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a b s t r a c t

Incremental learning from data streams is increasingly attracting research focus due to many real
streaming problems (such as learning from transactions, sensors or other sequential observations) that
require processing and forecasting in the real time. In this paper we deal with two issues related to
incremental learning – prediction accuracy and prediction explanation – and demonstrate their
applicability on several streaming problems for predicting electricity load in the future. For improving
prediction accuracy we propose and evaluate the use of two reliability estimators that allow us to
estimate prediction error and correct predictions. For improving interpretability of the incremental
model and its predictions we propose an adaptation of the existing prediction explanation methodology,
which was originally developed for batch learning from stationary data. The explanation methodology is
combined with a state-of-the-art concept drift detector and a visualization technique to enhance the
explanation in dynamic streaming settings. The results show that the proposed approaches can improve
prediction accuracy and allow transparent insight into the modeled concept.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In supervised learning we aim to induce a model on training data
so we can afterwards make predictions for the examples that were
not included in the learning process. In the field of online learning
from data streams it is particularly challenging to achieve good
accuracy and quick predictions because the set of examples is being
continuously incremented. As available computer memory puts an
upper bound to the storage space and users often require predic-
tions in real-time, this calls for an adaptation of standard supervised
learning techniques. These adaptations include windowing of data
(i.e. holding only a sample of examples) and learning by incremen-
tally modifying a model with the most recent examples instead of
re-building it from all previous examples. The ability to increment
the learned knowledge allows the model to adapt to changing data
distribution, i.e. to situations where a concept drift occurs.

In this paper we propose an adaptation of two existing meth-
odologies to incremental learning: prediction correction

methodology and prediction explanation methodology. Application
of both incremental learning add-ons can increase the trust of users
into predictions and their understanding of modeled knowledge,
which is also a main goal of our work. So far, both methodologies
have been developed and evaluated only for learning from stationary
data, while in this paper we focus on their adaptation to streaming
scenarios.

The first adapted methodology is built on top of the reliability
estimation for individual predictions in regression. The reliability
estimation methodology augments the bare prediction value Ku

for example xu with its reliability estimate ru and thus predicts a
tuple ðKu; ruÞ. Note that this methodology does not evaluate accu-
racy of the model as the whole but provides prediction performance
estimates for each individual example xu;uA1…n. In this paper we
use two methods for computing such reliability estimates to assess
the prediction error and correct it accordingly: they are based on the
sensitivity analysis (Bosnić and Kononenko, 2008b) and local
modeling of prediction error (Bosnić and Kononenko, 2008a).

The second approach, the explanation methodology for indivi-
dual predictions and models, provides an insight into not only the
importance of attributes but also the strength of particular
attribute values with which they either positively or negatively
contribute to the final prediction. Formally, the methodology
extends a prediction Ku for example xu into a tuple ðKu; ðφ1;
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φ2;…;φmÞÞ, where φj denotes a contribution of the j-th attribute,
jA1…m. The contributions are computed using a model-independent
wrapper algorithm (Štrumbelj and Kononenko, 2010). We adapt this
approach to storage limitations in incremental learning and propose a
novel way to visualize the occurring concept drift.

The paper is structured as follows. In Section 2 we overview
relevant achievements in the field of incremental learning and
describe reliability estimation and prediction explanation in
greater detail. Section 3 presents our approach to correcting
streaming predictions and Section 4 presents our adaptation of
explanation methodology to incremental learning. Our final con-
clusions are summarized in the last Section 5.

2. Related work

The topic of our research strongly relates to the field of
incremental learning from data streams. A data stream is an
ordered sequence of instances that can be read only once or a
small number of times using limited computing and storage
capabilities. The data elements in the stream arrive online, being
potentially unbounded in size. Once an element from a data stream
has been processed it is discarded or archived. These sources of
data are characterized by being open-ended, flowing at high-
speed, and generated by nonstationary distributions (Gama and
Rodrigues, 2007; Gama et al., 2013). Learning techniques which
operate through fixed training sets and generate static models are
obsolete in these contexts. Faster answers are usually required,
keeping an anytime data model and enabling better decisions,
possibly forgetting older information (Hulten et al., 2001).

In the following we review the reliability estimation for
individual predictions, related prediction correction, and the
explanation methodology for individual predictions and models,
which we later adapt to an incremental environment.

2.1. Reliability estimation for individual predictions

When computing a prediction for an unseen example, we
cannot estimate its accuracy if the example's true value is
unknown. Reliability estimators (Bosnić and Kononenko, 2009)
try to quantitatively reason about individual predictions (their
accuracy, error residuals etc.) using various data and model
characteristics. In contrast to evaluating the averaged accuracy of
the whole model, evaluating reliability of individual predictions
provides significant additional information for establishing trust
into predictions, which is a necessity in decision-critical environ-
ments such as medicine, economics, finance and industry.

Prior to reviewing the related work, note that in this paper we
use the term “reliability estimator” as a hypernym for various
measures that estimate trust in individual predictions: non-
exhaustive list of them includes confidence, credibility, stability,
prediction interval and confidence interval. Whereas reliability
estimator denotes a method (an algorithm), we denote the com-
puted values for each individual example as reliability estimates. In
general, we can separate reliability estimators into two groups:
model-dependent, which exploit particular properties of predictive
models (such as number of support vectors and splitting nodes in
a regression tree) and model-independent, which only exploit
properties of learning data. In the following, let us review some
of related work for each of the groups separately.

Within the group of model-dependent reliability estimators,
Gammerman et al. (1998) and Saunders et al. (1999) proposed
measuring confidence as the probability of the second most
probable class and used it for extending the support vector
machine (SVM) algorithm for classification. In their work they

showed that their estimate correlates well with predictive accu-
racy of individual example. Next, Li and Wechsler (2005) intro-
duced the measures of confidence and credibility and showed them
to be informative estimates of misclassification probability within
the application of face recognition problem. Nouretdinov et al.
(2001) redefined the measure of confidence for the ridge regres-
sion where they improved the initial accuracy using residuals of
learning examples and probabilistic modelling. Weigend and Nix
(1994), Heskes (1997) and Carney and Cunningham (1999) focused
on proposing a local variance estimator for the multilayer percep-
tron model by extending the output layer with additional nodes
and adapting the learning algorithm.

Model-independent reliability estimators are based on sensi-
tivity analysis of predictive models, local modeling of prediction
error or density estimation of the example space. The first of these
approaches, the sensitivity analysis, observes the magnitudes of
changes in model output as a result of inducing changes in its
input data set (Bousquet and Elisseeff, 2002). By combining the
measured changes appropriately we were able to successfully
estimate local bias and variance in our previous work (Bosnić
and Kononenko, 2008b). The second approach, the local error
modeling, implies the reliability of an example from reliability of
other local examples. The third approach, density estimation,
estimates reliability under the premise that the accuracy is greater
in example-richer areas of input space. In our previous work
(Bosnić and Kononenko, 2008b, 2008a) we presented nine relia-
bility estimates that are based on the former approaches. Their
evaluation revealed promising results for their usage in critical
application domains of machine learning. The proposed metho-
dology was later also implemented on an oncological prognostic
problem (Štrumbelj et al., 2010) and arterial stenosis problem
(Bosnić et al., 2012).

The proposed reliability estimates have been also preliminarily
evaluated in data streaming environments (Rodrigues et al., 2008),
where the results revealed significant correlations of locality based
and sensitivity analysis approaches with the prediction error. This
motivates us to evaluate these estimates for correcting predictions,
on which we focus in this paper.

2.2. Explanation of predictive models and individual predictions

Researchers in machine learning focus on explaining logic in
predictive models to improve transparency of decision support
systems and seek arguments for their predictions. This is a
challenging task because many predictive models lack an intrinsic
mechanism for interpreting their outputs. For example, neural
networks and random forests do not provide a human-
interpretable reasoning on the logic between the inputs and
outputs. On the other hand, in decision trees, following branches
of a tree provides an interpretation of predictions, but the
approach is model-specific only.

Other model-specific approaches include explaining a naive
Bayes model using information gains of attributes (Becker et al.,
1997; Kononenko, 1993; Možina et al., 2004) and explaining
Bayesian networks (deSantana et al., 2007), tools for explaining
the importance of individual attributes for Random Forests
(Breiman, 2001), extracting rules from neural networks
(Andrews et al., 1995; Craven and Shavlik, 1994; Towell and
Shavlik, 1993), and several methods for Support Vector machines
(Hamel, 2006; Jakulin et al., 2005; Poulet, 2004).

The model-specific methods have a disadvantage of lacking a
uniform representation of explanation across different models.
Whenever we change the predictive model, the user has to adapt
to a new explanation method. This requires extra time and effort
which is what practitioners dislike. In contrast, the advantage
of model-independent methods is that they can be applied to
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an arbitrary predictive model. Several such approaches, which
observe the sensitivity of the model by changing the values of
attributes, exist (Lemaire et al., 2008; Robnik-Šikonja and Kononenko,
2008); however, they cannot detect interactions between attributes,
for example their disjunctive dependencies, which results in less
informative explanations. The method of Štrumbelj and Kononenko
(2010) has overcome this drawback. To explain the whole model, this
method assigns a contribution to each attribute value describing how
a particular value affects the prediction for a given instance. The
influence of a certain attribute value is defined as the expected change
in model's prediction when the attribute's value is omitted from the
instance. The method is generalized so that instead of observing the
influence of single attributes, the influences of all subsets of attributes
are considered. In order to obtain a global contribution for the
attribute's value the contributions across different instances are
averaged.

3. Correcting online predictions

In this section we present our approach for correcting online
predictions using reliability estimators CNK and SAbias (Bosnić and
Kononenko, 2008a). We start by describing these two estimators
and their repurposing for correcting predictions. Since the correc-
tion methodology is based on the reliability estimation for regres-
sion predictions, we evaluate our adapted approach on a real
regression domain – electricity load prediction data for the state
of New York, USA.

In our further notation, we use L¼ fðx1;C1Þ;…; ðxn;CnÞg to denote
a learning set of examples, where xi; i¼ 1…n denote the attribute
vectors and Ci; i¼ 1…n denote the true target values of the examples.
The goal of the regression task is to compute a prediction Ku for a
given unseen example ðxu; Þ as closely as possible to its true value Cu

that is unknown to the learning algorithm. We also compute a
reliability estimate ru for ðxu; Þ using a reliability estimator R. In our
case, we will use CNK or SAbias as a reliability estimator R; using these
two estimators (algorithms) we will compute reliability estimates
CNKu and SAbiasu for each particular unseen example xu.

3.1. Reliability estimators

Reliability estimator CNK models the prediction error in the
local neighborhood of the query example and reliability estimator
SAbias uses sensitivity analysis to analyse prediction stability
(Bosnić and Kononenko, 2008a). Both of these reliability estima-
tors estimate reliability in terms of estimating prediction error for a
particular example. Depending on the algorithm of reliability
estimators, their values do not necessarily belong to the same
scale as the prediction error itself, but only correlate with it.

In contrast to other model-independent reliability estimators that
we evaluated in our previous work and which correlate only to error
magnitudes (their values are always non-negative), the estimators CNK
and SAbias produce estimate values that correlate to magnitude and
direction of the prediction error. This means that their higher absolute
values denote the magnitude of the estimated error and the sign
denotes its direction. In this work we explore the latter fact firstly to
transform the estimator's scale to the scale of prediction errors and
secondly to correct the predictions with the estimated error.

3.1.1. Reliability estimator CNK
The reliability estimator CNK1 estimates the prediction error

locally in the neighborhood of the query example. In batch (i.e.

non-incremental) learning, we compute the reliability estimate
CNKu for a particular unseen query example qu ¼ ðxu; Þ as follows.
First, we induce a regression model on learning set L and compute
the prediction Ku for that particular unseen query example. In the
next step we localize the set of the k nearest neighbors of qu,
NðquÞ ¼ fðxu1;Cu1Þ;…; ðxuk;CukÞg, where NðquÞDL. Reliability esti-
mate CNKu is then defined as the difference between the average
true target value of the nearest neighbors and the prediction Ku:

CNKu ¼
∑k

i ¼ 1Cui

k
�Ku ð1Þ

In the above equation, k denotes the number of neighbors, Cui

denotes the true target values of neighbors and Ku denotes the
prediction for the query example qu. The construction of the
estimate CNK is illustrated in Fig. 1. In our experiments, five
neighbors were used for the computation of CNK, as proposed in
Bosnić and Kononenko (2008a).

3.1.2. Reliability estimator SAbias
The reliability estimator SAbias2 (Bosnić and Kononenko, 2008b)

estimates prediction error based on the sensitivity analysis of the
prediction model. The sensitivity analysis is performed for each query
example qu ¼ ðxu; Þ to determine how stable is the model when
making that particular prediction. The approach presumes that the
stable models will not substantially change their predictions for a
given example if the learning data change slightly.

We observe the influence between changes in input and output
as follows. First, we build a predictive model in traditional way and
compute prediction Ku, which we call the initial prediction, for
example qu. Next, we expand the learning set with an additional
example qu, which is the same example of interest from the first
step. As this example lacks its target value, we assign it a value
Kuþε � value_range, where Ku is the example's initial prediction
(i.e., the best guess for the true label), ε is a sensitivity parameter
that will be modified in the further steps, and value_range
represents the interval width of true values (i.e. the difference
between maximum and minimum true value in the learning set).

In the following steps the modified data set (with nþ1
examples) is used to build a set of models with varying values of
parameter ε. We use each of these models to compute prediction
for the qu again. Because the models slightly differ, their predic-
tions (which we call sensitivity predictions) differ as well. There-
fore, by using a set of parameters ε1; ε2;…; εl and by using each
parameter with its positive and its negated value, we obtain a set
of sensitivity predictions:

Ku;ε1 ;Ku;�ε1 ;Ku;ε2 ;Ku;�ε2 ;…;Ku;εl ;Ku;�εl
� �
where Ku;εi is the sensitivity prediction for qu computed using
parameter εi; i¼ 1;…; l.

Different parameters εi; i¼ 1;…; l allow us to explore the
sensitivity of the model depending on varying magnitudes of
incurred change in the dataset. To estimate reliability for qu we
combine the computed sensitivity predictions into a single metric
– reliability estimator SAbias – as follows:

SAbiasu ¼
∑i ¼ 1;…;lðKu;εi �KuÞþðKu;�εi �KuÞ

2l
: ð2Þ

The computation of SAbias is illustrated in Fig. 2. In our
experiments we used εiAf0:01;0:1;0:5;1:0;2:0g, as proposed in
Bosnić and Kononenko (2008b).

Note that the estimator SAbias returns value 0 when the
sensitivity predictions match the initial prediction. In this case

1 In the original work, acronym CNK stands for “C of N eighbors minus K”,
where C denotes the true value and K the prediction for a query example. 2 In the original work, acronym SAbias stands for Sensitivity Analysis bias.
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we assume that the initial prediction is the most reliable. In other
cases the metric estimates whether the model more likely under-
or overestimates the initial prediction in the sensitivity steps.
In this paper we exploit this fact to use SAbias for correcting
predictions in incremental learning.

3.2. Correction of predictions in incremental learning

To repurpose reliability estimators from Section 3.1 for correct-
ing streaming predictions, we need to make two adaptations:
(i) adapt reliability estimates to online learning scenario and
(ii) transform estimators' output values to the scale of prediction
error magnitudes. Let us focus on each of these two tasks in the
following.

Adaptation of reliability estimators to online learning (task
(i) above) has drawbacks that stem from the limited storage space
and limited computational time. Firstly, as the stream evolves, the
examples in the buffer change; consequently, the nearest neigh-
bors of the same query example qu are different at different times.
This impacts the locality-based methods such as CNK which
therefore exploit less information from the data and return more
varying outputs. Secondly, the limited number of examples in the
buffer prevents correct estimation of data parameters such as
maximum/minimum target value (interval width) that we require
for computation of SAbias. We could indeed incrementally com-
pute these parameters through the stream history, but if mean-
while concept drifts occur, the results would be misleading. We
therefore decided to use both estimators with examples in the
buffer only, intending to observe the impact of this limitation on
results.

In the second adaptation task we need to transform the
estimators' outputs to the scale of prediction error magnitudes.
This step is required because the noise in data causes noise in
estimator outputs; hence, it makes sense to model a trend
between reliability estimates of examples in the buffer and their
prediction errors (when their true target values become known).
We unavoidably require such model for the SAbias estimator – its
outputs only correlate to prediction errors (Bosnić and Kononenko,
2008a) and do not represent prediction errors themselves (they
are computed as the average difference between initial and
multiple sensitivity predictions) in contrast to CNK, which already
estimates the local prediction error. In our work we used linear
regression to model the former dependencies f C : CNKu-ðCu�KuÞ
and f S : SAbiasu-ðCu�KuÞ for a given example qu. Models f C and
f S are built from the examples in the buffer and are used to predict
the prediction error for new examples of interest. The purpose of
this model is illustrated in Fig. 3.

Within the adaptation of reliability estimators to correct pre-
dictions, we have to consider time complexity of both reliability
estimators, which is high, as well as the time complexity of the
linear regression transformation. For CNK, we have to compute
distances to all examples in the buffer and for SAbias, we have to
build multiple models in each iteration. These high computational
costs conflict with limitations in data stream processing; however,
both reliability estimators can be useful if the prediction problem
allows it (i.e., it demands low prediction frequency and therefore
allows sufficiently wide time gap to perform all computations).
The linear regression, on the other hand, is computed only for
examples in the buffer and needs to be modeled in two dimen-
sions only; its slope and intersection can therefore be computed
efficiently analytically.

To correct the value of the initial prediction, we sum the value
of the initial prediction and the predicted error of reliability
estimators. By this we obtain the following three predictions:

� Ku: the initial prediction for the example qu,� Kuþ f CðCNKuÞ : corrected initial prediction using estimator
CNK , and

� Kuþ f SðSAbiasuÞ: corrected initial prediction using estimator
SAbias.

We compare these three predictions for accuracy in the sections
that follow.

3.3. Experimental evaluation

We evaluated the method from Section 3.2 with electricity load
consumption prediction data, which is an important and relevant
problem for electrical distributors (Bunn and Farmer, 1985). These

CNK: average label of the
neighbors – (minus) prediction

label Cu1

qu
label Cu2

label Cu3

label Cu4

prediction Ku

label Cu5

local neighborhood
of q

u

local neighborhood
of q

u

Fig. 1. Construction of the reliability estimate CNK.

Fig. 2. Construction of the reliability estimate SAbias.

f: e
sti

mator
C

-K
)

data for examples
in the buffer

C -Ku u

estimatoru

Fig. 3. Modeling dependency between estimators' outputs (estimator AfCNK ; SAbiasg)
and prediction error for examples in the buffer.
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companies plan their business operations based on predictions for
various times ahead, for example for 1 h, 1 day or 1 week ahead.

In the following subsections we present the used data, compare
initial and corrected predictions and present the results of our
evaluation.

3.3.1. Experimental data
Our experimental dataset contains electricity consumption data

for the state of New York, USA (NYISO, 2012). These data have been
collected by the New York Independent System Operator (NYISO)
since 2001 for 11 different areas of the state of New York
abbreviated as WEST, GENESE, CENTRL, NORTH, MHK VL, CAPITL,
HUD VL, MILLWD, DUNWOD, N.Y.C., and LONGIL. Up to year 2012
the data contain 13.346.802 examples, which represent electricity
load measurements taken approximately in 5-min intervals.
Because the data for 11 different areas are independent of each
other, each having own patterns in data distribution, we consid-
ered them as 11 independent data streams.

An example segment of a NYISO data is shown in Fig. 4. In the
figure we can note daily cycles of the electricity consumption and an
anomaly that occurs approximately in the middle of the stream
segment. Since the data contain plenty of anomalies (sensor malfunc-
tions, missing values and noise) and was measured in uneven

intervals, the NYISO data had to be preprocessed; we also had to
transform the time series into attributional data that is suitable for
supervised learning. We used the following preprocessing steps:

� To remove invalid sensor values we applied a mean-shift
outlier detector that observes the change in data mean by
computing the Studentized residual (Fox, 2002). If anomaly is
detected, the erroneous data are replaced with data median for
the same hour of day of the last 3 days.

� The inter-arrival time between two examples may fluctuate
from less than 4 min up to multiples of 10 min. We transformed
the data into regular time series by adjusting the period to 1 h.

� The original data series contain only two attributes: timestamp
and data load value. To represent these data as a supervised
learning problem we transformed the series into an attribu-
tional representation where each example represents 1 h in a
day and contains the following attributes (suggested in
Rodrigues and Gama, 2009):
– Load: target load value (true value) for that hour,
– Sin.24, Cos.24, Sin.168 and Cos.168: periodical attributes that

specify a point in a daily (24-h) and weekly (168-h) cycle,
correspondingly (for example, the same time of each day
has the same values of Sin.24 and Cos.24 and the same in
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Fig. 4. An example segment of a NYISO data for the region WEST. In the figure we can note daily cycles of the electricity load and an anomaly in sensor readings that occurs
approximately in the middle of the data.
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Fig. 5. Incremental prediction of electricity load for 24 h in the future: at time t the prediction for tþ24 h is computed using the points that are denoted with black dots.
The predictions on the interval ðt; tþ24� (denoted with triangles) will be used to evaluate the model as the window slides forward and their true values become known.
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the weekly period has the same values of all four attributes).
These values are used in learning as they are expected to
relate to daily and weekly electricity load cycles,

– Minus.xx, where xxAf24;48;…;336;25;49;…;313g: value of
electricity load for xx hours in the past. First 14 elements of
xx represent load values for the same hour of a day for each
of the past 14 days and the remaining elements represent
the load values 1 h before that. Note that by defining such
attributes, we simulate a buffer that contains past examples
for up to 14 past days (336 examples).

� Since there are 31 attributes, we perform attribute filtering
prior to learning. We used a wrapper approach with backwards
selection which iteratively removes attributes that improve the
root mean squared error of the model the least (Kuhn, 2012).
The procedure was performed with cross-validation and was
terminated when the error with removal of another attribute
would start to increase.

3.3.2. Prediction problem
The goal of our prediction problem was to predict values of

electricity load for 24 h in the future, which is a typical prediction
question in electricity load prediction problem (Kyriakides and
Polycarpou, 2007). The prediction in our incremental supervised
learning setting is performed as illustrated in Fig. 5 and explained
in the following.

In the experiment, the data set is processed example-by-
example. We use each consecutive example to update the predic-
tion model, which is generated from scratch only at the beginning
of the experiment and incrementally modified in all the following
steps. After the model is incrementally modified, we move on to
the next example and repeat the process. When the first 24
examples are processed, we reach the examples for which we
made predictions at the beginning of the experiment and can use
their true values now to evaluate the former predictions. We
perform this evaluation through the rest of the stream until all
examples are processed.

Note that the attributes of examples represent the most
important points in history for making a target (in our case, one-
day-ahead) prediction in the future. We use this historical (or
lagged) attributes as well as the separate buffer of the most recent
examples to simulate learning window which shifts forward in
each step. In our case, the “oldest” attribute represents a load
value of 336 h (14 days) in the past (see Section 3.3.1 for details);
consistently, our buffer also holds 336 examples that have been
processed last. These examples in the buffer are used within
reliability estimators CNK and SAbias and to evaluate the model's
performance.

For predicting the future load values we experimented with an
artificial neural network which has been evaluated as an appro-
priate incremental model for this domain in the related work
(Rodrigues and Gama, 2009). We used the implementation in the
library AMORE in statistical package R. We treated each of 11 areas
of NYC as an independent data stream; for each of them we
performed attribute selection of 10 best attributes (as described in
Section 3.3.1) and selection of parameters (number of hidden
neurons, learning rate). For selection of parameters, a separate
validation set was used that was excluded from the learning
process. With each new example in the stream, the neural net-
work was incrementally modified by performing 500 learning
epochs with that single example.

3.3.3. Evaluation of model accuracy
When evaluating performance of a model on a data stream, our

goal is to follow evolution of its performance during the whole
data stream and not only compute an aggregated error metric at
the end (such as the mean squared error). This is important

because the intermediate increasing of error metric might indicate
the concept drift in data. A more flexible metric therefore has to
give more weight to errors of the recent examples than to errors of
the less recent ones. Metrics such as the mean squared error
clearly do not satisfy this requirement because of their inability to
“forget” old components; when they are updated with new error
residual, their sum of errors is divided by the increasing number of
examples which makes these metrics converge on the long run.

A possible approach to measuring how model accuracy
evolves over time is to use the alpha-fading mean squared error
(αMSE) which is updated recursively and focuses on model
behavior on the most recent data (Rodrigues et al., 2010). The
αMSE is defined as

si ¼ ðKi�CiÞ2þα � si�1

ni ¼ 1þα � ni�1

αMSEi ¼
si
ni

ð3Þ

where si denotes recursive error sum (Ki and Ci denote the
prediction and the true value of the i-th example, respectively),
ni denotes the recursively incremented counter and α denotes
some weight factor which is a parameter of the process. The
weight α determines how much historical values contribute
when recursively incrementing the statistic.

Since the recursive definition of alpha-fading windows is an
approximation of the common weighted sliding windows, where
examples' weights decrease as the examples progress through the
window, the error of this approximation should be controlled.
Rodrigues et al. (2010) have shown that the alpha-fading approx-
imation of the error can be within 72εR of the error computed
using weighted sliding windows, if α¼ ε1=w. In the former terms, ε
is the proportion of weight given to old examples (a parameter to
be chosen), R is the known range of the approximated variable,
and w is the size of the used window. Considering the former, we
used α¼ 0:011=buffer_size ¼ 0:011=336 � 0:9864 and n0 ¼ 0 and s0 ¼ 1
as the initial values for the recursive formula.

To compare performance of two models M1 and M2 on a
stream, a Q statistic can be used (Gama et al., 2013), which is
defined as a log ratio of αMSE statistics for M1 and M2:

QiðM1;M2Þ ¼ log
αMSEM1

i

αMSEM2
i

 !
¼ log

ðKM1
i �CiÞ2þα � sM1

i�1

ðKM2
i �CiÞ2þα � sM2

i�1

 !
ð4Þ

where the terms M1 and M2 refer to the corresponding models.
Note that just like the αMSE provides performance of a single
model over the stream, the Q statistic provides the performance
comparison of two models along the stream evolution. Addition-
ally, the values of Q ðM1;M2Þ are domain independent and are easy
to interpret: negative values denote better performance of model
M1 and positive values denote better performance of model M2.

3.3.4. Results and discussion
As explained in Section 3.2, we computed the initial prediction

Ku and two corrected predictions Kuþ f CðCNKuÞ and
Kuþ f SðSAbiasuÞ for each example in the data stream, which
simulates outputs of three models: let us denote them with M,
MC and MS, respectively. Fig. 6 (top) shows a 3-week segment of
the data stream, displaying true load values (solid line) and their
predictions (dotted line).

Fig. 6 (middle) zooms in to a particular segment of the stream
in which we can observe true values, predicted load values and
corrected predicted values with estimators CNK and SAbias in
greater detail. We can notice that all three predictions (initial and
two corrected ones) closely follow true load values; the achieved
average accuracy for all 11 regions of the state of New York was
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Fig. 6. Top: A sample of the true and predicted electricity load for the period of 3 weeks using the neural network (only a segment of the whole data stream is shown).
The predictions reflect the daily and weekly cycles in the predicted load. Middle: Comparison of the initial and both corrected predictions on a particular data segment.
Bottom: Values of Q statistics for comparing original predictions with corrected predictions using CNK and SAbias.
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Fig. 7. States and transitions of the statistical process control (SPC) concept drift detector.
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αMSEavg ¼ 0:00670:001 which is sufficiently low as it is only
about 7% percent of the load scale.

To compare the prediction accuracies over the whole stream,
we computed the αMSE statistics and compared them with the Q
statistic. We compared the performance of M versus MC and MS by
computing Q ðM;MCÞ and Q ðM;MSÞ, respectively. The evolution of
both Q statistics is shown in Fig. 6 (bottom). The figure gives an
overall impression that values of Q ðM;MCÞ are higher compared
with Q ðM;MSÞ which implies that the correction with estimator
CNK achieves better performance than the correction with esti-
mator SAbias.

Recall that positive values of Q statistics denote better
performance of a corrective mechanism compared with initial
(not corrected) predictions. To test whether the corrected
predictions significantly improve the accuracy of initial predic-
tions, we used the Wilcoxon test to reject the null hypothesis
that the means of Q ðM;MCÞ and Q ðM;MSÞ are zero with sig-
nificance level of p¼0.001.

Table 1 summarizes our results and shows the average values of
Q ðM;MCÞ and Q ðM;MSÞ for the whole stream. All values in the
table are highly significant (the highest computed p-value of the
statistical test was 6� 10�19). The results obtained with the
estimator CNK are surprisingly better than the results obtained
with the estimator SAbias: while, on the average, the CNK-based
correction improved accuracy in predictions for 10 out of 11
regions of NY, the SAbias-based correction improved accuracy in
only 3 out of 11 regions.

The explanation for better performance of CNK might lie in
greater sensitivity of SAbias to changes in the dataset compared
to the sensitivity of CNK. Namely, by computing reliability
estimates using only examples in a buffer instead using the
whole dataset (as discussed in Section 3.2) we interfere with the
ideas behind the estimators. In particular, for SAbias this means
that changing more than a single example in the sensitivity
analysis step (which happens in each learning step as the buffer
is changed) introduces additional variance that SAbias cannot
properly model as prediction reliability. This does not seem to
interfere with the estimator CNK, as the locally modeled error
seems to be stable even though its source – the nearest
neighbors – keep changing.

Although the achieved results on 11 data streams are promising,
these initial experiments call for evaluation on other problem domains
and with other predictive models. We are, however, constrained with
options for alternative predictive models, as the previous experiments
(Bosnić and Kononenko, 2008a) have shown that the performance of
reliability estimators significantly depends on the used predictive
model. For example, CNK was shown to work well with regression
trees, linear regression, generalized additive model and neural

network, whereas poorly with support vector machines, random
forests and locally weighted regression. An additional constraint is
that we require incremental versions of predictive models, which do
not exist for all of the former algorithms.

In the following section, we move from improving prediction
accuracy to another relevant tool for streaming predictions –

prediction explanation.

4. Explaining incremental models and predictions

Explanation of individual predictions and whole models is a
form of data postprocessing. It is used to gain insight – we call it
explanation – into the decision function of the model and there-
with into its reasoning behind making a particular prediction. This
transparency of the model may be obscured and it depends on the
nature of the predictive model (for example, knowledge in
regression trees can be easier interpreted than the knowledge in
neural networks). In this work we apply the methodology
(Štrumbelj and Kononenko, 2010) that produces the explanation
for an arbitrary prediction model. This methodology was devel-
oped for batch learning and is model-independent (it works as a
wrapper), treating the model as a black box.

In this paper we apply the former methodology to incremental
learning. We (1) explore the possibility of using it to explain the
changes in the modeled concept that may result due to concept drifts
in data and (2) present two novel visualizations of the modeled
concept over time. We begin by describing the original approach in
batch learning and then describe our adaptation to incremental
learning. Finally, we evaluate the approach on the electricity load
prediction problem and two additional artificial classification domains,
which provide a controlled environment to compare changes in our
generated explanations with true concept drift in data.

4.1. Explanation in batch learning

Prediction explanation increases trust into the model's decision
and allows interpretation of the modeled concept. Some models (e.g.
decision trees, Bayesian networks) are interpretable by their nature
and require no post-processing to extract comprehensible representa-
tion of this knowledge; many others require model-dependent
explanation methods. If the model-dependent methods are used, the
representation of knowledge differs across models, making them
incomparable; therefore, model-independent explanation methods
are more desirable.

The Interactions-Based Method for Explanation (Štrumbelj and
Kononenko, 2009) with its efficient implementation (Štrumbelj and
Kononenko, 2010), which we use in this paper, is such a model-
independent method for explanation that considers attribute interac-
tions and therefore successfully tackles the problem of redundant and
disjunctive concepts in data. The possible use of this methodology is
twofold: for explaining individual predictions (explanation on an
instance level) and for explaining the model as a whole.

4.1.1. Contribution of individual attribute values
The explanation (Štrumbelj and Kononenko, 2009) of predic-

tion Ku for instance xu is defined as a vector of contributions of
individual attribute values ðφ1;φ2;…;φmÞ where φj is the contribu-
tion of the value of the j-th attribute, j¼ 1;2;…;m. Positive φj
implies that the attribute value influenced the model to make a
higher prediction Ku and negative value implies the contrary. The
magnitude jφjj represents the strength of the former influence.

Let us denote a set of all attributes with A. To compute the
contribution φj, the contribution ΔS of all 2m subsets of attributes
SDA need to be computed and then divided among the attribute
values. The contributions ΔS are defined as differences between

Table 1
Average values of Q-statistics for comparing initial predictions and predictions
corrected with reliability estimator CNK (Q ðM;MC Þ), and for comparing initial
predictions and predictions corrected with reliability estimator SAbias (Q ðM;MSÞ).

Region Q ðM;MC Þavg Q ðM;MS Þavg

WEST 0.130 �0.145
GENESE 0.185 �0.036
CENTRL �0.014 �0.190
NORTH 0.133 �0.151
MHK VL 0.151 0.276
CAPITL 0.092 �0.185
HUD VL 0.565 0.081
MILLWD 0.163 0.305
DUNWOD 0.060 �0.032
N.Y.C. 0.374 �0.041
LONGIL 0.035 �0.157
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the expected prediction considering only attributes in S and the
default prediction. The contributions φj are finally derived from all
ΔS; SDA using the game theory – in particular, the Shapley value,
which determines how to divide a game payoff among coalitional
game players. To alleviate the time complexity of the above
algorithm (2m attribute subsets need to be considered), the
original approach uses the efficient approximation algorithm with
random sampling from the dataset (Štrumbelj and Kononenko,
2010), as shown in Algorithm 1.

Algorithm 1. Computation of contribution φjðxÞ of the attribute Aj

for example x.

φjðxÞ’0
take k samples from data set
for each y of k samples do

select random subset of attributes SDA
xinclude’ replace values of ðA\SÞ\Aj with corresponding values
of y
xexclude’ replace values of ðA\SÞ [ Aj with corresponding
values of y
φjðxÞ’predictionðxincludeÞ�predictionðxexcludeÞ

end for

φjðxÞ’
φjðxÞ
k

Fig. 8 in Section 4.4.2 provides an example of visualized
prediction explanations for one of our evaluation datasets (dis-
cussed later). Two different explanations for the same example
(which result due to concept drift) that appear in different parts of
data stream motivate us to visualize the changing of contributions
over time, which we show in Section 4.4.2.

4.1.2. Explanation of the whole model
The explanation of a single prediction can be expanded to the

whole model by iterating through all possible values of all
attributes. If attribute Aj has l values (if discrete) or l discretized
intervals (if continuous), the average contribution of value l for Aj,
which we denote with Φj;l, is computed by averaging contribu-
tions of randomly sampled examples that have Aj artificially set to
l. The positive and the negative contributions are averaged
separately in the former procedure, which yields the average
positive and the average negative contribution of each attribute.

Fig. 9 in Section 4.4.2 provides an example of visualized
explanation for the whole model for one of our evaluation datasets
(discussed later). Two different model explanations for the same
dataset (due to concept drift) provide additional motivation to

seek for alternative visual representations of changing model over
time.

4.2. Adaptation to incremental learning

In incremental learning the model has to adapt to possible
concept drifts in data. If we wish to explain the model, we have to
be aware that the modeled concept depends on time. The
explanation in incremental learning is therefore in fact represented
by a time series of individual explanations, which reflect current
distribution of data.

In our work we adapt the existing model-independent expla-
nation method for batch learning (see Section 4.1) to generate
multiple explanations in incremental learning. While processing
the data stream, we trigger the basic method whenever the
concept drift detector, which runs in parallel, signals that the
concept drift occurred. We expect that the generated explanation
series reflect consecutive concepts in streaming data, which
provides greater insight into how domain progressively changes.
We also propose a form of joint visualization to represent these
changes over time.

In the following subsections we describe the used concept drift
detector and the approach for triggering computation of new
explanation in the series.

4.2.1. Detecting concept drift
Data stream contains (possibly infinite) sequence of pairs (xi,

Ci), where xi is the i-th example and Ci is its target. After the model
makes a prediction Ki ¼ Ĉi and the example's true target value
becomes available, the model's performance can be assessed.
Whenever error rate significantly rises, one can assume that there
has been a change in the generating distribution – the concept
drift (Sebastião and Gama, 2009). This reasoning represents the
basis of the statistical process control (SPC) mechanism (Gama,
2010), which we use for concept drift detection.

The SPC algorithm maintains two values: the minimal error rate
qmin and the minimal standard deviation smin. Error rate qi of the i-
th example is defined as the probability PðĈ iaCiÞ, and the
standard deviation is defined as si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qið1�qiÞ=i

p
. The algorithm

updates the two monitored values when qiþsioqminþsmin. Based
on the Bernoulli distribution and central limit theorem, the SPC
defines that the processed example can belong to one of the
following states:

� in control, when qjþsjoqminþβnsmin,� out of control when qjþsjZqminþαnsmin and
� warning when the system is between the former states.

Fig. 8. Explanation of individual predictions for the same example (shape ¼ circle, color ¼ blue, size ¼ medium) that appears in a stream as example no. 1500 and 2350
(dataset: STAGGER, model: Naive Bayes). The figure on the left shows that the shape and the color have negative contributions (i.e. they have the biggest influence to classify
the example as negative) for classifying examples into the target concept ðcolor ¼ greenÞ3 ðshape¼ squareÞ whereas the size is a redundant attribute. The figure on the right
shows that only the size positively contributes to classifying into the target concept ðsize¼mediumÞ3 ðsize¼ largeÞ, whereas the remaining two attributes are redundant.
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where α and β are multiples of standard deviation in a symmetric
Gaussian distribution associated with the desired confidence
levels for out of control and in control states, respectively.3

The meaning of transitions between different SPC states is
illustrated in Fig. 7 and explained as follows. When in control, the
current model is incrementally updated with the current example,
since the error rate is stable. If the system goes into the warning
state, the subsequent examples are stored in a separate intermedi-
ate buffer, which serves as a learning set for the new model in case
that the concept drift occurs. From the warning state, the system

Fig. 9. Model explanations for target concept ðcolor ¼ greenÞ3 ðshape¼ squareÞ (dataset: STAGGER, model: Naive Bayes) when the system enters the warning (left) and the
out of control state (right). The figures show contributions of individual attribute values (shown as grey horizontal bars) as well as the average positive and negative
contributions for the whole attributes (shown as black horizontal bars). The left explanation shows that square shape and the green color contribute to positive prediction
into the final class; other shape and color attributes contribute negatively and size is redundant). The explanation on the right was generated when the system indicated
concept drift and indicates gradual transition into the target concept ðsize¼mediumÞ3ðsize¼ largeÞ.

Fig. 10. Changing contributions of attribute values over time (dataset: SEA, explanation triggered periodically with ω¼ 15;000). Axis x denotes time (example numbers) and axis y
denotes contribution values. Each graph displays contributions for one attribute in the dataset. Contributions of individual attribute values are represented with thin lines; their shadings
denote different attributes values – the higher the attribute value the darker the color (attribute values were equidistantly discretized into 10 intervals). Two thick lines in each graph
denote the mean positive and negative contributions of the attribute as the whole. The contributions of attributes x1 and x2 reflect the target concept x1þx2rβ; lower values increase
the likelihood of positive classification and vice versa. Attribute x3 is correctly explained as irrelevant with its only contributions being the result of noise.

3 We compute them using the inverse erf function, e.g. α¼
ffiffiffi
2

p
erf �1ðPÞ, where

P is the desired confidence interval.
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can either return to in control or progress to the out of control state.
In the first case, the intermediate buffer is emptied because we
deemed the error rise to be a false alarm; in the second case, the
new model is constructed from the examples in the buffer and the
values qmin and smin are reset. The number of examples that were
collected in the intermediate buffer between the warning and out
of control state serves as an indicator of the concept drift rate: the
smaller is the number of examples in the buffer, the faster the drift
occurs.

Like the explanation methodology, the SPC algorithm works as
a wrapper in combination with an arbitrary learning algorithm, as
well. It is mostly used in batch learning and requires an adaptation
to the incremental learning, which we describe in the following.

4.2.2. Adaptation of SPC
Due to the storage limits in incremental learning, we have to

bound the upper size of two used buffers: (1) the learning buffer –
the buffer that stores the most recently arrived examples, and
(2) the intermediate buffer – the buffer used in the warning state of
SPC. We perform this by introducing a parameter max_window,
which determines the maximum number of examples that each of
two buffers can store. If the number of examples in each buffer
exceeds this threshold, the oldest examples are discarded so that
only the newest max_window examples are kept. This sliding
window decreases the time to process an example and prevents

hogging of resources in case where the concept drift does not
occur for the longer periods of time. It also cuts down on
explanation time without a significant loss of quality, since the
distribution of examples in the sliding windows is locally static. Its
downside is a partial sacrifice of generality – the parameter
max_window has to be chosen appropriately, which requires prior
knowledge.

4.3. Data stream explanation triggered by concept drifts

In our work we combine the adapted explanation algori-
thm (see Section 4.1) and the adapted SPC algorithm (see
Section 4.2.2). Our approach triggers the computation of model
explanation depending on the change of the SPC state, as
follows:

� If the system's state changes from in control to warning state or
from warning to in control state, we trigger computation for
explaining the new model. We consider the former change to
indicate local peculiarities in data distribution and the latter a
more substantial concept drift – both changes are interesting to
be detected and visualized.

� If the state changes from warning to in control, we refrain
from triggering the explanation and consider this as a
false alarm.

Fig. 11. Changing contributions of attribute values over time (dataset: STAGGER, explanation triggered only at concept drift detection). Axis x denotes time (example
numbers) and axis y denotes contribution values. Each graph displays contributions for one attribute in the dataset. Contributions of individual attribute values are
represented with thin lines; their line types denote attributes values according to respective legends. Two thick lines in each graph denote the mean positive and negative
contributions of the attribute as the whole. Solid vertical lines indicate times where explanation of the model was triggered using the SEA algorithm and dashed vertical lines
mark the places of actual concept drift in data. The figure shows how the SPC algorithm correctly detected concept drifts, as the change in the explanation follows the change
in concept. The model successfully adapted to the new concept, which is shown by changing attribute contributions.
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In our system we introduce a parameter ω which determines
the minimum frequency for computing model explanation. By
computing the explanation at least for every ω examples, we
ensure the minimal explanation frequency of the stream. Each
local model explanation ϕ consists of computed explanations Φj;l

for all discrete values (if discrete attribute) or discretized intervals
(if continuous attribute) l of the j-th attribute. We denote the final
stream of explanations as ðϕ; l; tÞi, where ϕ is the local explanation,
l the size of the sliding window, t is the trigger of explanation
(tAfwarning; out_of _control;ωg and i the enumeration index in
the sequence of generated explanations.

4.4. Experimental evaluation

We evaluated the adapted explanation methodology on two
datasets using the basic Naive Bayes and k-nearest neighbors

classifiers, which are both incremental in their nature, so no
adjustments to the algorithms were necessary.

In the following subsections we present the experimental
datasets and present a novel technique for visualizing explanation
of the stream. Since the results obtained using the Naive Bayes
classifiers were very similar to those using k-nearest neighbors, we
only report on the former.

4.4.1. Experimental data
We evaluated our approach on the electricity load prediction

problem dataset, which was described in Section 3.3.1, and on two
additional synthetic classification problems. The reasons for using the
additional two synthetic datasets were because they represent a
controlled environment with known distribution of examples. In
such environment we can observe if the concept drift detector was
triggered at the time when the concept within the data actually
changed. We are unable to do so for the electricity load prediction

Fig. 12. Contributions of attribute values over time for the electricity load prediction dataset (due to space constraints only 4 attributes with the highest contribution are
displayed, plots for the others look similar). The explanation was triggered periodically with ω¼ 400). Axis x denotes time (example numbers) and axis y denotes
contribution values. Contributions of individual attribute values are represented with thin lines; their shadings denote different attributes values – the higher the attribute
value the darker the color (attribute values were equidistantly discretized into 10 intervals). Two thick lines in each graph denote the mean positive and negative
contributions of the attribute as the whole. The figure shows that the SPC algorithm detected no concept drift and that the contribution of all four attributes remained steady
through the stream.
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problem, for which there are no known changes in the data distribu-
tion. Additionally, the SPC algorithm, as defined in Section 4.2.1,
requires probabilities for predicted classes, which are not explicitly
provided along with regression predictions. For our experiments, the
electricity load target values were hence discretized into two classes:
low load (0r loadr0:5) and high load (0:5o loadr1:0).

Both synthetic datasets contained multiple concepts with
various degrees of drift between them. Their brief description:

� SEA concepts (Street and Kim, 2001) is a data stream comprising
of 60,000 examples (i.e. points in three–dimensional space)
with continuous numeric attributes xiA ½0;10�, i¼ 1;2;3 and a
binary target concept which equals x1þx2rβ (for some
threshold βAf7;8;9;9:5g). Therefore, only x1 and x2 are the

relevant attributes. The target concept in the stream is changed by
varying threshold β over time to equal β¼ 8 first, then β¼ 9, then
β¼ 7 and finally β¼ 9:5. In addition to varying the target concept,
10% noise is added to target threshold β within each example.

� STAGGER is generated with MOA (Massive Online Analysis) data
mining software (Bifet et al., 2010). The examples represent
geometrical shapes which are described by attributes sizeA
fsmall;medium; largeg, colorAfred; blue; greeng and shapeA
fcircle; square; triangleg. The boolean target attribute is varied
over generated 4500 examples, which are divided into three
sequential blocks as follows:
1. examples 1–750 with target ðsize¼ smallÞ4ðcolor¼ redÞ
2. examples 751–1800 with target ðcolor¼ greenÞ3

ðshape¼ squareÞ

Fig. 13. The mean positive and the mean negative contributions of all attributes (data: SEA). The figure shows that attributes x1 and x2 are approximately equally important
through time.

Fig. 14. The mean positive and the mean negative contributions of all attributes (data: STAGGER). The figure shows how the importance of attributes changes for predicting
each of sequential concepts.

Z. Bosnić et al. / Engineering Applications of Artificial Intelligence 34 (2014) 178–192190



3. examples 1801–3600 with target ðsize¼mediumÞ3
ðsize¼ largeÞ

4. examples 3601–4500 with the same target as 1 above.

In this dataset, we applied the gradual change in concept drift
between the four blocks by mixing them using a sigmoid
function. The width of the gradual drift lasted 50 examples
for the changes between concepts 1-2 and 2-3, and 150
examples for the change between concepts 3-4.

4.4.2. Visualizing explanation in data streams
The original explanation for individual examples (Štrumbelj and

Kononenko, 2010) visualizes contributions of individual attribute
values with bar charts – one for each example of which prediction
needs explaining. Two such visualizations are given in Fig. 8, which
contain explanations for the same example (appearing as examples
1500 and 2350) computed using the model that evolved over the
stream and targeting different concepts (see Section 4.4.1).

Different explanations in Fig. 8 suggest that it would make
sense to visualize how the knowledge in the model changes as
the examples arrive. In batch learning this is done by plotting
(1) the mean positive and the mean negative contribution of each
attribute value and (2) the mean of each attribute as a whole. We
consider this approach less appropriate for incremental models
that are subject to concept drifts, because it would require a
separate visualization for each local explanation. Two such local
model explanations are shown in Fig. 9. Both explanations are
generated for the second target concept in the STAGGER dataset
and show how the knowledge in the model changes when the SPC
algorithm indicates the warning and the out of control state.

The large number of model explanations hinders perceiving a
global view of the whole stream. To include the temporal component,
we propose two variations of a line plot, which display changing
attribute contributions over time. The first type of
visualization is shown in Figs. 10 (for the SEA dataset), 11 (for the
STAGGER dataset) and 12 (for the electricity load prediction dataset).
Two interesting conclusions can be drawn from the figures:

1. The figures clearly show how contributions of attribute values
evolve. Fig. 10 shows that only the last two attributes are
relevant for predicting the target goal (which is x1þx2rβ for

βAf7;8;9;9:5g); the figure also shows that lower attribute
values (denoted with lighter shades of thin lines) contribute
more to positive prediction outcomes. This makes sense,
because by summing lower values of x1 and x2 we are less
likely to exceed the threshold β and produce a negative
example. Fig. 11 illustrates changing contributions even more
as they adapt to target concept that changes more radically
over time: for example, note how the contribution of attribute
size increases as the model adapts to the first and the third
concept (in which size is relevant) and decreases as the model
adapts to the second concept (in which size is irrelevant). The
last, Fig. 12 shows how the contributions of all four observed
attributes are relevant for predicting the target.

2. Solid and dashed vertical lines in Fig. 11, which denote SPC-
triggered computation of explanation and the real point of
concept drift, respectively, coincide well. The dashed vertical
line is followed by two solid lines that correspond to transitions
to the warning and out of control state. This indicates the
appropriateness of the SPC algorithm for our task. This is less
obvious in Fig. 10 in which all concept drifts, which were
successfully detected by SPC, and the periodically triggered
explanations do not differ greatly.

The second type of visualization, which we propose, is shown
in Figs. 13–15. These figures are an aggregated versions of Figs. 10,
11 and 15 and contain the mean positive and the mean negative
contributions of all attributes in one place. Such figures condense
information from the former three figures to provide a quality
insight into the model and enable comparison of contributions on
the same scale. Fig. 13 shows how both attributes, x1 and x2, are
approximately equally important through time, as well as all
observed attributes in Fig. 15. Fig. 14, however, allows quick
identification of important attributes for each sequential concept.

5. Conclusion

In our work we focused on two tasks: correcting predictions in
data streams and explaining incremental models. For both tasks
we adapted the existing methodologies that were originally
developed for batch learning to specifics of the incremental
learning environment.

Fig. 15. The mean positive and the mean negative contributions of all attributes (data: electricity load prediction). The figure shows that the observed attributes are
approximately equally important through time.
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The application of reliability estimators CNK and SAbias to
correct predictions has shown that unavailability of entire data
interferes with proper sensitivity analysis and consequently the
estimator SAbias. Since the locality based estimator CNK modeled
reliability by using only the most similar examples in the neigh-
borhood, it overcame this limitation and yielded promising results
by improving accuracy in 10 out of 11 testing data sets. As our
second task we intertwined the explanation methodology for
models and predictions in batch learning with a concept drift
detector. We illustrated how the evolution of attribute contribu-
tions can be followed through time and be used to explain the
changing concept in the model.

In the present work, we applied such learning algorithms
and parameters as suggested in related literature. Although we
are limited to incremental implementations of predictive algo-
rithms, we are aware that both approaches should be evaluated
with different models and with different problem domains to
ensure general usefulness. An important issue to note is the high
time complexity of used reliability estimators, which is acceptable
if the prediction problem demands low prediction frequency. We
plan to focus on broader evaluation in our further work, as well as
on comparing prediction correction mechanisms with other
approaches in related work.

To conclude, the results indicated that the proposed approaches
can improve prediction accuracy and allow transparent understanding
of the modeled concepts. We believe that both evaluated methodol-
ogies provide useful tools for users of incremental models, as they
improve their applicability in risk-sensitive environments where
prediction mistakes can be costly – such as in medicine, finance and
industry.
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