
A Profitable Online No-Limit Poker Playing Agent

Abstract— The No-Limit Texas Hold’em variant of Poker is

the game that is most frequently used to assess new developments

in incomplete information problems, through the development of

game playing agents. For this particular game, current state-of-

the-art techniques consist in the pre-computation of a set of

strategies that are in a Nash-Equilibrium state. However, due to

the game’s decision tree size, current algorithms only work in an

abstracted version of No-Limit Poker. Moreover, since these

strategies are static, they ignore the opponents’ playing style thus

being unable to maximize profit against certain kinds of

opponents. This makes these strategies unusable when playing in

an online environment against human players. In this paper we

present a rule-based strategy approach for a No-Limit Poker

agent that was developed to play online, against human players

and in online multiplayer matches. This strategy is based on a

popular technique used by human players – short stack playing –

which consists of playing in tables with up to 6 players and low

initial resources. Using domain specific opponent modeling

techniques and limiting the decisions to the first round of the

game, the agent was able to make a good profit margin of 11.5%

per game when playing against human players. The significance

of our results resides in the fact that, for the first time in the

Computer Poker literature, we present a game playing agent that

can match human players in multiplayer games.

Keywords—poker; rule-based strategies; abstraction; opponent

modeling; game playing agents

I. INTRODUCTION

Games of incomplete information such as Poker are a
popular domain of research in the area of artificial intelligence.
Poker presents unique challenging problems, such as opponent
modeling, risk management and bluff detection. The
development of software agents that can compute probabilistic
decisions considering those problems is a difficult task, since
dynamic and live adaption to the opponents’ strategies is
required in order to create a robust computer Poker agent.

Several important developments were accomplished in the
domain of Computer Poker in the last years. Most popular
techniques are based on game-theory concepts: the agent uses a
pre-computed and static set of strategies that approximate a
Nash-Equilibrium [1][2][3]. While these strategies are robust
against a unknown opponent, they present two problems: they
do not try to maximize profit against a certain player and
current algorithms are only proved to converge to a Nash-
Equilibrium in one-on-one games. These limitations are very

important in multiplayer games because the most profitable
player can be, for instance, the one who earns more money
from the worst player. This means that in Poker it is not
enough to beat a certain player; the goal of the game is to
actually maximize the average earnings per game against all
players. Another example: if one can beat a very good player
that does not necessarily make him or her good and profitable.

Despite the good results achieved by Nash-Equilibrium
agents, where one managed to defeat a very good human player
in a one-on-one tournament [4], until now there is no hard
evidence on how these agents would perform in multiplayer
games with human players. This aspect is essential, since real
Poker games can hold up to 10 players in a table, and playing
against several opponents is far more challenging than playing
against a single opponent.

In this paper we present, for the first time, a Poker agent
strategy approach that shows empirical evidence that it can beat
human players in online multiplayer tables. Our agent’s
approach is a rule-based strategy that originated from the
domain experts’ short-stack strategy concept. Opponent models
are computed online and are based on opponents’ features such
as their aggressiveness, position at the table and willingness to
bet. These features are combined with the agent’s perspective
view features such as the number of players involved and the
mathematical expectation of the agent’s score (the set of cards
that it holds) to define the information set and therefore which
action is mapped to it.

The paper’s main contribution resides on the fact that, to
the best of our knowledge, we present the first reported
matches that oppose software agents and human players, in real
money games, in multiplayer tables. Our results can be
considered significant because the agent was relatively
victorious – the agent was able to be marginally profitable in
low stake

1
 games (0.02/0.01 cents). In order to avoid playstyle

biases, the experiments were performed without human
players’ awareness that they were competing against a software
agent.

The rest of the paper is organized as follows. Section II
presents this work’s background and some notation used
throughout the paper. It also summarizes the game of Poker by
briefly presenting its rules and key concepts that are necessary

1
 Stake – minimum bet value.

to understand the agent’s implementation. Section III presents
related methodologies and recent developments in the
Computer domain. Section IV describes the implemented
agent’s strategy approach and its integration with the required
supporting tools. Section V presents and discusses agent’s
performance when playing online against human players.
Finally, Section VI concludes this paper and points out
directions for future research and possible enhancements that
can be implemented in the agent’s strategy.

II. POKER BACKGROUND & NOTATION

In this section we provide information about the game of
Poker, with emphasis on the variant that was used for the
experiments in section V – No-Limit Texas Hold’em Poker –
which is considered to be the most popular for professional
players and one of the most challenging for computer
scientists.

Throughout the paper Poker will be represented as an
extensive-form game. An extensive-form game is generic
representation of a sequential decision problem in form of a
tree where each edge represents a decision and each node
represents a sequence of performed actions (history). The
history is denoted by considering that , being the set
of all possible game sequences according to the game’s rules.
We denote as a particular history-prefix where .
Therefore, a game of Poker can be represented as the
following tuple:

 is a subset of and represents the game’s terminal nodes
i.e. the nodes where the game ends. represents the set of all
players in the game and is the set of all possible actions.

An extensive-form game also requires the definition of
three functions. The function gives the set of all possible
actions for a given node (or history) where for any particular
node () and () . Function
 returns the acting player of any game sequence. Finally,
function returns the utility (or score) of a given player at a
terminal node.

Next, we present the specific characteristics of a Poker
game, with emphasis in the variant used in this work – No-
Limit Texas Hold’em Poker.

A. Scoring

At the beginning of a game , each participant player
is given a set of two playing cards (private cards) which we
will denote as where is the deck – set of all playing
cards (usually a regular 52 card deck without Jokers) – and
 ⋀ . The private cards are only

visible to player and may never be unveiled to other players
(only if the game reaches a shodown

2
). At certain moments of

the game, some shared cards are revealed – we will denote
the set of all shared cards and the set of visible shared cards
at round where ⋀ . The
shared cards are always visible to every player and are used in

2 Showdown – a game’s terminal node with at least 2 standing players and all

bets matched.

combination with the private cards to determine a particular
player’s score.

In Poker, the utility of a player is given by []

where () is maximized, being [] a function that
returns the score of a 5 card set. Therefore, for any remaining
players , player wins against if [] ()

 []

 (). The score of 5 card sets is divided in

ranks (High Card, Pair, Two Pairs, Three of a Kind, Straight,
Flush, Full House, Four of a Kind and Straight Flush), each of
each is divided in several sub-ranks. The total number of sub-
ranks is 7462, therefore () [].

B. Rules and utility

After the cards are dealt to each player, two of them post
the blinds – minimum bet values – and then the game begins.
The game is played in turns that are grouped in four Rounds
(Pre-Flop, Flop, Turn and River). In each player’s turn, he or
she can choose one of the following actions, that may increase
or not the pot

3
:

 Call – match the highest bet. If the call costs 0, then it is
known as Check.

 Raise – increase the highest bet. If this action costs the
full player’s stack, it is known as All-In.

 Fold – forfeit the game

A round ends when all players have bet the same amount
(but each one must act at least once in that round). When the
last round ends, the player with the highest ranked set of cards
wins the game and collects the pot, as explained in 2.1.
Alternatively, it is also possible to win the game by inducing
opponents to fold by making bets that they are not willing to
match. Thus, since players’ cards (pocket cards) are hidden, it
is possible to win the game with a hand of lower score. This
particular feature of the game’s rules makes it difficult to
assess an agent’s decision. Regardless the winning
situation ∑ () , making Poker a zero-sum
game. However, usually in online Poker the game is not zero-
sum due to the rake – the casino’s profit margin [].
Considering , the real utility of player in node is
usually given by () () if () is positive and
 () otherwise. In this paper, since the tests were performed
in an online playing room, the takes an important role in the
results. In our experiments, [].

In order to complete the definition of a Poker game, we
define it as .

First, the sets and (see II.A) were included and they
respectively correspond to the private and community cards
sets (). The functions and were added to
the original definition of . Function denotes the amount of
remaining cash (stack) and the amount of cash betted by a

3 Pot – accumulated value of all bets.

particular player for a given history , which means that
 () () for any and is the amount of cash of player
 at the start of the game. Function returns the value of the
current maximum bet. Function returns the visible shared
cards for a given history. Finally, is the function that
determines the set of remaining players for a given history (it
excludes the players that have folded). Given these functions,
we can determine the utility of a player. The value of the pot in

 is ∑ ()
 then, given Texas Hold’em rules, the player’s

utility in a terminal node :

 () { () (∑ ()

 ())}|

Given this definitions we can also detail the function. The
No-Limit variant of Texas Hold’em Poker is characterized by
having no limited betting – the players can raise up to their
total stack value:

 () [
 ((()) () (()))

 (())
]

where 0 corresponds to a fold action, the lower limit to a
call and the higher limit to all-in. The lower and the upper limit
might be equal, if the player doesn’t have enough cash to call –
in that case, the player is all-in.

III. RELATED WORK

The first successful approaches to create Poker agents were
rule-Based strategy definitions, which involves specifying the
action that should be taken for a given information set [5]. An
information set is the name of a decision point in Poker;
contrarily to other games, a player in Poker does not have the
full game state information. Poker information sets
 () | are composed by the game’s action

sequence, the player’s private cards and the visible community
cards. Other features can be extrapolated from . Pokerlang [6]
is a useful domain language that simplifies the specification of
such strategies. Despite the simplicity of this technique, it is
still successful for more complex Poker variants like
multiplayer No-Limit Texas Hold’em [7].

The next approaches were based on simulation techniques
like [8], i.e. generating game random instances in order to
obtain a statistical average and decide the action. These
approaches led to the creation of agents that empirically proved
out to be capable of defeating weak human opponents.

One great breakthrough in the domain of Computer Poker
and other extensive-form games research was the development
of the Counter Factual Regret Minimization Algorithm (CFR)
in [1]. The CFR algorithm allows for the computation of a
Nash Equilibrium approximation strategy in large games such
as Poker through self-play, for two players. This could be done
before through linear programming methods (e.g. Simplex) but
CFR is much faster because the processing time is proportional
to the number of information sets instead of to the number of
game states (about 6 orders of magnitude less). Several
approaches based on CFR, like Restricted Nash Response [9]
and Data-biased response [10] backed up the first victories
against Poker experts [11]. The main issue about CFR is that it
only proved to converge to a Nash-Equilibrium for two

players’ games. The strategies generated for more than two
players are, however, robust but the obtained results present a
large variance – in some cases the CFR strategy performs
better against good players and worse against bad players.
Another problem is that these types of strategies are static
which means that they are unable to dynamically adapt to
changing game conditions.

Other recent methodologies based on pattern matching [12]
and cased based reasoning [13]. These approaches generate
Poker agents based on past games played by human experts. As
stated before, the number of possible decision points in Poker
is enormous. For that reason, the described approaches based
their strategies on the concept of information set similarity. In
[13], two information sets have a degree of similarity equal to
the average similarity of the game features. In [12], instead of
the average, the degree of similarity was measured through the
Euclidean distance between the game features. The Monte
Carlo Search Tree algorithm [14] and reinforcement learning
approaches [15] are other techniques that were successfully
applied to the domain of Computer Poker. One should not also
forget some work done in opponent modeling techniques,
namely [16]. A more throughout description of the most recent
works can be found in the reviews [17], [18].

IV. AGENT IMPLEMENTATION

In this section we demonstrate the methodology that was
followed to implement the game playing agent. Our
development approach was divided in three phases:

Online room interface – an interface which allows for
Poker playing agents to impersonate a human player. In other
words, this interface recognizes what is going on in a Poker
room, provides de information to the software agents, receives
the agent’s response and finally controls the mouse and the
keyboard to play accordingly to the agent’s desire.

Extracting opponent models – this consists in observing the
opponents actions and label each one with a strategy type. The
action of our agent’s strategy depends on the types of strategies
of the current opponents. An external tool called Hold’em
Manager

4
 is used for this phase.

The agent’s strategy, which is based on a rule-based
strategy from an expert player. This module is completely
independent of the aforementioned, i.e. the agent can provide
outputs and receive inputs from different platforms. This
allows for testing the agent in a simulation environment,
against other previously developed agents, without any extra
effort. This was important to reduce the costs of our tests
because, as mentioned earlier, the experiments described in this
paper were performed online in real money games.

The image on fig. 1 summarizes the global view of our
agent and how the different components communicate. The
decision workflow is an endless cycle, i.e. the agent keeps
reading events from the table. The cycle is interrupted when the
agent is unable to read from the Poker Game UI which causes a
timeout in the “Read an event from the game UI”.

4
 Hold’em manager website: http://www.holdemmanager.com/

http://www.holdemmanager.com/

Agent s architecture

Decision workflow

Hold em Manager
2.0

Opponent
models

Online Poker Room

Online room
interface

Agent

Reads an event
from the game UI

Sends the event
information to the

agent
Start

The agent
decides

Updated opponents
information from
Hold em Manager

Processes the agent
decision with

mouse/keyboard
inputs

End

timeout

Fig. 1. The agent’s architecture and decision workflow.

A. Extracting opponent models

The opponent models are based on three common statistics
about the players (VPIP, Fold3Bet and PFR). These statistics
are collected during the games. The more we play against a
certain player, the more these statistics will reflect his or her
playing style.

 () – this statistic value stands for
“Voluntarily Put $ In Pot” and tells the percentage of
times a player makes a call or a raise on pre-flop round.

 () – this statistic value tells
the percentage of times a player raises and folds to a re-
raise. It is possible to know the fold to 3bet for any
position at the table. That value will be useful in order
to calculate if the expected return is positive or negative
against the hand the agent holds.

 () – this statistic value tells the
percentage of times a player raises a hand pre-flop

All these statistics are computed by the Hold’em Manager
software and store in a relational database. The agent extracts
these by a direct connection to the database.

B. The agent’s strategy

Let’s consider being the developed agent playing
a particular . The developed agent follows a short-stack
strategy. A short stack strategy has the following
characteristics:

 Playing with a money stack (money brought to the
game) of at most 20 big-blinds (minimum bet
value). () () (),
being the history of the first game decision.

 Initial number of opponents between 4 and 6.
 .

 Decisions are limited to the Pre-Flop round, knowing

that | | , which means that the decisions only

consider the hero’s private cards.

 Hero’s decision abstraction. Hero only chooses from
three possible actions – fold, call and all-in – ignoring
therefor all possible raise values. The call action is only
used if the hero decides to fold when the call action is
free. In short, the possible decisions are
 () () (()) .

Before describing the algorithm, it is important to describe
how to compute the equity (algorithm 1).

Algorithm 1 ()

 = the list of the possible card pairs, ordered by value

 (() () ())

for each in

while do
 ()

 []

 ()

 []

 ()

if then ++

else if then ++

else ++

end if
 ++

end while

end for each

return (

)

The equity is the probability of a certain player’s hand
winning when dealing the remaining hidden shared cards.
Since we are making Pre-Flop decisions, where no shared were
yet revealed, we have to randomly generate possible shared
cards. The same happens for opponents’ private cards, because
they remain hidden the whole game (and they might not even
be revealed at all). The algorithm for the equity computation is
as follows. It uses a Monte Carlo sampling approach to reduce
the computation time i.e. instead of generating all possible
shared card samples, it uses a fixed number of possible boards.
As for the opponent card sampling, we consider the variable
 as input. indicates the percentile of the strength of
possible opponents’ starting hands. For instance, if
 , it means that we consider that our opponent is only likely
to have the best 28% starting hands.

The next step is to evaluate the game state. The game state
evaluation considers the number of players that have
called , the number of players that have raised
 and the number of players that are all-in .
Table I indicates the possible abstracted game states.

TABLE I. POSSIBLE GAME STATE ABSTRACTIONS CONSIDERED BY

HERO.

State

unopened 0 0 0

limped 1 0 0

raised 0 1 0

allin 0 0 1

limps >1 0 0

Next, we need to classify the hero’s starting hand strength.
For this, we need two measures: the hand classification
function , given by Table II and
the expected hand return given by algorithm 2.

Algorithm 2 ()

 ()

 ()

 ()

 be the prefix of where

 ∑ ()

return (((()) (() ()

())) (() ()))

TABLE II. STARTING CARDS CLASSIFICATION. 1 FOR TOP SCORED HANDS

AND 8 FOR LOW SCORED HANDS. HANDS WITHOUT CLASSIFICATION IN THIS

TABLE ARE CONSIDERED UNPLAYABLE THUS THE HERO FOLDS IMMEDIATELY

WHEN IT HOLDS SUCH HANDS.

 Offsuit

A K Q J T 9 8 7 6 5 4 3 2

S
u

it
e
d

A 1 1 2 2 3 5 5 5 5 5 5 5 5

K 2 1 2 3 4 6 7 7 7 7 7 7 7

Q 3 4 1 3 4 5 7

J 4 5 5 1 3 4 6 8

T 6 6 6 5 2 4 5 7

9 8 8 8 7 7 3 4 5 8

8 8 8 7 4 5 6 8

7 8 5 5 6 8

6 8 6 7 7

5 8 6 6 7

4 8 7 7 8

3 7 8

2 7

Finally, we present the game playing algorithm – algorithm
3. This algorithm uses a rule-based approach that considers the
abstracted game state, and the expected return of the current
hand, in order to decide either to fold or go all-in. It returns the
bet value.

V. RESULTS

Given that our agent implementation only plays in a single
table at a time and given that the agent was playing against
humans, the result extraction is very time consuming. Even so,
we were able to extract the results of 3814 games in online
games (see some statistics in Table III).

The overall profit of the agent was 1.48 big-blinds
(minimum bets) for each 100 games. Since we performed the
experiments in tables where the blinds were 0.02€, the agent
made an overall absolute profit of 1.13€. Considering that in
each game the agent had to pay an average 5% commission
over the betted money, these results can be considered good.
Moreover, this particular online casino refunds 20% of the
money paid on commissions, at the end of the month, when the
player is profitable. This allowed for the agent to make an extra
absolute profit value of 7.63€, making a total profit of 8.76€.
This results in a final average profit of about 11.5 big-blinds
for each 100 games.

Algorithm 3 ()

 (())

 the last playing opponent that went all-in. If none,

select the last playing opponent that raised. If none, select the last

playing opponent. If none, select the player in the dealer position.

 the hero’s position in table. It can be bb (if the hero is

the big-blind), sb (the small-blind position), btn (hero is the dealer

– last to act), co (cut-off position – before dealer) and utg (under

the gun position – first to act).

 the opp position in table (with the same possible

values as the hero’s position).

 ()

 the game’s state according to Table I.

if () then

return allin

else if () then

switch gameState

 case unopened

if then

 return rand_real_between(0.0, 1.0)>0.4?allin:fold

else if then

 return allin

end if
 case limped allin

if then

 return allin

end if
 case limps

if then

 return allin

end if
 case raised

if then

 return allin

end if
return foldOrCall

else if () then

switch gameState

 case unopened

if then

 return allin

end if
 case limped raised

if then

 return allin

end if

return foldOrCall

end if

if

 ()

 () then

 return allin

else if

 () then

 return allin

end if

return foldOrCall

A. All-time results

A graphical representation of the hands played and the
agent’s profit balance overtime is shown on fig. 2. In this chart
we consider that the commission refund function is linear.

Fig. 2. Agent’s all time profit.

As can be observed on fig. 2, the agent’s total money
balance increases overtime, ending up in a final absolute profit
of 8.76€. In this graph, besides de the global profit and the
commission refunding profit, we also indicate the showdown
and non-showdown profit. The showdown profit includes
money lost or won in all games where the agent decided to bet
and at least one of the opponents covered that bet. Non-
showdown profit includes all money lost when the agent folds
or all the money won when the agent goes all-in and all
opponents fold.

A conclusion that can be taken from this graph is the
importance of stealing and defending blinds (see sub-section
D). Since the agent is a tight player (it only plays a small
number of hands), it ends up folding 0.02€ or 0.01€ too many
times, when it is the blinds position. This results in losing too
much money (Non-showdown winnings). The only way to
reduce these loses would be to play in other rounds instead of
Pre-Flop. Being a less tight agent would probably reduce the
showdown games earnings.

However, it is possible to observe a slight difference on the
non-showdown line, after the 2800 hands, where the gradient
starts to decrease. The reason behind this is the gradual
improvement of the agent’s evaluation on the opponents’ pre-
flop steal ability. We believe that the results will improve when
even more games are played. However, the profit already made
by the agent in the showdown winnings compensates its lack of
defending blinds ability.

B. Playing style

In order to analyze the agent’s playing style, we
demonstrate on Table III some relevant statistics that
summarize the agent’s online performance on this experiment.
These statistics do not include the commission refunds. Now,
we describe each statistic:

 Number of games – the total number of Poker games
played in this experiment.

 VPIP (Voluntary Put money In Pot) – indicates the
percentage of games where the agent bets thus

excluding the money betted when the agent was in the
blinds positions. As expected and as said earlier, since
the agent’s strategy is tight, the agent only went all-in in
9% of the games.

 PFR (Pre-flop raise) – number of times the agent raises
any amount in the Pre-Flop round. Since the agent’s
strategy only considers the Pre-Flop round, this value is
very similar to VPIP. The agent only plays after the Pre-
Flop if it can get a free Flop, which means that the agent
is in the big-blind position and none of the opponents
bet any amount thus enabling the agent to just call the
hand.

 3Bet – the number of times the agent raises after any
opponent has raised. As expected, this measure is also
similar to VPIP since the agent usually only plays in
table positions where it decides the action after other
players.

 Winnings – the absolute winnings excluding the
commission refunds. These winnings, depending on the
value of the blinds, are the ones that indicate if the agent
is entitled to commission refunding.

 Bb/100 games – the number of big-blinds (minimum
bets) won for each 100 games. This is the common
measure that is used to evaluate if a player is good or
not. The way the value of this measure has to be looked
depends greatly on the value of the blinds. For instance,
for games with blinds of 0.50-1.00€, a good player
should have about 7Bb/game. In 0.02-0.01€ games, a
good player should have about 10Bb/game.

 Avg. All-in EV – the expected value when the agent’s
goes all-in. This measure is relative to the investment
made by the agent. In these experiments, the average
EV is 54.6%, which means that when the agent goes all-
in, it has a positive profit of 54.6% of the amount that
was betted. For this stat, we indicate its average value in
the game, in the Pre-Flop and after the Pre-Flop.

TABLE III. AGENT’S PLAYING STYLE STATISTICS.

Feature Value

Number of hands 3814

VPIP 9.3

PFR 9.0

3Bet 8.9

Winnings 1.13€

Bb/100 games 1.48

Avg. All-in EV 54.6%

Avg. Pre-flop All-in EV 54.3%

Avg. Flop All-in EV 57.0%

From these stats we must highlight the positive expected
value for all-in actions in all rounds. This means that, when the
agent’s goes all-in, it profits in average more than 50% of its
investment.

C. Playing with table position

Now we analyze the agent’s ability to play in different
position in the table (Table IV).Again we are not considering
the profit made from refunds. The meaning of the position on
table IV is:

-10,00 €

-8,00 €

-6,00 €

-4,00 €

-2,00 €

0,00 €

2,00 €

4,00 €

6,00 €

8,00 €

10,00 €

0 477 954 1 430 1 907 2 384 2 861 3 337 3 814

Showdown profit Non-showdown profit

Refunds Global profit

 Small-blind – the player has to pay 0.01€ at the start of
the game without seeing its cards. It is the penultimate
player to choose his/her action.

 Big-blind – the player has to pay 0.02€ at the start of the
game without seeing its cards. It is the last player to act.

 Early – no blinds. It is one of the first players to act.
This position is disadvantageous because the player has
to act without any feedback from his/her opponents.

 Button – also known as dealer position. In the Pre-Flop
is antepenultimate player to act or the last if only two
players are playing. It is the most advantageous position
since the player does not have mandatory bets and
he/she can get feedback from the actions of most of the
opponents.

 Cutoff – position just before the button.

 Middle – positions between the last early and the
cutoff.

TABLE IV. AGENT’S PLAYING STYLE STATISTICS.

Position Hands Profit EV VPIP% PFR% 3Bet%

Small

blind
695 -1.43€ -2.80€ 14.0% 13.5% 11.5%

Big

blind
701 -4.47€ -4.73€ 10.4% 10.1% 9.5%

Early 411 1.54€ 1.86€ 5.6% 5.6% -

Middle 620 0.77€ 1.34€ 6.8% 6.8% 6.5%

Cutoff 685 -0.34€ 1.18€ 7.2% 6.9% 5.5%

Button 702 5.06€ 3.17€ 10.0% 9.5% 6.9%

Totals 3814 1.13€ 0.02€ 9.3% 9.0% 8.9%

The conclusions that we can take from these results are that
playing in positions where blind bets are made, will always
pose the threat of losing money; the only way to lessen this
leak is to improve the evaluation on the stealing probability.
The agent’s performance in each position is overall satisfying,
showing a profit on almost all positions excluding the blinds
and the cutoff. The cutoff negative income is probably due to
the results’ variance (low number of games), since the expected
value in that position is positive. A very satisfying statistic to
highlight is the average all-in percentage which is above 50%
in all positions. This surely proves that the more hands the
agent plays the more profit it will attain. Taking in mind the
small blind VPIP being the highest among all, means that the
agent tries to steal the big blind every chance he sees fit. Also
the highest average all-in percentage comes from the early
position, which is expected since it is the position the agent
plays more seldom, making its hand ranges a lot stronger. We
can see a direct connection between playing more hands,
higher VPIP; and having less chances of winning, average all-
in percent, but also higher chances of winning by stealing
blinds.

D. Stealing and defending blinds

In table V we demonstrate the agent’s results when
defending and stealing blinds situations (without profit
refunds).

Stealing blinds is a situation where the agent raises at
Cutoff, Button or small-blind positions. The stealing blind
results are extremely positive, since the agent’s objective is to

steal blinds while taking into account the fold chance of the
opponents, since it does not play in other rounds. When the
steal attempt fails, the most common scenario is probably the
fact of the agent being behind the opponents range, but this is
not verified, since the average all-in percentage when the agent
fails to steal is higher than 50%, thus meaning the agent is still
stealing less than he should be. The possibility for opening the
range of stealing and having an average all-in percentage
between 48% and 49% is still viable since some money is won
when the opponents fold. These results show the high
importance the steal factor has in the poker game (3.59€ in
only 2.67% of the games has a huge significance). On Fig. 3
we can observe the positive growing rate (about 3.5%) of the
profit in these situations.

TABLE V. DEFENDING AND STEALING BLINDS RESULTS.

Type Hands Profit EV Avg All-in EV%

Stealing 102 3.59€ 1.81€ 55.1%

Defending 51 0.51€ 1.60€ 49.3%

Fig. 3. Stealing blinds results.

Defending a blind is a situation where the agent is in a table
position where it has to bet blinds, and has to reply to a raise
from another player. On Table V we demonstrate the results
when the agent tries to defend the blind by going all-in. Here
we see that the calculations for expected value where fairly
accurate since among all the all-ins made, the average all-in
expected value percentage is 49.3%, meaning when the agent is
called it will still have a good winning rate, and when it
doesn’t get called it wins the blinds plus the raises of the
opponents. The expected value from these plays is higher than
the actual winnings, this mean that the agent played well,
despite of the variance not being on his side. Nevertheless it is
still a small amount of hands, and in the long run the winnings
will even out with the expected value. It is a very satisfying
expected value of 1.60€, since the agent bets 0.20€ at a time.

We can conclude by these results that when the agent
defends the blind, it defends it correctly. However, by looking
again at the results on Fig. 2, we can assert that the agent either
just doesn’t defend the blinds enough times or that no more
profit can be made from this situation.

E. Results against particular players

In this section we present the agent’s results against several
particular players.

On Table VI, we demonstrate the results against the players
that allowed the agent to make more profit. The most
significant players to note here are the ones which have a
number of hands higher than 100, namely: Player2, Player9

0,00 €

1,00 €

2,00 €

3,00 €

4,00 €

0 13 26 38 51 64 77 89 102

Showdown profit Non-showdown profit

Global profit

and Player10. These three players show fairly good statistics,
making them tight aggressive players (most winning players
are tight aggressive), and still the agent was able to exploit
them and make a positive profit over time.

TABLE VI. RESULTS AGAINST THE 10 MOST PROFITABLE OPPONENTS

Opponent Hands VPIP PFR Profit

Player1 14 42.9% 28.6 1.49€

Player2 271 17.7% 13.7% 1.00€

Player3 14 64.3% 21.4% 0.97€

Player4 41 82.9% 9.8% 0.79€

Player5 39 41.0% 12.8% 0.76€

Player6 5 40.0% 0.0% 0.73€

Player7 16 31.3% 18.8% 0.69€

Player8 45 57.8% 0.0% 0.62€

Player9 455 24.2% 11.2% 0.60€

Player10 860 19.8% 16.3% 0.56€

On Table VII we show the results of the players who gave
negative profit to the agent. Looking at the top five most
unprofitable opponents, their stats vary from a very tight
aggressive player, Player5, to a very loose aggressive player,
Player3. A quick look at the hands played against these players
allowed us to verify that some of these opponents (Player5 or
Player10) have dominated the agent’s strategy. Others, like
Player1 or Player6 are due to the results variance.

TABLE VII. RESULTS AGAINST THE 10 LESS PROFITABLE OPPONENTS

Opponent Hands VPIP PFR Profit

Player1 54 55.6% 25.9 -1.07€

Player2 180 31.1% 12.2% -0.86€

Player3 38 84.2% 23.7% -0.62€

Player4 148 26.4% 23.0% -0.60€

Player5 277 27.8% 19.9% -0.59€

Player6 67 22.4% 20.9% -0.59€

Player7 136 20.6% 16.2% -0.56€

Player8 224 20.5% 19.2% -0.56€

Player9 25 72.0 40.0 -0.46€

Player10 774 15.0% 13.0% -0.46€

VI. CONCLUSIONS

As stated before, this work required background knowledge
and expertise of a domain expert on the Texas Hold’em variant
of Poker. Nevertheless, despite the strategy not being (yet) as
good (profitable) as the one from the original player, we
believe we took a great step towards the goal of making Poker
agents more profitable than the best human players, by
showing that it is now possible to create a winning agent. The
most surprising aspect was the agent surpassing most of the
human players found online, just by considering the Pre-Flop
stage of the game. Some suggestions for possible
improvements would be working on the blind stealing ability
on the three positions fit to do so: big blind, small blind and
button. The agent can also be improved in the matter of
autonomy at the tables, for instance, leaving a table when
holding more than 20 big blinds, entering a new table where
the minimum players is 4, leaving a table when it falls below 4
players thus optimizing the short-stack strategy (which is
proved to work better in tables with 4 to 6 players). In future
work the agent should also be tested in games with higher
stakes, since they usually present more skilled players. Another
important feature to add is the ability to play in simultaneous
tables to allow for the agent to get profit much faster.

ACKNOWLEDGMENT

We would like to thank to FCT – Fundação para a Ciência
e Tecnologia (the main national institution that finances
academic research in Portugal) for supporting this work by
providing the first author’s Ph.D. scholarship with reference
SFRH/BD/71598/2010.

REFERENCES

[1] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
Minimization in Games with Incomplete Information,” in Advances in
Neural Information Processing Systems 20 (NIPS), 2008, pp. 1729–
1736.

[2] M. Zinkevich, M. Bowling, and N. Burch, “A new algorithm for
generating equilibria in massive zero-sum games,” in Proceedings of the
Twenty-Second Conference on Artificial Intelligence (AAAI), 2007, pp.
788–793.

[3] M. Johanson, N. Bard, N. Burch, and M. Bowling, “Finding Optimal
Abstract Strategies in Extensive-Form Games,” in Proceedings of the
Twenty-Sixth Conference on Artificial Intelligence (AAAI-12), 2012, pp.
1371–1379.

[4] University of Alberta, “The Second Man-Machine Poker Competition,”
2008. [Online]. Available:
http://webdocs.cs.ualberta.ca/~games/poker/man-machine/.

[5] D. Billings, D. Papp, J. Schaeffer, and D. Szafron, “Opponent modeling
in poker,” in AAAI Conference on Artificial Intelligence, 1998, vol. pp,
pp. 493–499.

[6] L. Reis, P. Mendes, L. Teófilo, and H. Lopes Cardoso, “High-Level
Language to Build Poker Agents,” in Advances in Intelligent Systems
and Computing Volume 206, 2013, no. July, pp. 643–654.

[7] L. F. Teófilo, R. Rossetti, L. P. Reis, and H. Lopes Cardoso, “Simulation
and Performance Assessment of Poker Agents,” in Springer LNCS 7838
(MABS 2012), 2013, pp. 69–84.

[8] D. Billings, D. Papp, L. Peña, J. Schaeffer, and D. Szafron, “Using
Selective-Sampling Simulations in Poker,” in AAAI Spring Symposium
on Search Techniques for Problem Solving under Uncertainty and
Incomplete Information,, 1999, pp. 13–18.

[9] M. Johanson, M. Zinkevich, and M. Bowling, “Computing Robust
Counter-Strategies.,” in NIPS, 2007, pp. 1128–1135.

[10] M. Johanson and M. Bowling, “Data biased robust counter strategies,”
in Proceedings ofthe Twelfth International Conference on Artificial
Intelligence and Statistics (AISTATS), 2009, pp. 264–271.

[11] “The Second Man-Machine Poker Competition,” University of Alberta,
2008. [Online]. Available:
http://webdocs.cs.ualberta.ca/~games/poker/man-machine/.

[12] L. F. Teófilo and L. P. Reis, “Building a No Limit Texas Hold’em Poker
Playing Agent based on Game Logs using Supervised Learning,” in
Proceedings 2nd International Conference on Autonomous and
Intelligent Systems, 2011, pp. 73–83.

[13] J. Rubin and I. Watson, “Case-based strategies in computer poker,” AI
Commun., vol. 25, no. 1, pp. 19–48, 2012.

[14] G. Broeck, K. Driessens, and J. Ramon, “Monte-Carlo Tree Search in
Poker Using Expected Reward Distributions,” in ACML ’09
Proceedings of the 1st Asian Conference on Machine Learning:
Advances in Machine Learning, 2009, pp. 367–381.

[15] L. F. Teófilo, N. Passos, L. P. Reis, and H. Lopes Cardoso, “Adapting
Strategies to Opponent Models in Incomplete Information Games: A
Reinforcement Learning Approach for Poker,” in Autonomous and
Intelligent Systems - Third International Conference (AIS2012), 2012,
pp. 220–227.

[16] D. Félix and L. P. Reis, “Opponent Modelling in Texas Hold’em Poker
as the Key for Success,” pp. 893–894, Jun. 2008.

[17] J. Rubin and I. Watson, “Computer poker: A review,” Artif. Intell., vol.
175, no. 5–6, pp. 958–987, 2011.

[18] L. F. Teófilo, L. P. Reis, and H. Lopes Cardoso, “Computer Poker
Research at LIACC,” in Computer Poker Symposium, 2012

