
A Profitable Online No-Limit Poker Playing Agent 
 

 

  

  

  

  

 

 

 
Abstract— The No-Limit Texas Hold’em variant of Poker is 

the game that is most frequently used to assess new developments 

in incomplete information problems, through the development of 

game playing agents. For this particular game, current state-of-

the-art techniques consist in the pre-computation of a set of 

strategies that are in a Nash-Equilibrium state. However, due to 

the game’s decision tree size, current algorithms only work in an 

abstracted version of No-Limit Poker. Moreover, since these 

strategies are static, they ignore the opponents’ playing style thus 

being unable to maximize profit against certain kinds of 

opponents. This makes these strategies unusable when playing in 

an online environment against human players. In this paper we 

present a rule-based strategy approach for a No-Limit Poker 

agent that was developed to play online, against human players 

and in online multiplayer matches.  This strategy is based on a 

popular technique used by human players – short stack playing – 

which consists of playing in tables with up to 6 players and low 

initial resources. Using domain specific opponent modeling 

techniques and limiting the decisions to the first round of the 

game, the agent was able to make a good profit margin of 11.5% 

per game when playing against human players. The significance 

of our results resides in the fact that, for the first time in the 

Computer Poker literature, we present a game playing agent that 

can match human players in multiplayer games. 

Keywords—poker; rule-based strategies; abstraction; opponent 

modeling; game playing agents 

I. INTRODUCTION 

Games of incomplete information such as Poker are a 
popular domain of research in the area of artificial intelligence. 
Poker presents unique challenging problems, such as opponent 
modeling, risk management and bluff detection. The 
development of software agents that can compute probabilistic 
decisions considering those problems is a difficult task, since 
dynamic and live adaption to the opponents’ strategies is 
required in order to create a robust computer Poker agent.  

Several important developments were accomplished in the 
domain of Computer Poker in the last years. Most popular 
techniques are based on game-theory concepts: the agent uses a 
pre-computed and static set of strategies that approximate a 
Nash-Equilibrium [1][2][3]. While these strategies are robust 
against a unknown opponent, they present two problems: they 
do not try to maximize profit against a certain player and 
current algorithms are only proved to converge to a Nash-
Equilibrium in one-on-one games.  These limitations are very 

important in multiplayer games because the most profitable 
player can be, for instance, the one who earns more money 
from the worst player. This means that in Poker it is not 
enough to beat a certain player; the goal of the game is to 
actually maximize the average earnings per game against all 
players. Another example: if one can beat a very good player 
that does not necessarily make him or her good and profitable. 

Despite the good results achieved by Nash-Equilibrium 
agents, where one managed to defeat a very good human player 
in a one-on-one tournament [4], until now there is no hard 
evidence on how these agents would perform  in multiplayer 
games with human players. This aspect is essential, since real 
Poker games can hold up to 10 players in a table, and playing 
against several opponents is far more challenging than playing 
against a single opponent. 

In this paper we present, for the first time, a Poker agent 
strategy approach that shows empirical evidence that it can beat 
human players in online multiplayer tables. Our agent’s 
approach is a rule-based strategy that originated from the 
domain experts’ short-stack strategy concept. Opponent models 
are computed online and are based on opponents’ features such 
as their aggressiveness, position at the table and willingness to 
bet. These features are combined with the agent’s perspective 
view features such as the number of players involved and the 
mathematical expectation of the agent’s score (the set of cards 
that it holds) to define the information set and therefore which 
action is mapped to it.  

The paper’s main contribution resides on the fact that, to 
the best of our knowledge, we present the first reported 
matches that oppose software agents and human players, in real 
money games, in multiplayer tables. Our results can be 
considered significant because the agent was relatively 
victorious – the agent was able to be marginally profitable in 
low stake

1
 games (0.02/0.01 cents). In order to avoid playstyle 

biases, the experiments were performed without human 
players’ awareness that they were competing against a software 
agent. 

The rest of the paper is organized as follows. Section II 
presents this work’s background and some notation used 
throughout the paper. It also summarizes the game of Poker by 
briefly presenting its rules and key concepts that are necessary 
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to understand the agent’s implementation. Section III presents 
related methodologies and recent developments in the 
Computer domain. Section IV describes the implemented 
agent’s strategy approach and its integration with the required 
supporting tools. Section V presents and discusses agent’s 
performance when playing online against human players.  
Finally, Section VI concludes this paper and points out 
directions for future research and possible enhancements that 
can be implemented in the agent’s strategy. 

II. POKER BACKGROUND & NOTATION 

In this section we provide information about the game of 
Poker, with emphasis on the variant that was used for the 
experiments in section V – No-Limit Texas Hold’em Poker – 
which is considered to be the most popular for professional 
players and one of the most challenging for computer 
scientists. 

Throughout the paper Poker will be represented as an 
extensive-form game. An extensive-form game is generic 
representation of a sequential decision problem in form of a 
tree where each edge represents a decision and each node 
represents a sequence of performed actions (history). The 
history is denoted by   considering that    , being   the set 
of all possible game sequences according to the game’s rules. 
We denote    as a particular history-prefix where     . 
Therefore, a game of Poker   can be represented as the 
following tuple: 

                                    

  is a subset of   and represents the game’s terminal nodes 
i.e. the nodes where the game ends.   represents the set of all 
players in the game   and   is the set of all possible actions. 

An extensive-form game also requires the definition of 
three functions. The function   gives the set of all possible 
actions for a given node (or history) where for any particular 
node      ( )    and        ( )   . Function 
  returns the acting player of any game sequence. Finally, 
function   returns the utility (or score) of a given player at a 
terminal node. 

Next, we present the specific characteristics of a Poker 
game, with emphasis in the variant used in this work – No- 
Limit Texas Hold’em Poker. 

A. Scoring 

At the beginning of a game  , each participant player     
is given a set of two playing cards (private cards) which we 
will denote as      where   is the deck – set of all playing 
cards (usually a regular 52 card deck without Jokers) – and 
    ⋀            . The private cards    are only 

visible to player   and may never be unveiled to other players 
(only if the game reaches a shodown

2
). At certain moments of 

the game, some shared cards are revealed – we will denote   
the set of all shared cards and    the set of visible shared cards 
at round   where              ⋀       . The 
shared cards are always visible to every player and are used in 
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combination with the private cards to determine a particular 
player’s score. 

In Poker, the utility of a player   is given by   [    ]  

where  ( ) is maximized, being   [ ]      a function that 
returns the score of a 5 card set. Therefore, for any remaining 
players    , player   wins against   if      [    ]      ( )  

    
  [    ]

      ( ). The score of 5 card sets is divided in 

ranks (High Card, Pair, Two Pairs, Three of a Kind, Straight, 
Flush, Full House, Four of a Kind and Straight Flush), each of 
each is divided in several sub-ranks. The total number of sub-
ranks is 7462, therefore         ( )  [      ]. 

B. Rules and utility 

After the cards are dealt to each player, two of them post 
the blinds – minimum bet values – and then the game begins. 
The game is played in turns that are grouped in four Rounds 
(Pre-Flop, Flop, Turn and River). In each player’s turn, he or 
she can choose one of the following actions, that may increase 
or not the pot

3
: 

 Call – match the highest bet. If the call costs 0, then it is 
known as Check. 

 Raise – increase the highest bet. If this action costs the 
full player’s stack, it is known as All-In. 

 Fold – forfeit the game 

A round ends when all players have bet the same amount 
(but each one must act at least once in that round). When the 
last round ends, the player with the highest ranked set of cards 
wins the game and collects the pot, as explained in 2.1. 
Alternatively, it is also possible to win the game by inducing 
opponents to fold by making bets that they are not willing to 
match. Thus, since players’ cards (pocket cards) are hidden, it 
is possible to win the game with a hand of lower score. This 
particular feature of the game’s rules makes it difficult to 
assess an agent’s decision. Regardless the winning 
situation      ∑  (   )     , making Poker a zero-sum 
game. However, usually in online Poker the game is not zero-
sum due to the rake – the casino’s profit margin   [   ]. 
Considering    , the real utility of player   in node   is 
usually given by  (   )  (   ) if  (   ) is positive and 
 (   ) otherwise. In this paper, since the tests were performed 
in an online playing room, the   takes an important role in the 
results. In our experiments,   [          ]. 

In order to complete the definition of a Poker game, we 
define it as   . 

                       

       
  

                    
  

  

                            

First, the sets   and   (see II.A) were included and they 
respectively correspond to the private and community cards 
sets (       ). The functions         and   were added to 
the original definition of  . Function   denotes the amount of 
remaining cash (stack) and   the amount of cash betted by a 
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particular player for a given history  , which means that 
 (   )   (   ) for any   and   is the amount of cash of player 
  at the start of the game. Function   returns the value of the 
current maximum bet. Function   returns the visible shared 
cards for a given history. Finally,   is the function that 
determines the set of remaining players for a given history (it 
excludes the players that have folded). Given these functions, 
we can determine the utility of a player. The value of the pot in 

  is ∑  (   ) 
  then, given Texas Hold’em rules, the player’s 

utility in a terminal node  : 

 (   )  {  (   )     (∑ (   )

 

 

  (   )     )}|         

Given this definitions we can also detail the   function. The 
No-Limit variant of Texas Hold’em Poker is characterized by 
having no limited betting – the players can raise up to their 
total stack value: 

      ( )  [
   ( ( ( )  )  ( )   ( ( )  ))  

 ( ( )  )
]            

where 0 corresponds to a fold action, the lower limit to a 
call and the higher limit to all-in. The lower and the upper limit 
might be equal, if the player doesn’t have enough cash to call – 
in that case, the player is all-in. 

III. RELATED WORK 

The first successful approaches to create Poker agents were 
rule-Based strategy definitions, which involves specifying the 
action that should be taken for a given information set [5]. An 
information set is the name of a decision point in Poker; 
contrarily to other games, a player in Poker does not have the 
full game state information. Poker information sets      
       ( ) |       are composed by the game’s action 

sequence, the player’s private cards and the visible community 
cards. Other features can be extrapolated from  . Pokerlang [6] 
is a useful domain language that simplifies the specification of 
such strategies. Despite the simplicity of this technique, it is 
still successful for more complex Poker variants like 
multiplayer No-Limit Texas Hold’em [7].   

The next approaches were based on simulation techniques 
like [8], i.e. generating game random instances in order to 
obtain a statistical average and decide the action. These 
approaches led to the creation of agents that empirically proved 
out to be capable of defeating weak human opponents. 

One great breakthrough in the domain of Computer Poker 
and other extensive-form games research was the development 
of the Counter Factual Regret Minimization Algorithm (CFR) 
in [1]. The CFR algorithm allows for the computation of a 
Nash Equilibrium approximation strategy in large games such 
as Poker through self-play, for two players. This could be done 
before through linear programming methods (e.g. Simplex) but 
CFR is much faster because the processing time is proportional 
to the number of information sets instead of to the number of 
game states (about 6 orders of magnitude less). Several 
approaches based on CFR, like Restricted Nash Response [9] 
and Data-biased response [10] backed up the first victories 
against Poker experts [11]. The main issue about CFR is that it 
only proved to converge to a Nash-Equilibrium for two 

players’ games. The strategies generated for more than two 
players are, however, robust but the obtained results present a 
large variance – in some cases the CFR strategy performs 
better against good players and worse against bad players. 
Another problem is that these types of strategies are static 
which means that they are unable to dynamically adapt to 
changing game conditions. 

Other recent methodologies based on pattern matching [12] 
and cased based reasoning [13]. These approaches generate 
Poker agents based on past games played by human experts. As 
stated before, the number of possible decision points in Poker 
is enormous. For that reason, the described approaches based 
their strategies on the concept of information set similarity. In  
[13], two information sets have a degree of similarity equal to 
the average similarity of the game features. In [12], instead of 
the average, the degree of similarity was measured through the 
Euclidean distance between the game features. The Monte 
Carlo Search Tree algorithm [14] and reinforcement learning 
approaches [15] are other techniques that were successfully 
applied to the domain of Computer Poker. One should not also 
forget some work done in opponent modeling techniques, 
namely [16].  A more throughout description of the most recent 
works can be found in the reviews [17], [18]. 

IV. AGENT IMPLEMENTATION 

In this section we demonstrate the methodology that was 
followed to implement the game playing agent. Our 
development approach was divided in three phases: 

Online room interface – an interface which allows for 
Poker playing agents to impersonate a human player. In other 
words, this interface recognizes what is going on in a Poker 
room, provides de information to the software agents, receives 
the agent’s response and finally controls the mouse and the 
keyboard to play accordingly to the agent’s desire.  

Extracting opponent models – this consists in observing the 
opponents actions and label each one with a strategy type. The 
action of our agent’s strategy depends on the types of strategies 
of the current opponents. An external tool called Hold’em 
Manager

4
 is used for this phase. 

The agent’s strategy, which is based on a rule-based 
strategy from an expert player. This module is completely 
independent of the aforementioned, i.e. the agent can provide 
outputs and receive inputs from different platforms. This 
allows for testing the agent in a simulation environment, 
against other previously developed agents, without any extra 
effort. This was important to reduce the costs of our tests 
because, as mentioned earlier, the experiments described in this 
paper were performed online in real money games. 

The image on fig. 1 summarizes the global view of our 
agent and how the different components communicate. The 
decision workflow is an endless cycle, i.e. the agent keeps 
reading events from the table. The cycle is interrupted when the 
agent is unable to read from the Poker Game UI which causes a 
timeout in the “Read an event from the game UI”.  
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Fig. 1. The agent’s architecture and decision workflow. 

A. Extracting opponent models 

The opponent models are based on three common statistics 
about the players (VPIP, Fold3Bet and PFR). These statistics 
are collected during the games. The more we play against a 
certain player, the more these statistics will reflect his or her 
playing style. 

     (          ) – this statistic value stands for 
“Voluntarily Put $ In Pot” and tells the percentage of 
times a player makes a call or a raise on pre-flop round. 

         (          ) – this statistic value tells 
the percentage of times a player raises and folds to a re-
raise. It is possible to know the fold to 3bet for any 
position at the table. That value will be useful in order 
to calculate if the expected return is positive or negative 
against the hand the agent holds. 

    (          ) – this statistic value tells the 
percentage of times a player raises a hand pre-flop 

All these statistics are computed by the Hold’em Manager 
software and store in a relational database. The agent extracts 
these by a direct connection to the database. 

B. The agent’s strategy 

Let’s consider        being the developed agent playing 
a particular   . The developed agent follows a short-stack 
strategy. A short stack strategy has the following 
characteristics: 

 Playing with a money stack (money brought to the 
game) of at most 20 big-blinds (minimum bet 
value).    (      )   (      )      (  ), 
being    the history of the first game decision. 

 Initial number of opponents between 4 and 6.   
     . 

 Decisions are limited to the Pre-Flop round, knowing 

that |     |   , which means that the decisions only 

consider the hero’s private cards. 

 Hero’s decision abstraction. Hero only chooses from 
three possible actions – fold, call and all-in – ignoring 
therefor all possible raise values. The call action is only 
used if the hero decides to fold when the call action is 
free. In short, the possible decisions are      
 ( )        ( )      ( ( )  ) . 

Before describing the algorithm, it is important to describe 
how to compute the equity (algorithm 1).  

Algorithm 1       (                     ) 

      

      

       

       

          = the list of the possible card pairs, ordered by value 

          (      (      )     (     )    (     )) 

for each   in          

while            do  
                          (           ) 

            
  [           ] 

     ( ) 

            
  [       ] 

     ( ) 

if                 then    ++ 

else if                 then     ++ 

else     ++ 

end if 
    ++ 

end while 

end for each 

return (  
    

            
) 

The equity is the probability of a certain player’s hand 
winning when dealing the remaining hidden shared cards. 
Since we are making Pre-Flop decisions, where no shared were 
yet revealed, we have to randomly generate possible shared 
cards. The same happens for opponents’ private cards, because 
they remain hidden the whole game (and they might not even 
be revealed at all). The algorithm for the equity computation is 
as follows. It uses a Monte Carlo sampling approach to reduce 
the computation time i.e. instead of generating all possible 
shared card samples, it uses a fixed number of possible boards. 
As for the opponent card sampling, we consider the variable 
     as input.      indicates the percentile of the strength of 
possible opponents’ starting hands. For instance, if      
   , it means that we consider that our opponent is only likely 
to have the best 28% starting hands. 

The next step is to evaluate the game state. The game state 
evaluation considers the number of players that have 
called         , the number of players that have raised 
         and the number of players that are all-in          . 
Table I indicates the possible abstracted game states. 

TABLE I.  POSSIBLE GAME STATE ABSTRACTIONS CONSIDERED BY 

HERO. 

State                             

unopened 0 0 0 

limped 1 0 0 

raised 0 1 0 

allin 0 0 1 

limps >1 0 0 



Next, we need to classify the hero’s starting hand strength. 
For this, we need two measures: the hand classification 
function                            , given by Table II and 
the expected hand return given by algorithm 2. 

Algorithm 2               (                     ) 

                (        ) 

            (        ) 

             (                ) 

       be the prefix of   where        

        ∑ (   )

 

 

 

return (((         (  )     )  ((     )  (  )  

(       )))  ((    )  (       ))) 

TABLE II.  STARTING CARDS CLASSIFICATION. 1 FOR TOP SCORED HANDS 

AND 8 FOR LOW SCORED HANDS. HANDS WITHOUT CLASSIFICATION IN THIS 

TABLE ARE CONSIDERED UNPLAYABLE THUS THE HERO FOLDS IMMEDIATELY 

WHEN IT HOLDS SUCH HANDS. 

 Offsuit 

A K Q J T 9 8 7 6 5 4 3 2 

S
u

it
e
d

 

A 1 1 2 2 3 5 5 5 5 5 5 5 5 

K 2 1 2 3 4 6 7 7 7 7 7 7 7 

Q 3 4 1 3 4 5 7       

J 4 5 5 1 3 4 6 8      

T 6 6 6 5 2 4 5 7      

9 8 8 8 7 7 3 4 5 8     

8    8 8 7 4 5 6 8    

7       8 5 5 6 8   

6        8 6 7 7   

5         8 6 6 7  

4          8 7 7 8 

3            7 8 

2             7 

 

Finally, we present the game playing algorithm – algorithm 
3. This algorithm uses a rule-based approach that considers the 
abstracted game state, and the expected return of the current 
hand, in order to decide either to fold or go all-in. It returns the 
bet value. 

V. RESULTS 

Given that our agent implementation only plays in a single 
table at a time and given that the agent was playing against 
humans, the result extraction is very time consuming. Even so, 
we were able to extract the results of 3814 games in online 
games (see some statistics in Table III). 

The overall profit of the agent was 1.48 big-blinds 
(minimum bets) for each 100 games. Since we performed the 
experiments in tables where the blinds were 0.02€, the agent 
made an overall absolute profit of 1.13€. Considering that in 
each game the agent had to pay an average 5% commission 
over the betted money, these results can be considered good. 
Moreover, this particular online casino refunds 20% of the 
money paid on commissions, at the end of the month, when the 
player is profitable. This allowed for the agent to make an extra 
absolute profit value of 7.63€, making a total profit of 8.76€. 
This results in a final average profit of about 11.5 big-blinds 
for each 100 games. 

Algorithm 3         (          ) 

                 

           ( ( )  ) 

         the last playing opponent that went all-in. If none, 

select the last playing opponent that raised. If none, select the last 

playing opponent. If none, select the player in the dealer position. 

        the hero’s position in table. It can be bb (if the hero is 

the big-blind), sb (the small-blind position), btn (hero is the dealer 

– last to act), co (cut-off position – before dealer) and utg (under 

the gun position – first to act). 

            the opp position in table (with the same possible 

values as the hero’s position). 

                     (          ) 

              the game’s state according to Table I. 

 

if       (     )   then 

return allin 

else if       (     )         then 

switch gameState 

 case unopened 

if        then 

     return rand_real_between(0.0, 1.0)>0.4?allin:fold 

else if                then 

     return allin 

end if 
 case limped   allin 

if               then 

     return allin 

end if 
 case limps 

if        then 

     return allin 

end if 
 case raised 

if                       then 

     return allin 

end if 
return foldOrCall 

else if       (     )         then 

switch gameState 

 case unopened 

if                then 

     return allin 

end if 
 case limped   raised 

if        then 

     return allin 

end if 

return foldOrCall 

end if 

 

if                            

           (                    )   

                                              (   )      then 

     return allin 

else if                            

                                      (   )      then 

     return allin 

end if 

 

return foldOrCall 



A. All-time results 

A graphical representation of the hands played and the 
agent’s profit balance overtime is shown on fig. 2. In this chart 
we consider that the commission refund function is linear. 

 

Fig. 2. Agent’s all time profit. 

As can be observed on fig. 2, the agent’s total money 
balance increases overtime, ending up in a final absolute profit 
of 8.76€. In this graph, besides de the global profit and the 
commission refunding profit, we also indicate the showdown 
and non-showdown profit. The showdown profit includes 
money lost or won in all games where the agent decided to bet 
and at least one of the opponents covered that bet. Non-
showdown profit includes all money lost when the agent folds 
or all the money won when the agent goes all-in and all 
opponents fold.   

A conclusion that can be taken from this graph is the 
importance of stealing and defending blinds (see sub-section 
D). Since the agent is a tight player (it only plays a small 
number of hands), it ends up folding 0.02€ or 0.01€ too many 
times, when it is the blinds position. This results in losing too 
much money (Non-showdown winnings). The only way to 
reduce these loses would be to play in other rounds instead of 
Pre-Flop. Being a less tight agent would probably reduce the 
showdown games earnings. 

However, it is possible to observe a slight difference on the 
non-showdown line, after the 2800 hands, where the gradient 
starts to decrease. The reason behind this is the gradual 
improvement of the agent’s evaluation on the opponents’ pre-
flop steal ability. We believe that the results will improve when 
even more games are played. However, the profit already made 
by the agent in the showdown winnings compensates its lack of 
defending blinds ability. 

B. Playing style 

In order to analyze the agent’s playing style, we 
demonstrate on Table III some relevant statistics that 
summarize the agent’s online performance on this experiment. 
These statistics do not include the commission refunds. Now, 
we describe each statistic: 

 Number of games – the total number of Poker games 
played in this experiment.  

 VPIP (Voluntary Put money In Pot) – indicates the 
percentage of games where the agent bets thus 

excluding the money betted when the agent was in the 
blinds positions. As expected and as said earlier, since 
the agent’s strategy is tight, the agent only went all-in in 
9% of the games. 

 PFR (Pre-flop raise) – number of times the agent raises 
any amount in the Pre-Flop round. Since the agent’s 
strategy only considers the Pre-Flop round, this value is 
very similar to VPIP. The agent only plays after the Pre-
Flop if it can get a free Flop, which means that the agent 
is in the big-blind position and none of the opponents 
bet any amount thus enabling the agent to just call the 
hand. 

 3Bet – the number of times the agent raises after any 
opponent has raised. As expected, this measure is also 
similar to VPIP since the agent usually only plays in 
table positions where it decides the action after other 
players. 

 Winnings – the absolute winnings excluding the 
commission refunds. These winnings, depending on the 
value of the blinds, are the ones that indicate if the agent 
is entitled to commission refunding. 

 Bb/100 games – the number of big-blinds (minimum 
bets) won for each 100 games. This is the common 
measure that is used to evaluate if a player is good or 
not. The way the value of this measure has to be looked 
depends greatly on the value of the blinds. For instance, 
for games with blinds of 0.50-1.00€, a good player 
should have about 7Bb/game. In 0.02-0.01€ games, a 
good player should have about 10Bb/game. 

 Avg. All-in EV – the expected value when the agent’s 
goes all-in. This measure is relative to the investment 
made by the agent. In these experiments, the average 
EV is 54.6%, which means that when the agent goes all-
in, it has a positive profit of 54.6% of the amount that 
was betted. For this stat, we indicate its average value in 
the game, in the Pre-Flop and after the Pre-Flop.   

TABLE III.  AGENT’S PLAYING STYLE STATISTICS. 

Feature Value 

Number of hands 3814 

VPIP 9.3 

PFR 9.0 

3Bet 8.9 

Winnings 1.13€ 

Bb/100 games 1.48 

Avg. All-in EV 54.6% 

Avg. Pre-flop All-in EV 54.3% 

Avg. Flop All-in EV 57.0% 

From these stats we must highlight the positive expected 
value for all-in actions in all rounds. This means that, when the 
agent’s goes all-in, it profits in average more than 50% of its 
investment. 

C. Playing with table position 

Now we analyze the agent’s ability to play in different 
position in the table (Table IV).Again we are not considering 
the profit made from refunds. The meaning of the position on 
table IV is: 

-10,00 € 

-8,00 € 

-6,00 € 

-4,00 € 

-2,00 € 

0,00 € 

2,00 € 

4,00 € 

6,00 € 

8,00 € 

10,00 € 

0 477 954 1 430 1 907 2 384 2 861 3 337 3 814

Showdown profit Non-showdown profit

Refunds Global profit



 Small-blind – the player has to pay 0.01€ at the start of 
the game without seeing its cards. It is the penultimate 
player to choose his/her action. 

 Big-blind – the player has to pay 0.02€ at the start of the 
game without seeing its cards. It is the last player to act. 

 Early – no blinds. It is one of the first players to act. 
This position is disadvantageous because the player has 
to act without any feedback from his/her opponents. 

 Button – also known as dealer position. In the Pre-Flop 
is antepenultimate player to act or the last if only two 
players are playing. It is the most advantageous position 
since the player does not have mandatory bets and 
he/she can get feedback from the actions of most of the 
opponents. 

 Cutoff – position just before the button. 

 Middle – positions between the last early and  the 
cutoff. 

TABLE IV.  AGENT’S PLAYING STYLE STATISTICS. 

Position Hands Profit EV VPIP% PFR% 3Bet% 

Small 

blind 
695 -1.43€ -2.80€ 14.0% 13.5% 11.5% 

Big 

blind 
701 -4.47€ -4.73€ 10.4% 10.1% 9.5% 

Early 411 1.54€ 1.86€ 5.6% 5.6% - 

Middle 620 0.77€ 1.34€ 6.8% 6.8% 6.5% 

Cutoff 685 -0.34€ 1.18€ 7.2% 6.9% 5.5% 

Button 702 5.06€ 3.17€ 10.0% 9.5% 6.9% 

Totals 3814 1.13€ 0.02€ 9.3% 9.0% 8.9% 

The conclusions that we can take from these results are that 
playing in positions where blind bets are made, will always 
pose the threat of losing money; the only way to lessen this 
leak is to improve the evaluation on the stealing probability. 
The agent’s performance in each position is overall satisfying, 
showing a profit on almost all positions excluding the blinds 
and the cutoff. The cutoff negative income is probably due to 
the results’ variance (low number of games), since the expected 
value in that position is positive. A very satisfying statistic to 
highlight is the average all-in percentage which is above 50% 
in all positions. This surely proves that the more hands the 
agent plays the more profit it will attain. Taking in mind the 
small blind VPIP being the highest among all, means that the 
agent tries to steal the big blind every chance he sees fit. Also 
the highest average all-in percentage comes from the early 
position, which is expected since it is the position the agent 
plays more seldom, making its hand ranges a lot stronger. We 
can see a direct connection between playing more hands, 
higher VPIP; and having less chances of winning, average all-
in percent, but also higher chances of winning by stealing 
blinds.  

D. Stealing and defending blinds 

In table V we demonstrate the agent’s results when 
defending and stealing blinds situations (without profit 
refunds). 

Stealing blinds is a situation where the agent raises at 
Cutoff, Button or small-blind positions. The stealing blind 
results are extremely positive, since the agent’s objective is to 

steal blinds while taking into account the fold chance of the 
opponents, since it does not play in other rounds. When the 
steal attempt fails, the most common scenario is probably the 
fact of the agent being behind the opponents range, but this is 
not verified, since the average all-in percentage when the agent 
fails to steal is higher than 50%, thus meaning the agent is still 
stealing less than he should be. The possibility for opening the 
range of stealing and having an average all-in percentage 
between 48% and 49% is still viable since some money is won 
when the opponents fold. These results show the high 
importance the steal factor has in the poker game (3.59€ in 
only 2.67% of the games has a huge significance). On Fig. 3 
we can observe the positive growing rate (about 3.5%) of the 
profit in these situations.  

TABLE V.  DEFENDING AND STEALING BLINDS RESULTS. 

Type Hands Profit EV Avg All-in EV% 

Stealing 102 3.59€ 1.81€ 55.1% 

Defending 51 0.51€ 1.60€ 49.3% 

 

Fig. 3. Stealing blinds results. 

Defending a blind is a situation where the agent is in a table 
position where it has to bet blinds, and has to reply to a raise 
from another player. On Table V we demonstrate the results 
when the agent tries to defend the blind by going all-in. Here 
we see that the calculations for expected value where fairly 
accurate since among all the all-ins made, the average all-in 
expected value percentage is 49.3%, meaning when the agent is 
called it will still have a good  winning rate, and when it 
doesn’t get called it wins the blinds plus the raises of the 
opponents. The expected value from these plays is higher than 
the actual winnings, this mean that the agent played well, 
despite of the variance not being on his side. Nevertheless it is 
still a small amount of hands, and in the long run the winnings 
will even out with the expected value. It is a very satisfying 
expected value of 1.60€, since the agent bets 0.20€ at a time.  

We can conclude by these results that when the agent 
defends the blind, it defends it correctly. However, by looking 
again at the results on Fig. 2, we can assert that the agent either 
just doesn’t defend the blinds enough times or that no more 
profit can be made from this situation. 

E. Results against particular players 

In this section we present the agent’s results against several 
particular players.  

On Table VI, we demonstrate the results against the players 
that allowed the agent to make more profit. The most 
significant players to note here are the ones which have a 
number of hands higher than 100, namely: Player2, Player9 
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and Player10. These three players show fairly good statistics, 
making them tight aggressive players (most winning players 
are tight aggressive), and still the agent was able to exploit 
them and make a positive profit over time. 

TABLE VI.  RESULTS AGAINST THE 10 MOST PROFITABLE OPPONENTS 

Opponent Hands VPIP PFR Profit 

Player1 14 42.9% 28.6 1.49€ 

Player2 271 17.7% 13.7% 1.00€ 

Player3 14 64.3% 21.4% 0.97€ 

Player4 41 82.9% 9.8% 0.79€ 

Player5 39 41.0% 12.8% 0.76€ 

Player6 5 40.0% 0.0% 0.73€ 

Player7 16 31.3% 18.8% 0.69€ 

Player8 45 57.8% 0.0% 0.62€ 

Player9 455 24.2% 11.2% 0.60€ 

Player10 860 19.8% 16.3% 0.56€ 

On Table VII we show the results of the players who gave 
negative profit to the agent. Looking at the top five most 
unprofitable opponents, their stats vary from a very tight 
aggressive player, Player5, to a very loose aggressive player, 
Player3. A quick look at the hands played against these players 
allowed us to verify that some of these opponents (Player5 or 
Player10) have dominated the agent’s strategy. Others, like 
Player1 or Player6 are due to the results variance.  

TABLE VII.  RESULTS AGAINST THE 10 LESS PROFITABLE OPPONENTS 

Opponent Hands VPIP PFR Profit 

Player1 54 55.6% 25.9 -1.07€ 

Player2 180 31.1% 12.2% -0.86€ 

Player3 38 84.2% 23.7% -0.62€ 

Player4 148 26.4% 23.0% -0.60€ 

Player5 277 27.8% 19.9% -0.59€ 

Player6 67 22.4% 20.9% -0.59€ 

Player7 136 20.6% 16.2% -0.56€ 

Player8 224 20.5% 19.2% -0.56€ 

Player9 25 72.0 40.0 -0.46€ 

Player10 774 15.0% 13.0% -0.46€ 

VI. CONCLUSIONS 

As stated before, this work required background knowledge 
and expertise of a domain expert on the Texas Hold’em variant 
of Poker. Nevertheless, despite the strategy not being (yet) as 
good (profitable) as the one from the original player, we 
believe we took a great step towards the goal of making Poker 
agents more profitable than the best human players, by 
showing that it is now possible to create a winning agent. The 
most surprising aspect was the agent surpassing most of the 
human players found online, just by considering the Pre-Flop 
stage of the game. Some suggestions for possible 
improvements would be working on the blind stealing ability 
on the three positions fit to do so: big blind, small blind and 
button. The agent can also be improved in the matter of 
autonomy at the tables, for instance, leaving a table when 
holding more than 20 big blinds, entering a new table where 
the minimum players is 4, leaving a table when it falls below 4 
players thus optimizing the short-stack strategy (which is 
proved to work better in tables with 4 to 6 players). In future 
work the agent should also be tested in games with higher 
stakes, since they usually present more skilled players. Another 
important feature to add is the ability to play in simultaneous 
tables to allow for the agent to get profit much faster. 
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