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Abstract—This work proposes an innovative method based on 

autoencoders to perform state estimation in distribution grids, 

which has as main advantage the fact of being independent of the 

network parameters and topology. The method was tested in a 

real low voltage grid (incorporating smart grid features), under 

different scenarios of smart meter deployment. Simulations were 

performed in order to understand the necessary requirements for 

an accurate distribution grid state estimator and to evaluate the 

performance of a state estimator based on autoencoders. 

 

I.   INTRODUCTION  

 

   State estimation is powerful technique that has been used by 

Transmission Systems Operators (TSO) since 1960s. It gives 

them a comprehensive and reliable view of the state of their 

networks in quasi-real time, allowing them to take the best 

decisions for maintaining power system operating properly. 

The state estimator uses the available measurements (voltage 

magnitudes, power injections and active and reactive power 

flows), network parameters and system topology and provides 

the best possible approximation for the state of the system, 

which means the determination of the system state variables: 

voltage magnitudes and phase angles in all buses.  

   In the last years, the growing deployment of Phasor 

Measurements Units (PMU) in power systems has changed the 

traditional paradigm of state estimation, usually based on 

asynchronous SCADA measurements with relatively slow 

refresh rates. Due to their characteristics, PMU can contribute 

to enhance significantly the performance and accuracy of the 

state estimation algorithms. Integrating PMU in the classical 

state estimation is a complex problem that has already been 

addressed in several published studies [1]-[4]. The advantages 

of PMU is that they are based on the application of precise 

time data provided by Global Positioning System (GPS) 

satellites, meaning that they can measure directly voltage 

phase angles and magnitudes with a very high accuracy. Yet, 

as PMUs are still very expensive, a state estimator based only 

in PMUs is not expectable in the near future. 

   The most common technique for solving the state estimation 

problem is based on Weighted Least Squares (WLS) algorithm 

[5]. The WLS algorithm is a process that relies on the total 

knowledge of the grid (parameters and topology) and on the 

available measurements over a time-window and uses an 

iterative process to obtain the state estimation results. 

Therefore, the WLS algorithm usually consumes a significant 

amount of time (3-5 min), making it an impractical tool to be 

used for real-time visualization of the power system [6]. 

   Even though state estimation is widely used for transmission 

grids, the first steps for its application at the distribution level 

were given just a few years ago. The reason behind this fact is 

that a critical event at the transmission level affects thousands 

of consumers, while in the distribution the amount of affected 

clients is substantially lower. Moreover, distribution network 

is much more complex and extensive than the transmission 

network and it would require an enormous investment in 

measurement equipment in order to guarantee the necessary 

system observability for performing accurate state estimation. 

Additionally, the lack of information about distribution grids, 

especially at Low Voltage (LV) level, also contributed to 

delay the application of state estimation in these systems. 

   The recent advent of the smart grid was the turning point 

regarding the possibility of including a state estimator in the 

distribution system. The smart grid concept is leveraging the 

development of new functionalities and the integration of new 

technologies in the power system, which can be used to foster 

the application of state estimation techniques in distribution 

grids (e.g. smart metering and associated communication 

platforms). Until now, very few works have exploited this 

topic in a holistic perspective. As an example, in [7], the 

authors tested the WLS technique considering a set of real 

time smart meters measurements. However, the technique 

used requires a topology processor (total knowledge of the 

grid parameters), which is inexistent in the majority of the 

cases. Furthermore, LV networks are usually unbalanced and 

classical WLS technique implies balanced loads.   

   This work addresses the problem differently, as it proposes 

an innovative methodology that is independent of the network 

parameters and topology. It uses the concept of artificial 

intelligence, through the application of autoencoders, to 

estimate the state of distribution grids. An autoencoder is a 
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particular type of neural network frequently applied in areas 

related with pattern recognition and reconstruction of missing 

sensor signals [8], [9]. Recently, autoencoders were 

successfully applied in the power systems field for the 

detection of topological errors as well as for the generation of 

pseudo-measurements for classical state estimation methods 

[10], [11]. Nevertheless, until now, their use as “the core” of a 

state estimation algorithm was never implemented nor tested.  

The methodology proposed in this work was tested in a 

real LV grid (incorporating smart grid features), under 

different scenarios of smart meters deployment (with the 

capability of transmitting data in quasi-real time). The main 

goals of the simulations performed were: a) understand the 

necessary requirements to have an accurate state estimator for 

distribution grids and b) evaluate the performance of a state 

estimator based on autoencoders. 

 

II.   THE CONCEPT OF AUTOENCODER  

 

   Auto-associative neural networks (AANN) or autoencoders 

are feedforward neural networks that are built to mirror the 

input space S in their output. The size of the output layer is the 

main difference between an autoencoder and a traditional 

neural network - in an autoencoder the size of its output layer 

is always the same as the size of its input layer. Therefore, an 

autoencoder is trained to display an output equal to its input. 

This is achieved through the projection of the input data onto a 

different space S’ (in the middle layer) and then re-projecting 

it back to the original space S. With adequate training, an 

autoencoder learns the data set pattern and stores in its weights 

information about the training data manifold. The typical 

architecture of an autoencoder is a neural network with only 

one middle layer (Fig. 1). This simple architecture is 

frequently adopted because networks with more hidden layers 

have proved to be difficult to train [12], although allowing 

increasing accuracy.  

S S

S’

f f -1

 
Fig. 1. Architecture of an autoencoder with a single hidden layer 

   There is no a priori indication of an adequate reduction rate 

(measured as the ratio between the number of neurons in the 

smallest middle layer and the number of neurons in the 

input/output layer) to be adopted. This decision on the 

reduction rate is dictated in present-day practice by trial and 

error and by characteristics of the problem. Autoencoders with 

thousands of inputs have been proposed for data or image 

compression, using the signals available in the middle layer, 

which maps the input to a reduced dimension space [8], [13], 

[14]. Once the autoencoder is trained, if an incomplete pattern 

is presented, the missing components may be replaced by 

random values producing a significant mismatch between 

input and output. Iteratively reintroducing the output value in 

the input will converge to a value that minimizes the input-

output error. This approach is called Projection Onto Convex 

Sets (POCS) [15] and it uses alternating linear projections on 

the input/output space S to converge to the assumed missing 

value. A search may then be conducted by an optimization 

algorithm to discover the values that should be introduced in 

the missing components such that the input-output error 

becomes minimized. In the process denoted unconstrained 

search, the convergence is controlled by the error on the 

missing signals, whereas in the constrained search it is 

controlled by the error on all the outputs of the autoencoder. 

Any of these optimization procedures may be used, but the last 

one is the most suitable method to search a missing signal.  

   The application of autoencoders to power system problems 

is not very common. In [10] an EPSO is employed to 

recompose missing information in the SCADA of 

Energy/Distribution Management Systems (EMS/DMS) 

through the use of offline trained autoencoders. In [11], a 

model for breaker status identification and power system 

topology estimation is presented, but here, instead of a 

centralized/global estimation process, a mosaic of local 

estimators (based on a competitive auto-associative neural 

network principle) is used. More information about 

autoencoder applications can be found in [10]. 

 

III.   METHODOLOGY 

 

   The methodology developed for solving the state estimation 

problem is based on the use of an autoencoder properly 

trained. A constrained search approach (as described in the 

previous section) is applied for finding the missing signals. Of 

course, in the context of state estimation, missing signals have 

to be necessarily the state variables – voltage values both in 

magnitude and phase (Fig. 2). 

   Within the constrained search approach, an Evolutionary 

Particle Swarm Optimization (EPSO) was chosen for 

reconstructing the missing state variables.  The EPSO 

algorithm has been successfully applied already in several 

different areas of power systems. When it comes to its 

employment in autoencoders, some experiments were 

performed in [10] and the authors concluded that an 

optimization performed with EPSO (constrained search) was 

much more efficient than with others methods, such as POCS 

or unconstrained search.  

 
Fig. 2. Illustration of constrained search approach applied to the state 

estimation problem 
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Fig. 3 presents the flowchart of the main steps of the 

proposed methodology. 
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Fig. 3. Flowchart of the main steps of the proposed methodology 

A.    Historical Data 

   An effective state estimation through the use of 

autoencoders requires inevitably a large historical database, 

which needs to contain data about the variables that are passed 

to the autoencoder (missing signals and measurements). 

Additionally, the amount of data for each time 

instant/operating point should be available in enough number. 

This is crucial for a successful and effective training process 

since it is what enables the autoencoder to learn the necessary 

patterns/correlations between the electrical variables of a 

given network. There is no limit for the quantity of data in the 

historical database. However, it should be noted that the 

autoencoder learning process improves with the amount of 

data available. The only negative implication is that the 

training process will require more time. 

   A historical database with four months of real power flow 

results was created for testing the methodology. It required 

running several load flows in a typical Portuguese LV network 

in steps of 15 minutes for each day of the four months. Typical 

load patterns for summer months were considered. A full 

characterization of the study case, including the load and µG 

profiles adopted, is provided in section IV. 

 

B.    The Standardization Procedure 

   In order to have an efficient autoencoder, all the data must 

be standardized before being passed to it. As it can be seen 

Fig. 1, before the training and test process take place, a 

standardization procedure is run with the goal of pre-treating 

the input and output train data set. In this scale adjustment 

process, the range of the input and output values are 

transformed to a normalized interval of [-1,1]. This procedure 

allows a better adjustment of the input variables to the range 

of the activation function. Also, it allows the autoencoder to 

be less affected by the different ranges of the variables in the 

training data set. The method chosen here to perform the 

standardization was the “Min-Max method”. This is the best 

standardization procedure when the minimum and maximum 

values of the data set are known. Looking to the historical 

database, the minimum and maximum values of the variables 

that compose the input vectors can be easily obtained. 

 

C.    Training Process 

   The autoencoder was trained with 11040 samples gathered 

from the database. These samples correspond to a total of 115 

summer days. The input data set variables were settled in 

accordance with the scenarios defined in section IV. D. for the 

measurements that are transmitted in quasi-real -time. 

Regarding this aspect, it is important to state that whenever the 

quantity or type of measurement present in the input data set is 

changed, a new process of training must be performed.  

   In this study, the training was always performed with a 

number of neurons equal to the number of input variables, 

both at the input and output layer. In the hidden layer, the 

number of neurons were settled to be equal to 0.6 times the 

number of input variables (rounded to an integer value). The 

input variables are the sum of the measurements available plus 

the missing state variables.  

   A Resilient Back- Propagation algorithm was adopted for 

training the autoencoders properly. This algorithm belongs to 

the most widely used class of algorithms for supervised 

learning of neural networks. It works as the name suggests: 

after propagating an input through the autoencoder the error is 

calculated, and then it is propagated back through the network 

while weights are adjusted in order to make the error smaller. 

The mean square error of the data set was chosen to measure 

the quality of the autoenconder during the training process. An 

interesting particularity of the training algorithm adopted is 

that instead of training combined data, the training data set is 

executed sequentially one input at a time, minimizing this way 

the mean square error for all training data set. At the same 

time, it provides a very efficient way of avoiding getting stuck 

in a local minimum. Some experimental training tests were 

carried out in order to select the most appropriate activation 

function for the hidden and output layer. After some analysis, 

a non-linear activation function, namely a symmetric sigmoid 

activation function, has proven to be the best choice for the 

activation function of both layers. 

 

D.    Testing the Autoencoder for Performing State Estimation  

   The testing phase consists of running the autoencoder, 

already trained, incorporating an optimization procedure for 

reconstructing the missing variables of the test set (see 

flowchart of Fig. 3). The fitness function of the optimization 

problem was defined to minimize the square error between the 

input and output of the autoencoder. Here, 672 samples of the 

historical database, corresponding to the last week of the last 

month, were tested. It should be referred that Gaussian noise 

2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), Langkawi, The Jewel of Kedah,
Malaysia. 24-25 March 2014

360



was added to the test set measurements in accordance with the 

SM accuracy, as described in the end of section IV. B. 

 

IV.   STUDY CASE 

 

A. General Network Characterization 

   The methodology was tested in a typical Portuguese LV 

network where the MV/LV substation is equipped with one 

transformer of 100 kVA. A total of 57 consumers are present 

in the grid. Their contracted powers vary in a range between 

3.45 kVA to 6.9 kVA for single phase consumers and 6.9 kVA 

to 13.8 for three-phase consumers. Since a significant amount 

of single-phase loads is present, load distribution among 

phases is not completely balanced. In fact, in some points of 

the grid, load imbalance is quite notorious. Even so, at the 

MV/LV substation load distribution is almost balanced. 

   In this study, the consumers’ load was aggregated at the 

correspondent connection node and its distribution per phase 

was assumed to be completely balanced. Nevertheless, as this 

process is performed after using each individual consumer 

power value for a given time instant, the different consumers’ 

load patterns are still reflected on the equivalent load. There 

are two main reasons for this simplification. First, by 

assuming balanced loads, single-phase load flows can be run 

instead of three-phase load flows. Second, the assumption 

made does not compromise in any way the quality of the state 

estimation results through the use of autoencoders.  

   Single-phase load flows was the process chosen in this study 

for generating historical and test data sets (both for training 

and validation phases). The single line diagram of the network 

used as test case is presented in Fig. 4. 

 
Fig. 4. Typical Portuguese LV network of 100 kVA used as test case 

B. Description of the Smart Grid Features Added  

   In order to emulate a smart grid environment, some 

additional features and equipment were assumed to exist in 

this network. The MV/LV substation houses a Distribution 

Transformer Controller (DTC) as well as the associated 

measurement equipment which is capable of monitoring in 

quasi-real time the following variables: active and reactive 

power flows in the transformer and in all LV substation 

feeders and voltage (magnitude and angle) at the high and low 

voltage side of the transformer. For the purpose of this work, 

the term “quasi-real-time” is used in the sense of measuring 

the variables in a short period of time, around 15 minutes (or 

even less, depending on the communication infrastructure). 

   µG units were added and distributed randomly through the 

network, totalizing 25% of the secondary substation 

transformer capacity (c.a. 25 kVA). The µG units were 

assumed to be photovoltaic panels and represent 50% of the 

contracted power of each consumer.  

   It was also considered that each customer has a SM to 

monitor his consumption and communicate it to the DTC for 

billing purposes. The customers that own a µG unit have an 

additional SM for measuring its power production. As it 

happens in some real smart grid test sites, not all SM are 

capable of transmitting data in quasi-real time due to 

communication infrastructure restrictions. Only some of the 

SM, which use, for instance, GPRS technology, have that 

capability. The selected SM that have this functionality, in 

each scenario analysed, are presented in section III. D. and it 

was assumed that their active power (P), reactive power (Q) 

and voltage (V) measurements are synchronised.  

   In terms of data accuracy, SM are usually categorized in 

classes, according to the confidence level specified by the 

manufacturers. After checking the technical specification of a 

large set of SM currently available in the market, some typical 

values were assumed. Voltage measurements were considered 

with ±1% accuracy and P and Q measurements with ±2%, all 

of them with a confidence level of 95%. 

 

C. Load and µG Diagrams 

   Regarding load, the only data available for this grid was an 

average aggregated load diagram at the secondary substation 

level. In order to represent consumers with different 

behaviours, distinct load diagrams were generated from the 

aggregated diagram for each client. To this end, a Gaussian 

distribution with mean equal to the aggregated diagram and 

standard deviation of 8% was used. An example of the load 

profiles of 5 different customers, collected from the database 

are presented in Fig. 5. The load profiles are expressed in 

percentage of the peak load of the corresponding customer.    

 

Fig. 5. Example of the load profiles of 5 different customers 
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   Regarding the µG production diagrams, also aiming at 

representing different days (e.g. sunny, cloudy, rainy, etc.), 5 

different real profiles obtained from a real meteorological 

station [16] were used and sorted randomly according to their 

probability of occurrence in a typical Portuguese summer. 

 

Fig. 6. µG production diagrams obtained from a real meteorological station 

D. Scenarios for Quasi-real time measurements 

   Three scenarios were created to evaluate the performance of 

the autoencoders in the state estimation. In each scenario, the 

number of SM capable of transmitting data in quasi-real time 

was assumed to be different.  

   In scenario 1, no SM with capability of transmitting data in 

quasi-real time were considered – the only quasi-real time 

measurements are the P and Q power flows in the transformer 

and in all LV feeders and voltage (magnitude and angle). 

   Scenario 2 includes  SM with capability of transmitting data 

in quasi-real time in the clients located in the farthest buses 

from the secondary substation.  

   In scenario 3, SM with capability of transmitting data in 

quasi-real time were continuously added to scenario 2, in the 

network buses with larger voltage magnitude estimated error, 

until the overall uncertainty remaining below a threshold of 

2%. SM were added to the buses with larger voltage 

magnitude estimated error since it was assumed in this work 

that voltage magnitude is the most relevant output of a state 

estimator suitable for low voltage grids 

   An overall perspective of the SM location in each scenario is 

given in Fig. 4. The red dots show the location of SM in 

scenario 2 and the green dots show their location in scenario 3.  

   

IV.   SIMULATION RESULTS 

 

   The real and estimated voltage magnitudes, in the scenarios 

analysed, for the worst case of the test dataset (test sample 

with the biggest absolute error) are depicted in Fig. 2. Only 

buses without SM are shown, since in the others it was 

assumed that quasi-real time measurement are available 

(affected only by the Gaussian noise added).  As it can be 

seen, estimated values are better when more quasi-real time 

measurements are considered. Looking to Fig. 4 and observing 

the buses distribution among the network, it is clear that the 

worst estimated values belong to buses that have both loads 

and micro-generation (e.g. buses nr. 17, 18, 25). This was an 

expected result due to the higher variability of the power 

injected these buses. Conversely, the developed state estimator 

performs better on buses belonging to the feeder located on 

the right side of the network (buses without any µG installed). 

   The variability of the voltage magnitude uncertainty for all 

the buses in scenario 3, considering the entire list of test 

samples simulated, is shown in Fig. 8. The green line 

represents the average value per bus, whereas the red lines 

represent a 2% uncertainty. Taking into account that scenario 

3 was built in an attempt to reach a goal of 2% of uncertainty 

in the voltage magnitudes, the results depicted in Fig. 8 clearly 

demonstrate that the proposed methodology is able to 

successfully reach that target. Despite uncertainty being near 

to 2% in bus 16, the average value in the remaining buses is in 

the range +/- 0.5%. However, it should be noted that the 2% of 

uncertainty is only possible to reach when a total of 13 SM 

with the capability of transmitting data in quasi-real time are 

installed in the network. Even so, this value represents less 

than 50% of the total clients in the network. It is also 

important to stress that the amount of data present in the 

historical database may play an important role regarding the 

state estimation accuracy, since a larger historical database 

would lead to a more efficient training process. 

 

 

 
Fig. 7. Estimated and real values of voltage magnitude for the test sample 

with the highest absolute error in scenario 1, 2 and 3 

   Fig. 9 shows the maximum and average absolute error in the 

three scenarios analysed for both voltage magnitude and angle. 
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with more SM (see section IV. D.). In scenario 1, the 

maximum absolute error for voltage magnitude is ca. 0.035 

p.u. (0.006 p.u. in average) and 0.56 degrees for the phase 

(0.08 degrees in average). When it comes to scenario 3, these 

values decrease to 0.018 p.u (0.002 p.u. in average) and 0.46 

degrees (0.05 degrees in average). 

 
Fig. 8. Bus voltage magnitude uncertainty existent in scenario 3 

  

Fig. 9. Maximum and average absolute error of the a) voltage magnitude and 

b) voltage phase angle 

The estimation error follows a Gaussian distribution both 

for voltage magnitude and voltage angle. An example of the 

error distribution is given in Fig. 10. In this specific case, the 

error follows a Gaussian distribution with an average value of 

          and standard deviation of 4        . 

 
Fig. 10. Frequency of the voltage magnitude errors of one of the network 

buses in scenario 3 

V.   CONCLUSION 

 

   The smart grids paradigm envisages the existence of an 

advanced metering infrastructure capable of transmitting data 

in quasi-real time to grid operators. Since current smart meters 

are also capable of measuring the voltage values and active 

and reactive power flows, the referred infrastructure can also 

be used to transmit this data and serve as an enabler for the 

state estimation in distribution grids. Yet, one should bear in 

mind that an alternative to classic state estimation methods is 

necessary, since the distribution grids topology is not usually 

known, especially at the LV level. The methodology proposed 

in this paper, based on autoencoders, proved to be a very good 

alternative to the classic methods, since it allows overcoming 

this limitation. The results obtained from the simulations 

performed showed that when a large historical dataset exists 

and when enough SM are available, a state estimator based on 

the use of autoencoders may be very effective and accurate. 

Another strong argument in favour of the autoencoders is that 

they run in a very short period of time (only a few seconds), 

what makes them suitable for real time application.  
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