIAS of the aggregated availability and charging requirement forecast of
fleets A and B.

Availability Charging Requirement

MAPE PBIAS MAPE PBIAS

Fleet A 6.99% 4.45% 29.93% 5.75%

Fleet B 8.09% -4.60% 30.69% -5.86%




Table 4: MAE and RM SE of the forecasted energy and reserve prices (aver age values of 30
samples).

Day-ahead Hour-ahead

MAE RMSE MAE RMSE

Elect. Energy Price [€/MWHh]

5.3 7.2 - -
Up. Res. Price [€/MWHh] 119 17.2 9.2 14.4
Down. Res. Price [€/MWh] 135 16.9 10.2 13.2

Reserve Cap. Price [€/MW] 4.4 5.7
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Figure 1: Histogramsfor the number of equivalent minutes of the upward secondary reserve of a

hydro (Alqueva) and thermal (L ares) power plantsin Portugal for the year 2011.
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(ACF) of the net electrical energy of secondary reservein Portugal for the year 2011.
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Figure6: (a) Total cost reduction in fleets A and B for settlement scheme (1), using the

participation in the energy market asreference; (b) total cost reduction of scheme (2) compared to
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Figure 7: Percentage of reserve capacity shortage (pRCS) in fleets A and B.
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