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Abstract This work proposes a hybrid genetic algorithm (GA) to address the unit
commitment (UC) problem. In the UC problem, the goal is to schedule a subset of a
given group of electrical power generating units and also to determine their production
output in order to meet energy demands at minimum cost. In addition, the solution must
satisfy a set of technological and operational constraints. The algorithm developed is
a hybrid biased random key genetic algorithm (HBRKGA). It uses random keys to
encode the solutions and introduces bias both in the parent selection procedure and
in the crossover strategy. To intensify the search close to good solutions, the GA is
hybridized with local search. Tests have been performed on benchmark large-scale
power systems. The computational results demonstrate that the HBRKGA is effective
and efficient. In addition, it is also shown that it improves the solutions obtained by
current state-of-the-art methodologies.

Keywords Unit commitment · Genetic algorithms · Hybrid metaheuristics ·
Electrical power generation

L. A. C. Roque
DEMA, Instituto Superior de Engenharia do Porto, 4200-072 Porto, Portugal
e-mail: lar@isep.ipp.pt

D. B. M. M. Fontes (B)
LIAAD-INESC-TEC, Faculdade de Economia, Universidade do Porto, 4200-464 Porto, Portugal
e-mail: fontes@fep.up.pt

F. A. C. C. Fontes
ISR-Porto, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
e-mail: faf@fe.up.pt

123



J Comb Optim (2014) 28:140–166 141

1 Introduction

Power systems are one of the most important infrastructures in a country since the
commodity involved is essential to everyday life, its availability and price are critical
to many companies, and it requires continuous balancing (Rebennack et al. 2010a,b).
The study and operation of these systems involves solving many different optimization
problems (Kallrath et al. 2009). Amongst these problems, the unit commitment (UC)
problem stands out as it plays a key role in planning and operating power systems. Opti-
mal scheduling of the generating units not only has the potential of saving millions of
dollars, but also of maintaining system reliability by keeping a proper spinning reserve
(Zheng et al. 2012). The UC problem is an optimization problem where the goal is
to determine the on/off status of the generating units at minimum operating costs. In
addition, the production of the committed units, which also needs to be determined,
must be such that it satisfies demand and spinning reserve constraints. Furthermore, a
large set of technological constraints are also imposed on generating units. Due to its
combinatorial nature, multi-period characteristics and nonlinearities, this problem is
highly demanding computationally and thus, it is a hard optimization task to solve it for
real sized systems. The UC problem has been extensively studied in the literature. Sev-
eral methodologies based on exact and on approximate algorithms have been reported.
Optimal solutions can only be obtained for small sized problem instances through the
solutions of the corresponding mixed integer quadratic programming (MIQP) model.
Other versions of the UC problem have also been studied, see for example Zheng et
al. (2012), Wang et al. (2012), Jiang et al. (2012), Schneider et al. (2013).

In the past, several traditional heuristic approaches based on exact methods have
been proposed, such as dynamic programming (DP), branch and bound, Lagrangian
relaxation (LR) and mixed-integer programming, see for example Muckstadt and
Koenig (1977), Cohen and Yoshimura (1983), Huang et al. (1998), Rong et al. (2008),
Frangioni et al. (2008), Frangioni et al. (2009), Patra et al. (2009). Most of the recently
developed methods are metaheuristics, evolutionary algorithms, and hybrids of the
them, see for example Zhao et al. (2006), Sun et al. (2006), Dang and Li (2007),
Jeong et al. (2009), Lau et al. (2009), Roque et al. (2011), Hadji and Vahidi (2012).
In general, these latter types have led to better results than the ones obtained with the
traditional heuristics.

This paper proposes a hybrid biased random key genetic algorithm (HBRKGA) to
address the UC problem. The HBRKGA proposed here is based on the framework
provided by Gonçalves and Resende (2010), which has been used effectively and effi-
ciently in other important applications (Fontes and Gonçalves 2007, 2012; Gonçalves
et al. 2008; Sourirajan et al. 2009; Gonçalves and Resende 2011; Kotsireas et al. 2012).
The BRKGAs are a variation of the random key genetic algorithms, first introduced
by Bean (1994). A biased random key GA differs from a random key GA in the way
parents are selected for mating and in the probability of inheriting chromosomes from
the best parent. In this HBRKGA, repair mechanisms are also included and therefore
all the individuals considered for evaluation are feasible. The HBRKGA is capable of
finding better solutions than the best currently known ones for most of the benchmark
problems solved. Furthermore, the computational time requirements are modest and
similar to those of other recent approaches.
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The UC problem is a well-researched combinatorial optimization problem and has
been addressed by a large variety of methods. Nevertheless, the approach proposed
here has managed to improve current state-of-the-art methodologies. These facts led
us to conclude that the proposed approach can be promising to address combinatorial
optimization problems in other application areas.

The remainder of this article is organized as follows. Section 2 describes the UC
problem and provides its mathematical formulation. Section 3 describes previous
methodologies addressing the UC problem. The solution approach proposed to address
the UC problem is explained in Sect. 4. Then, Sect. 5 tests the effectiveness and effi-
ciency of the approach proposed here in benchmark systems with up to 100 units for
a 24-h period. In addition, the results obtained are compared to those of the current
state of the art approaches reported in the literature. Due to recent advances in MIQP
commercial solvers, such as CPLEX, it is possible to solve UC problems optimally, at
least for smaller problems. This approach has also been implemented and the results
obtained for small size instances are used for comparison purposes. Finally, Sect. 6
presents some conclusions.

2 The UC problem formulation

In the UC problem the optimal turn-on and turn-off schedules need to be determined
over a given time horizon for a group of power generating units under certain opera-
tional constraints. In addition, the output levels must be decided for each on-line unit
at each time period (See Table 1).

Table 1 Notation used in the mathematical formulation

Indexes t : Time period index

j : Generating unit index

Decision variables yt, j : Generation of unit j at time t , in (MW)

ut, j : Status of unit j at time t (1 if it is on)

Auxiliary variables T on/of f
j (t): Number of time periods for which unit j has

been continuously on-line/off-line until time t , in (h)

Parameters T : Number of time periods (h) of the scheduling time horizon

N : Number of generating units

Rt : System spinning reserve requirements at time t , in (MW)

Dt : Load demand at time period t , in (MW)

Y min j : Minimum generation limit of unit j , in (MW)

Y max j : Maximum generation limit of unit j , in (MW)

Tc, j : Cold start time of unit j , in (h)

T on/of f
min, j : Minimum uptime/downtime of unit j , in (h)

SH/C, j : Hot/cold start-up cost of unit j , in [$]
�

dn/up
j : Maximum output level decrease/increase allowed in

consecutive periods of unit j , in (MW)
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The model has two types of decision variables. Binary decision variables ut, j , which
are either set to 1, meaning that unit j is committed at time period t; otherwise they
are set to zero. The real-valued variables yt, j indicate the amount of energy produced
by unit j at time period t . Such decisions are limited by two types of constraints: load
constraints, consisting of demand and spinning reserve constraints; and technological
constraints. The objective of the UC problem is minimizing the total operating costs
over the scheduling horizon.

2.1 Objective function

The objective function contains three cost components: generation costs, start-up costs,
and shut-down costs.

The generation costs, also known as fuel costs, are conventionally given by the
following quadratic cost function.

Fj (yt, j ) = a j · (yt, j )
2 + b j · yt, j + c j , (1)

where a j , b j , c j are the cost coefficients of unit j .
The start-up costs, which depend on the number of time periods the unit has been

off, are given by

St, j =
{

SH, j , if T of f
min, j ≤ T of f

j (t) ≤ T of f
min, j + Tc, j ,

SC, j , if T of f
j (t) > T of f

min, j + Tc, j ,
(2)

where SH, j and SC, j are the hot and cold start-up costs of unit j , respectively. The
shut-down costs for each unit Sd j , whenever considered in the literature, are not time
dependent.

Therefore, the cost incurred with an optimal scheduling is obtained by minimizing
the total costs for the entire planning period,

Min
T∑

t=1

N∑
j=1

{
Fj (yt, j ) · ut, j + St, j · (1 − ut−1, j ) · ut, j + Sd j · (1 − ut, j ) · ut−1, j

}
.

(3)

2.2 Constraints

The constraints are divided into two sets: the demand constraints and the technical
constraints. The first set of constraints can be further divided into load requirements
and spinning reserve requirements.
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(1) Load requirement constraints The total power generated must meet the load
demand, for each time period.

N∑
j=1

yt, j · ut, j ≥ Dt , for t ∈ {1, ..., T } . (4)

(2) Spinning reserve constraints The spinning reserve is the total capacity of real
power generation available from on-line units net of their current production level.

N∑
j=1

Y max j · ut, j ≥ Rt + Dt , for t ∈ {1, ..., T } . (5)

The second set of constraints includes limits on the unit output range, on the
maximum output variation allowed for each unit (ramp rate constraints), and on
the minimum number of consecutive time periods that the unit must be in each
status (on-line or off-line).

(3) Unit output range constraints Each unit has a maximum and minimum production
capacity.

Y min j · ut, j ≤ yt, j ≤ Y max j · ut, j , for t ∈ {1, ..., T } and j ∈ {1, ..., N } . (6)

(4) Ramp rate constraints Due to the thermal stress limitations and mechanical char-
acteristics the output variation levels of each on-line unit for consecutive periods
are restricted by ramp rate limits.

− �dn
j ≤ yt, j − yt−1, j ≤ �

up
j , for t ∈ {1, ..., T } and j ∈ {1, ..., N } . (7)

(5) Minimum uptime/downtime constraints The unit cannot be switched on or
switched off instantaneously once it is committed or decommitted. The mini-
mum uptime/downtime constraints impose a minimum number of time periods
that must elapse before the unit can change its status.

T on
j (t − 1) ≥ T on

min, j · (
u j (t − 1) − u j (t)

) · u j (t − 1), (8)

T of f
j (t − 1) ≥ T of f

min, j · (
u j (t) − u j (t − 1)

) · (1 − u j (t − 1)), (9)

for t ∈ {1, ..., T } and j ∈ {1, ..., N } .

Also, at the initial time, the variables T on
j (0), T of f

j (0), u j (0), and y0, j are defined
by the corresponding initial status of each unit.

3 Previous methodologies addressing the UC problem

This section starts by describing several traditional heuristic approaches based on exact
methods that have been reported in the literature. Then, we describe methods based on
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metaheuristics, mainly evolutionary algorithms, and hybrids of the them, which more
recently have been reported in the literature.

3.1 Approaches based on exact methods

DP was the earliest optimization-based method to be applied to the UC problem. The
advantage of DP is its ability to maintain solution feasibility. The disadvantage is
the “curse of dimensionality”, which may result in unacceptable computational time
and memory requirements. Due to its enumerative nature, DP suffers from a long
processing time that expands exponentially with the size of the problem. Therefore,
in practice many heuristic strategies have been introduced to limit the dynamic search
for a large system. The most widely used method to reduce the dimension is based
on a priority list. The list is typically formed by ranking the units based on their
marginal power production cost or average full load cost index (Sen and Kothari
1998). More recently, other approximate methods based on DP have been proposed
for the UC problem and its variants. For instance Rong et al. (2008) have proposed
a DP algorithm based on a linear relaxation of the on/off status of the units and
on the sequential commitment of the units, one by one, for the UC in multi-period
combined heat and power production planning under the deregulated power market.
In Patra et al. (2009), a DP technique with a fuzzy and simulated annealing based unit
selection procedure has been proposed. The computational requirements are reduced
by minimizing the number of prospective solution paths to be stored at each stage
of the search procedure by using heuristics, such as priority ordering of the units,
unit grouping, fast economic dispatch based on priority ordering, and avoidance of
repeated economic dispatch.

Not many works on the UC problem used branch-and-bound (BB). In earlier
research (Lauer et al. 1982; Cohen and Yoshimura 1983), the authors address the
UC problem with time-dependent start-up costs, demand and reserve constraints and
minimum up and down time constraints. However, the authors do not incorporate
ramp rate constraints. Furthermore, Cohen and Yoshimura (1983) consider that the
fuel consumption is given by a linear cost function, which constitutes another major
drawback. In 1998 a two-phase procedure is proposed. In the first phase, using con-
straint satisfaction techniques, the constraints are propagated as much as possible to
reduce the search domain. The second phase fulfills the economic dispatch function
on the committed units, obtaining an upper bound.

LR is capable of solving large scale UC problems swiftly however, the solutions
obtained are usually suboptimal. Based on the LR approach, the UC problem can be
written in terms of (1) a cost function that is the sum of terms, each involving a single
unit, (2) a set of constraints involving a single unit, and (3) a set of coupling constraints
involving all of the units (the generation and reserve constraints), one for each hour
in the study period. An approximate solution to this problem can be obtained by
joining the coupling constraints and the cost function using Lagrange multipliers. The
resulting relaxed problem minimizes the so-called Lagrangian subjected to the unit
constraints. LR was first applied to solve the UC problem without considering ramp
constraints (Muckstadt and Koenig 1977). Bard (1988) uses LR to divide the model
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into separate subproblems, one for each unit. The author tests the method on a 10-unit
system with exponential start-up costs (see case study 5). Recently, in (Frangioni et al.
2008) an effective LR approach has been proposed for the UC problem. This approach
relies on an exact algorithm for solving the single-UC problem proposed in (Frangioni
and Gentile 2006). More recently, in (Fan et al. 2012) two LR methods were proposed,
one based on subgradient optimization and the other based on cutting planes. They
were tested on several problem instances generated by the authors with a simpler and
linear cost function, but not on the usual benchmark problem instances. Therefore, no
comparisons with alternative methods were possible. From the tests performed, it was
possible to conclude that the subgradient method yields better results.

Optimal solutions can be found by solving the MIQP model, but the computational
time requirements are enormous and they usually increase exponentially with the
problem size, even with the availability of efficient software packages (such as CPLEX
and LINDO), as will be seen in the results section. Some authors have tried to improve
the performance of the MIQP by reformulating the UC problem as a mixed integer
linear programming problem by means of piece-wise linear approximations of the
cost function, see for example (Carrion and Arroyo 2006; Frangioni and Gentile 2006;
Frangioni et al. 2008, 2009; Ostrowski et al. 2012; Viana and Pedroso 2013). Other
authors also relax the time dependent startup cost by considering a stairwise linear cost
function, see for example (Carrion and Arroyo 2006). Then the linear approximation
models are usually solved by the CPLEX. The execution of the CPLEX is stopped
when the solutions are within 0.5 and 1 % of optimality for smaller and larger problems,
respectively.

3.2 Metaheuristic approaches

For methods based on metaheuristics, there is recent research in the literature reporting
results on evolutionary programming (Juste et al. 1999), particle swarm optimization
(Zhao et al. 2006), quantum evolutionary algorithms (Jeong et al. 2009; Lau et al.
2009), memetic algorithms (MAs) (Valenzuela and Smith 2002), and genetic algo-
rithms (GAs) (Kazarlis et al. 1996; Arroyo and Conejo 2002; Sun et al. 2006; Dang
and Li 2007; Roque et al. 2011). Juste et al. (1999) employ evolutionary programming
in which populations of individuals evolve through random changes, competition and
selection. The UC schedule is coded as a string of symbols and viewed as a candidate
for reproduction. Initial populations of such candidates are randomly produced to form
the basis of subsequent generations.

The resarch in (Zhao et al. 2006) introduces an improved particle swarm optimiza-
tion (IPSO) where the orthogonal design is used for generating the initial population
scattered uniformly over a feasible solution space. This method has been tested on the
problems of case study 1 and presented good results. However, the method has been
recently outperformed by both Jeong et al. (2009) and Lau et al. (2009).

These work propose quantum-inspired evolutionary algorithms (QEAs). The QEA
is based on the concept and principles of quantum computing, such as quantum bits,
quantum gates and superposition of states. The QEA employs quantum bit representa-
tion, which has better population diversity comparatively to other representations used
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in evolutionary algorithms, and uses quantum gates to drive the population towards
the best solution. The mechanism of the QEA can inherently treat the balance between
exploration and exploitation, thus incorporating a sort of local search. Both Jeong et al.
(2009) and Lau et al. (2009) divide the UC problem into two subproblems: (1) sched-
ule the on/off status of the units and (2) determine the power output of the committed
units. In both works, repair mechanisms are used to accelerate the solution quality and
to ensure that unit schedules generated by the QEA are feasible. Jeong et al. (2009)
improve the conventional QEA by introducing a simplified rotation gate for updating
Q-bits and a decreasing rotation angle approach for determining the magnitude of the
rotation angle. The current best known results for problems in case study 1 have been
reported in these works, which have been improved in the work presented in this paper.

A MA and a GA using local search combined with LR are introduced in (Valen-
zuela and Smith 2002). In these algorithms, a local search is integrated as part of
the reproductive mechanism. Results show that this approach can yield reasonable
schedules at satisfactory computational times. Although it was used to solve problems
in case studies 1 and 5, it is only competitive for the latter. GA solutions to the UC
problem have been provided in (Kazarlis et al. 1996) with the addition of problem
specific operators. Problem specific operators are defined within windows, thus acting
on building blocks rather than on bits. Therefore, once a good building block is found
it is preserved through the evolution process.

Arroyo and Conejo (2002) propose a GA using a repair mechanism, which was
implemented in parallel. Ramp rate limits are always enforced while constructing
the solutions, and therefore they are never violated. However, heuristics are used to
enforce load feasibility (enough power is committed) and time feasibility (minimum
up/down time). The proposed algorithm has been successfully applied to a real problem
with 45 units (see case study 4). Dang and Li (2007) also divide the UC problem
into scheduling and dispatching problems. The former is solved by a GA using a
floating-point chromosome representation. Since the encoding and decoding schemes
are specific to and based on the load profile type, different problems require different
such schemes. The production of each on-line unit is determined by the LR. In (Sun
et al. 2006) a real coded GA is proposed. A solution is represented by a real number
matrix, expressing the generation schedule for each unit at each time period. A repair
mechanism is used to guarantee that the generation schedule satisfies system and unit
constraints. The method was tested by using the most common benchmark problems
(case study 1) and a 38-unit problem (case study 2), being competitive only for the
latter case study.

A very recent type of evolutionary algorithm, the imperialist competition algorithm
(ICA), has been applied to the UC problem in (Hadji and Vahidi 2012). Like other
evolutionary algorithms ICA starts with an initial population of solutions which are
termed countries. Some of the more powerful countries (best solutions) are designated
as imperialists, while the remaining ones are colonies. Colonies are then divided
amongst imperialists, based on the power of the latter. The power of an empire is
given by the power of the imperialist country and the power of its colonies. In the next
stage, the imperialistic competition among the empires begins, and in this competition,
the weak empires are eliminated. The imperialistic competition will gradually lead to
an increase in the power of dominant empires and a decrease in the power of weakest
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ones, until only one empire remains. The authors tested their methodology on the most
commonly used benchmark problems (see case study 1). However, as demonstrated
in the results section, the results only improve in the problem instance with 10 units.

More details on these methods and other applications developed for the UC problem
can be found in the extensive and comprehensive bibliographic surveys published over
the years, see for example Sen and Kothari (1998), Padhy (2000), Padhy (2004), Salam
(2007).

4 The proposed methodology

In recent years many heuristic optimization approaches have been developed, one of
the most popular being the GAs. Typically, the GAs develop several solutions as the
result of selection, competition and recombination. Crossover and mutation are used
to maintain a diversity of the evolving population and to escape from local optima.
Several GAs have been proposed for the UC problem, see for example (Kazarlis et al.
1996; Arroyo and Conejo 2002; Sun et al. 2006; Dang and Li 2007; Abookazemi et
al. 2009). The GAs are a powerful stochastic global search technique as the search is
performed by exploiting information sampled from different regions of the solution
space (Reeves 1993). Nevertheless, the GAs usually do not perform well in fine-tuning
near local optimal solutions because they use minimum a priori knowledge and fail
to exploit local information. Local Search algorithms start with an initial solution
and try to reach an optimal solution by means of small perturbations to the current
solution, which means that the search is done within a pre-specified neighborhood.
Including a Local Search procedure in a GA often leads to a substantial improvement
since the “local” improvement capabilities of the former are being combined with
the “global” nature of the GA. The GAs with random keys were first introduced by
Bean (1994), for solving sequencing problems. In biased random key GAs, the bias is
introduced at two different stages. Firstly, when parents are selected, good solutions
have a higher chance of being chosen, since one of the parents is always taken from a
subset including the best solutions. Secondly, the crossover strategy is more likely to
choose alleles from the best parent to be inherited by the offspring.

This work proposes a HBRKGA, which is an improvement of the work in (Roque et
al. 2011), based on the framework proposed by Gonçalves and Resende (2010). Here
improved decoding and repair mechanisms are used. The main reasons for using repair
mechanisms are (1) to work on bounded search spaces (consisting of only feasible
solutions) and (2) to avoid the problem of choosing penalties of different natures
for each of the violated constraints (Michalewicz and Janikow 1991). In addition, to
intensify the search around good solutions, a local search procedure was incorporated
that, as confirmed in the results section, has led to better solutions. Chromosomes
are represented as vectors of randomly generated real numbers in the interval [0, 1].
The vector size N is given by the number of generating units. Each component of the
vector corresponds to a priority that is to be assigned to each generation unit. The initial
population consists of p vectors of N random keys, which are used by the decoder
to generate feasible solutions, details are provided in Sect. 4.1. Then, each solution is
evaluated according to its corresponding total cost. Based on this cost, the population
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Fig. 1 The HBRKGA adapted framework

is divided into two subsets: the elite set, consisting of the best solutions, and the non-
elite set, consisting of the remaining solutions. Solutions in the elite set are copied onto
the next generation, which also consists of two other groups of solutions: solutions
generated by crossover and new randomly generated solutions. In the first, solutions
are obtained by reproduction between a parent taken from the elite solution set and a
parent taken from the remaining solutions. Furthermore, the probability of inheriting
alleles from the elite parent is higher than that of the other parent. The HBRKGA
framework is illustrated in Fig. 1, an adaptation from (Gonçalves and Resende 2010).

The decoding procedure and the fitness computation are specific to the problem
addressed. The decoding procedure, which is how solutions are constructed once a
population of chromosomes is given, is performed in two main steps, as depicted in
Fig. 2. Firstly, a solution satisfying unit output range and ramp rate limits for each
period is obtained. In this solution, the units are switched on according to their priority,
which is given by the associated random key value. Furthermore, unit production is
also set by a random key value. The production values are chosen such that the ramp
rate constraints and the output range constraints are satisfied. Then, a second step is
applied since the solutions obtained may not be feasible. This step consists of verifying
if the remaining constraints are met and of repairing the solutions whenever necessary.

4.1 Decoding procedure

The decoding procedure proposed here is based on that of Roque et al. (2011). The
output generation levels are obtained based on the vector of random keys. Their values
are computed such that the capacity limits and ramp rate limits are ensured during the
decoding phase.

Given a vector of numbers in the interval [0, 1] , say RK = (r1, r2, ..., rN ) , a rank
vector O = (O1, O2, ..., ON ) is computed. Each Oi is defined to present the order in
which units are considered (descending order of the RK value).
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Fig. 2 Decoder flow chart
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Then an output generation matrix Y is obtained, where each element yt, j gives the
production level of unit j = Oi , i = 1, ..., N at time period t = 1, ..., T . This amount,
which is proportional to the random key value r j , must be in the range defined by the
minimum and maximum allowed output limits and ramp rate limits, as follows:

yt, j = Y min
t, j + r j .

(
Y max

t, j − Y min
t, j

)
. (10)

These limits are defined considering the unit output generation level limits and the ramp
rate limits. At the same time, the ramp rate constraints are ensured for a specific time
period t and new output limits (Y max

t, j and Y min
t, j upper and lower limits, respectively)

must be imposed for the following period t + 1, since their value depends not only
on the unit output limits, but also on the output level of the current period t . Equation
(11) shows how these values are obtained.

Y max
t, j = min

{
Y max j , yt−1, j + �

up
j

}
,

Y min
t, j = max

{
Y min j , yt−1, j − �dn

j

}
, (11)

Y max
1, j = Y max j , Y min

1, j = Y min j .

After computing the output generation matrix Y , with the production level of each
unit j for each time period t , the generation schedule may not be admissible and
therefore, the solution obtained may be infeasible. Hence, the decoding procedure
also incorporates a repair mechanism.
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Fig. 3 Flowchart of minimum up down time repair algorithm

The repair mechanism starts by ensuring that minimum up/down time constraints
are satisfied. The adjustment of the unit status is obtained using the repair mechanism
illustrated in Fig. 3. For two consecutive time periods the unit status can only be
changed if the T on/of f

min is already satisfied, for a previously turned on or turned off
unit, respectively.

For each period, the spinning reserve requirements may not be met. If the number
of on-line units is not enough, some off-line units are switched on, one at a time, until
the cumulative capacity matches or is larger than Dt + Rt , as shown in Fig. 4. In doing
so, units are considered in descending order of priority, which means in descending
order of random key value. After ensuring that spinning reserve is met, there may be an
excessive spinning reserve. Since this is not desirable due to the additional operational
costs involved, it is necessary to look for units that can be decommited. Units are
switched off in ascending order of priority. At the end of this procedure, the U matrix
is found, specifying which units are being operated at each time period, as well as the
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Fig. 4 Handling spinning reserve constraint

Y matrix, which indicates how much each on-line unit is producing. All constraints are
satisfied except, perhaps, the load demand. Nevertheless, the maximum and minimum
allowed production limits can be directly inferred from matrix Y . Therefore, it may
be necessary to adjust the total production to meet load demand for each time period.
Firstly, for all on-line units the production is set to its minimum value allowed. Next,
for each time period, each unit is set to its maximum production allowed, one at a time,
until the production reaches the load demand value. In doing so, units are considered
in descending order of priority. This is repeated no more than N times. It should be
noticed that by changing production at time period t the production limits at time
period t + 1 change, and hence these new values, which are obtained as in Eq. (11),
must be satisfied. Once these repairing procedures have been performed, the feasible
solution obtained is evaluated through its respective total cost.
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4.2 GA configuration

To obtain a new population of solutions, three subsets of solutions are combined as
follows:

– Copied solutions 20 % of the best solutions of the population of the current gen-
eration (elite set) are copied onto the next generation;

– Mutants 20 % of the solutions of the population of the next generation are obtained
by randomly generating new solutions.

– Offspring solutions 60 % of the solutions of the population of the next generation
are obtained by biased reproduction, which is achieved by using both a biased
parent selection and a biased crossover probability.

As previously stated, the biased reproduction is accomplished by using both a biased
parent selection and a biased crossover. Biased parent selection is performed by ran-
domly choosing one of the parents from the elite set and the other parent from the
remaining solutions. This way, elite solutions are given a higher chance of mating,
and therefore of passing on their characteristics to future populations. For the biased
crossover, a biased coin is tossed to decide which parent to take the gene from. Since
the coin is biased, the offspring inherits the genes from the elite parent with higher
probability (0.7 in this case).

4.3 Local search

Another improvement to the previous work (Roque et al. 2011) is the inclusion of
a local search procedure. At the end of the HBRKGA, a local search procedure is
used to try to improve the solutions in the final elite set. This mechanism, which is
illustrated in Fig. 5, is a 2-swap procedure where an on-line generating unit is replaced
by an off-line generating unit if the swap is feasible and leads to a lower cost. Given a
solution in the elite set, two sets of generating units are built: a set Son containing the
on-line generating units that can be turned off and a set Sof f containing the off-line
units that can be turned on.

For each time period, a pair of units is chosen, one from each of the sets built, and
the feasibility of the swap is analyzed. If the swap is feasible, the total cost of the
new solution is compared to that of the current solution. If an improvement can be
achieved, the swap is performed resulting in a better solution; otherwise the swap is
discarded. In both cases, the next swap using the previously built sets is tried, which
means that the sets Son and Sof f are not updated. The 2-swap strategy is repeatedly
performed until all swaps have been tried. The procedure is applied to all solutions in
the elite set. The contribution of the local search to the quality of the global solution
can be seen in the results provided in Sect. 5.

5 Numerical results

This section presents the results obtained with the proposed HBRKGA, as well as
the results obtained without using the local search, here referred to as BRKGA. It
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Fig. 5 Flow chart of the local search

should be noticed that the parameters are the same for both algorithms. Due to the
stochastic nature of the methods proposed each problem was solved 20 times. Both
GAs were implemented in Matlab. The proposed approaches have been tested on 5
different benchmark UC case studies. Some of the case studies include several problem
instances, while others include only one. Amongst the case studies considered, case
study 1 is singled out, since its problems are the ones that have been consistently
considered in the literature and thus solved by many different methods and authors.

For comparison purposes, the UC problem is also formulated as a mixed integer
programming (MIP) model and solved using the commercial software CPLEX. The
model is not derived here for the sake of simplicity. Instead, the reader is referred to
Michalewicz and Janikow (1991), Simoglou et al. (2010), in which this model is based.

5.1 GA parameter setting

The present state-of-the-art theory on GAs does not provide information on how to
configure the parameters involved in the algorithm. Therefore, the values used in the
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Fig. 6 Average cost for the 40-unit system (case study 1) for different number of generations

computational experiments conducted have been taken from the guidelines provided in
(Ericsson et al. 2002; Gonçalves and Resende 2010), as well as, from past experience
(Roque et al. 2011).

Computational experiments with different values for the crossover probability, the
number of generations, and the population size were conducted on the problem with
40 generating units provided in case study 1. The biased crossover probability was
tested in the range 0.5 ≤ Pc ≤ 0.9 with a step size of 0.1. These 5 values were tried for
5 different populations sizes (N P = N , 2N , 3N , 4N , and 5N ). For testing purposes
the number of generations was set to a sufficiently large number (N Gers = 20N ).
Soon it became clear that this number was too large, and therefore it was reduced to
10N (see Fig. 6). To illustrate the algorithm behavior in Table 2 the results obtained
are provided for varying Pc values with N P = 2N and N Gers = 10N . The value 0.7
is chosen since the best performances with lower variability correspond to this value.
(Note that a better best solution was found using 0.6.) In terms of the population size
N P , as it can be confirmed in Fig. 7, the quality of the solution is continuously and
marginally improved with the population size, while the increase in computational
time is almost linear. A trade-off analysis between the quality of the solution and the
computational time led to set N P = 2N .

In summary, the number of generations was to 10N , the crossover probability to
0.7, and the population size to 2N .

In the following sections the results obtained by the BRKGA and the HBRKGA
are compared to the best results reported in the literature. Furthermore, the CPLEX
(version 12.1) was used to obtain an optimal solution and thus find how close the results
are to the optimum. Nevertheless, such comparisons are only possible for small sized
problems, since the CPLEX is unable to solve larger problems due to the large memory
requirements. In addition, the CPLEX cannot handle the problems in case study 5 since
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Table 2 Average cost for the 40-unit system (case study 1) for different crossover probability values

Pc Best Average Worst Average − Best
Best % Worst − Best

Best %

0.5 2244466 2245409 2246047 0.04 0.07

0.6 2244312 2245388 2247529 0.05 0.14

0.7 2244345 2245350 2245775 0.04 0.06

0.8 2244347 2245432 2246957 0.05 0.12

0.9 2244354 2245476 2246566 0.05 0.10
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Fig. 7 Average cost and computational time for the 40-unit system (case study 1) for different population
sizes

the start-up costs are an exponential function of the number of hours that that unit has
been down.

5.2 Case study 1

The HBRKGA and the BRKGA have been tested on a set of frequently used benchmark
problems, involving systems with 10 up to 100 generating units and considering, in
each case, a scheduling horizon of 24 h. The 10 generating unit system, the base case,
was originally proposed by Kazarlis et al. (1996). Problem instances involving 20,
40, 60, 80 and 100 units are obtained by replicating the base case system and the
load demands are adjusted proportionately to the system size. In all cases the spinning
reserve is maintained at 10 % of the hourly demand. The start-up costs have one of
two possible values depending on the number of time periods the unit has been off, as
given in Eq. (2). These values are different for each generation unit. The shut down

123



J Comb Optim (2014) 28:140–166 157

Table 3 Comparison between the best results obtained by the BRKGA and the HBRKGA and the best
results for the best methods reported in the literature for the problems in case study 1

Size IPSO IQEA QEA ICA BRKGA HBRKGA CPLEX HBRKGA

MIQP Rank Gap
(opt)

Gap
(best)

10 563954 563977 563938 563938 564248 563938 563938 1st 0 0

20 1125279 1123890 1123607 1124274 1124664 1123955 1123297 3rd 0.06 0.03

40 2248163 2245151 2245557 2247078 2244492 2244345a 2242634 1st 0.08 −0.04

60 3370979 3365003 3366676 3371722 3365026 3363804 – 1st – −0.04

80 4495032 4486963 4488470 4497919 4486833 4485197 – 1st – −0.04

100 5619284 5606022 5609550 5617913 5607288 5605933 – 1st – −0.002
a Recall that this is the best known solution, although it may not be an optimal solution

Table 4 Comparison between the average results obtained by the BRKGA and the HBRKGA and the
average results for the best methods reported in the literature for the problems in case study 1

Size IQEA QEA BRKGA HBRKGA HBRKGA

Rank Gap (%)

10 563977 563969 564445 564062 2nd 0.02

20 1124320 1124689 1124846 1124213 1st −0.01

40 2246026 2246728 2245820 2245350 1st −0.03

60 3365667 3368220 3366053 3365201 1st −0.02

80 4487985 4490128 4488303 4487620 1st −0.01

100 5607561 5611797 5607902 5607024 1st −0.01

costs are disregarded. Details of how these benchmark problems were constructed and
on the system and demand data can be found in Kazarlis et al. (1996).

For the problems in this case study, the CPLEX was capable of finding an optimal
solution to systems involving 10 and 20 units. For problems with 40 units, the best
solution found by the CPLEX is described. However, it crashed due to the excessive
memory requirements. Although the solution is not optimal, it is the best solution
found so far. In Tables 3, 4, and 5 it is possible to compare the results obtained (best,
average, and worst) to the best former results (in italic) obtained with the different
methods publish. The best current solution for each of the problems, excluding the
CPLEX, is in bold. The last column, shows the gap between the HBRKGA solution and
the previous best known solution. It should be noticed that whenever the HBRKGA
produces a solution that is better than the best currently known solution the gap is
negative. Table 3 reports on the optimality gap for the smaller problem instances,
since for these the optimal solution value provided by the CPLEX. The results used
for comparison purposes have been reported in: IPSO—Zhao et al. (2006); IQEA—
Jeong et al. (2009); QEA—Lau et al. (2009); ICA—Hadji and Vahidi (2012).

As observable in Table 3, for all problem instances, except one, our best results
improve the best previously known results. Moreover, for the problem instances for
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Table 5 Comparison between the worst results obtained by the BRKGA and the HBRKGA and the worst
results for the best methods reported in the literature for the problems in case study 1

Size IPSO IQEA QEA BRKGA HBRKGA HBRKGA

Rank Gap (%)

10 564579 563977 564672 565689 564737 4th 0.135

20 1127643 1124504 1125715 1126273 1125048 2nd 0.048

40 2252117 2246701 2248296 2246797 2245775 1st −0.04

60 3379125 3366223 3372007 3367777 3366773 2nd 0.016

80 4508943 4489286 4492839 4489663 4488962 1st −0.01

100 5633021 5608525 5613220 5609537 5608559 2nd 0.001

Table 6 Analysis of the variability in the quality of the solution for the problems in case study 1

Size Average − Best
Best % Worst − Best

Best % St. deviation (%)

HBRKGA IQEA QEA HBRKGA IPSO IQEA QEA HBRKGA IQEA QEA

10 0.02 0.0 0.005 0.14 0.11 0.0 0.13 0.03 0.0 0.02

20 0.02 0.04 0.09 0.1 0.21 0.05 0.19 0.03 0.01 0.06

40 0.04 0.04 0.05 0.06 0.18 0.07 0.12 0.02 0.02 0.02

60 0.04 0.02 0.05 0.09 0.24 0.04 0.16 0.02 0.01 0.03

80 0.05 0.02 0.04 0.08 0.31 0.05 0.1 0.02 0.01 0.02

100 0.02 0.03 0.04 0.05 0.24 0.04 0.07 0.01 0.01 0.02

which an optimal solution has been found by the CPLEX, it can be confirmed that the
HBRKGA found an optimal solution in one case, while in the other case the solution
found is within 0.06 % of optimality. By comparing the HBRKGA and the BRKGA,
which already improves some of the previously known best solutions, it is possible
to verify that the local search is always effective since the HBRKGA is always better
than the BRKGA. And the improvement ranges from 0.007 to 0.063 %. Although these
values are small their impact is relevant as they refer to a multi-million dollar industry.

The average results have also improved for all but one of the problem instances
solved, when compared to the best previously known results (see Table 4). Table 5
provides similar results for the worst solutions. Again, the best previous results have
been improved. The results reported in these tables also show that the local search
incorporation is effective, since the HBRKGA improves upon the BRKGA.

Another important feature of the proposed algorithm is that, as it can be seen in
Table 6, the variability of the results is quite small. The difference between the worst
and the best solutions found for each problem is always below 0.14 %; however, if
the best and the average solutions are compared this difference is never larger than
0.05 %. This makes it possible to infer on the robustness of the approach, which is very
important since the industry is reluctant to use methods with high variability as this
may lead to using poor solutions. When compared to the robustness of the alternative
methods, the proposed approached is better than that of the IPSO and the QEA and
almost the same as that of the IQEA.
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Table 7 Analysis of the execution time for the problems in case study 1

Size IPSO IQEA QEA ICA BRKGA HBRKGA CPLEX

10 142 15 19 48 2 2 45

20 357 42 28 63 13 14 401

40 1100 132 43 151 87 90 1489

60 2020 273 54 366 276 301 –

80 3600 453 66 994 631 712 –

100 5800 710 80 1376 1259 1503 –

In terms of computational time, no exact comparisons are possible because not
only are the values obtained on different hardware, but also because the HBRKGA
reported time is real time and not CPU time and thus it is not directly comparable to
others reported in the literature. The computational experiments were performed on
a Xeon X5450, 3.0 GHz and 4.0 GB RAM. This is a shared machine and therefore
several processes are usually running in parallel. Nevertheless, Table 7 shows the
computational time requirements. These results are also provided graphically in Fig.
8. It should be highlighted that the results reported for the IPSO may not be accurate
since the authors only provide them in a graphical form. As it can be confirmed, the
IPSO presents computational time requirements which are much larger than the other
methods. On the contrary, the QEA is the fastest method. The other three methods have
a similar behavior in terms of computational requirements. Therefore, the HBRKGA
presents an intermediate performance, regarding computational time, which is not
a big price to pay for the increased quality of the solution quality. Recall that, as
confirmed in Table 3, the HBRKGA provides the best solution for all but one of the
problems analyzed in this case study.

When the computational time is analyzed in a logarithmic scale, as in the graph on
the right-hand side of Fig. 8, a favorable conclusion can be drawn on the algorithms
proposed here. The growth of all the other algorithms is closer to a line in the log scale,
meaning that the time increase with problem size is closer to an exponential growth. In
contrast, algorithms proposed here present a concave growth in the log scale, meaning
that the time increase is subexponential.

5.3 Case study 2

Case study 2 consists of a single real problem instance, the Taipower system, which
comprises the scheduling of 38 units for a time horizon of 24 h. This problem was
first proposed by Huang et al. (1998). The start up costs are constant, not necessarily
different for all units, while the shut down costs are disregarded. The spinning reserve
is set to 11 % of hourly load and ramp rate constraints are also taken into consideration.
The characteristics of the generating units, the load demand, and the specific conditions
of the problem are given in Huang et al. (1998). This specific problem has not been
considered by many authors conducting research on the UC problem. Therefore, the
approach prosented is compared to the four approaches proposed in Huang et al.
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Fig. 8 Computational time requirements, in seconds and log scale, for the methods being compared, for
the problems in case study 1

(1998), which are based on DP, LR, Simulated Annealing (SA), and Constraint Logic
Programming (CLP), and also to a GA (MRCGA) recently proposed by Sun et al.
(2006). In addition, the solutions are compared to the solution obtained by the CPLEX.
This solution may not be optimal since the CPLEX has not run until the end due to the
excessive memory requirements. However, the best solution found, before the CPLEX
crashed, is referred, as well as the time it took to find such a solution for the first time
(see Table 8).

Both the BRKGA and the HBRKGA improve the best known solutions for all cases
(best, average and worst). Again the local search has proved to be effective since in
all cases the HBRKGA obtains better solutions than the BRKGA. The computational
times are not a concern since the method that takes longer (the DP by Huang et al.
1998) requires just over 3 min.
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Table 8 Comparison between the results obtained by the BRKGA and the HBRKGA and the best results
reported in the literature for the problems in case study 2

Size DP LR CLP MRCGA BRKGA HBRKGA CPLEX

Best 215.2 214.5 213.8 206.7 206.0 205.3 203.6

Average – – – 207.4 206.5 206.1 –

Worst – – – 208.0 207.1 206.7 –

Gap (%) 5.7 5.4 5.0 1.5 1.2 0.83 –

St. deviation (%) – – – – 0.19 0.22 –

Av. time (s) 199 29 17 45.6 84.7 102.6 1963.9

Table 9 Comparison between the results obtained by the BRKGA and the HBRKGA and the best results
reported in the literature for the problems in case study 3

Size FMILP BRKGA HBRKGA CPLEX

Best 722388 722260 721197 719314

Average – 722283 721202 –

Worst – 722410 721212 –

Gap (%) 0.43 0.41 0.26 –

St. deviation (%) – 0.01 0.01 –

Av. time (s) 25.5 24.3 29.6 642

5.4 Case study 3

Case study 3 also consists of a single real problem. This problem is a 26-generator
system which has to be scheduled for a 24-h period. Only start-up costs are consid-
ered and they are constant, although they are not necessarily the same for all units.
The spinning reserve requirement is set at 400MW for each time period. The system
and demand data can be found in Venkatesh et al. (2007), as well as, the conditions
used in the computational experiments. The quality of the solution obtained by the
BRKGA and by the HBRKGA is compared to that of the fuzzy mixed integer Linear
Programming proposed in Venkatesh et al. (2007). It was possible to find an optimal
solution to this problem by using the CPLEX. As seen in Table 9, both the BRKGA
and the HBRKGA improve the previously best known results. Again, the use of the
local search made it possible to obtaining an improved solution. Furthermore, the best
solution obtained by the HBRKGA is very close to an optimal solution. Thus, the
CPLEX cannot be considered a better alternative when compared to the HBRKGA
since the latter obtains a solution within 0.26 % of optimality, being about 21 times
faster.

5.5 Case study 4

The problem addressed in this case study comprises 45 units and a planning horizon
of 24 h. The system data and the load demand can be found in (Arroyo and Conejo
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Table 10 Comparison between the results obtained by the BRKGA and the HBRKGA and the best results
reported in the literature for the problems in case study 4

Size GP CGPGA HPGA BRKGA HBRKGA

Best 1034472374 1032472928 1032415327 1030145017 1030145017

Average – – – 1030722315 1030722315

Worst – – – 1034934856 1034934856

Gap (%) 0.42 0.23 0.22 0 –

St. deviation (%) – 0.14 0.14

Av. time (s) 80.6 847.1 658.4 115.6 147.3

2002). The spinning reserve is set to 10 % of the load demand at every hour. Both
the start-up and the shut-down costs are constant, although not necessarily the same
for all units. Table 10 shows the best solutions known so far, obtained in Arroyo and
Conejo (2002) from three versions of a GA: global parallelization (GP), which uses
a parallel implementation of the repair algorithm, a coarse-grained parallel genetic
algorithm (CGPGA), which evolves several populations independently, one in each
processor, and a hybrid parallel genetic algorithm (HPGA), which combines both
previous parallelizations. In addition, the best, average and worst solutions are reported
for both the BRKGA and the HBRKGA. The methods proposed here improve the best
known solution by 0.22 %. For this problem the local search was not effective since
the cost of the best, average and worst solutions are the same for HBRKGA and the
BRKGA. It should be highlighted that the CPLEX was unable to provide any solution
for this problem due to its size.

In terms of the computational time, although the approaches presented here have
not been implemented in parallel, they are faster than the approach producing the best
former results.

5.6 Case study 5

Case study 5 consists of two different problems both considering exponential start-
up costs. This type of cost is more realistic and although several authors mention this
fact, most end up using constant costs or otherwise approximating them by a piecewise
linear function.

Both problems in this case study involve the scheduling of 10 units over a 24-h
time horizon. In both cases the shut-down costs are disregarded.

In the first problem, the spinning reserve is set to 10 % of the hourly load demand.
All problem data are provided in (Turgeon 1978), where it has been first addressed.

The start-up costs are computed as:

St, j = b0.
(

1 − b1.e
−b2t

)
. (12)

This problem has been addressed in Valenzuela and Smith (2002) where an optimal
solution has been found by using DP. The authors also propose approximate methods
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Table 11 Comparison between the results obtained by the BRKGA and the HBRKGA and the best results
reported in the literature for the first problem in case study 5

Size DP LR GA MA LRMA BRKGA HBRKGA

Best 59478 59485 59882 59788 59892 59779 59779

Average – 59486 60364 60271 59936 59836 59834

Worst – 59491 60977 60838 60100 60102 60091

Gap (%) – 0.01 0.68 0.52 0.7 0.51 0.51

St. deviation (%) – 0.004 0.74 0.65 0.123 0.11 0.11

Av. time (s) 207 55 209 161 128 3.9 4.7

to address this problem: a LR, a GA, a MA, and a method combining both the LR and
MA (LRMA).

Table 11 shows the results published in (Valenzuela and Smith 2002), as well as
the results obtained by the approaches suggested here. It was possible to obtain a
good solution (with a 0.51 % optimality gap), which is better than that of the GA, the
MA, and the LRMA proposed in (Valenzuela and Smith 2002). However, the LR was
capable of finding a better solution. In terms of computational time, the methodologies
suggested perform much better as they are up to 53 times faster. For this problem, again
the local search does not help find a better solution.

The second problem in this case study has been proposed in (Bard 1988), where the
problem data can be found. The spinning reserve requirements are specified for each
time period and vary between 6.47 and 11.35 %. The start-up costs depend exponen-
tially on the number of time periods during which the unit has been off. The start-up
costs are given as follows:

St, j = b0.

⎛
⎝1 − e

− max(0,−T
of f
j (t))

b2

⎞
⎠ + b1. (13)

More recently, other authors have addressed this problem. Table 12 compares the
results achieved with those obtained by the LR due to Bard (1988), and the recently
proposed heuristics: DP—(Valenzuela and Smith 2002); MA—(Valenzuela and Smith
2002); FPGA—(Dang and Li 2007).

As it is possible to confirm, neither the heuristics proposed recently nor the algo-
rithms proposed here were able to improve the best known results found by the LR
due to Bard (1988). The HBRKGA is the method that provides the best results in
terms of the quality of the average and worst solutions. It is important to highlight that
the BRKGA also presents better average and worst results than the other heuristics.
Therefore, the BRKGA and the HBRKGA methods present solutions with the lowest
variability. Moreover, the BRKGA and the HBRKGA average execution times are
significantly shorter than those of the other methods, with the HBRKGA being up to
43 times faster than the DP heuristic. The local search is effective for this problem
since the quality of the HBRKGA solution is better for all solution types.
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Table 12 Comparison between the results obtained by the BRKGA and the HBRKGA and the best results
reported in the literature for the second problem in case study 5

Size DP LR MA FPGA BRKGA HBRKGA

Best 540904 540895 541108 541182 542068 541918

Average – – 545591 542911 542508 542372

Worst – – 549290 545572 543377 543301

Gap (%) 0.002 – 0.04 0.05 0.21 0.19

St. deviation (%) – – 0.61 0.27 0.1 0.11

Av. time (s) 255 59 101 – 5.9 7.3

6 Conclusions

The UC problem is an area of research which has attracted extensive interest from the
scientific community and is also an important real energy planning problem due to
the fact that small savings in the operation costs can lead to major overall economic
savings.

In the recent years, several extensions to the classical UC problem studied here have
been proposed, adapting this problem to the more recent concerns of the energy mar-
kets. One such extension is the inclusion of the minimization of pollutants emissions
in the objective function (e.g. Roque et al. 2012).

Biased Random Key GAs have been developed for and applied to several combi-
natorial optimization problems with interesting results, see (Gonçalves and Resende
2010). Given this empirical evidence, this paper proposes such an algorithm for the UC
problem. The HBRKGA proposed here also incorporates a Local Search to intensify
the search near good solutions. The approach suggested in this paper searches for a
solution only within the space of feasible solutions using a repair mechanism.

The performance of the algorithm implementing the proposed approach has been
tested on a set of commonly used UC benchmark problems and other UC problems
found in the literature. The results reported show that the method proposed here out-
performs current state-of-the-art methods. For all problem instances but two, it was
possible to find better results than the best achieved thus far. In addition, these better
solutions have been found with computational time requirements which are smaller
or of the same magnitude as those of the alternative methods. The hybridization of the
local search and the GA lead to an improvement on the results obtained for most of the
problems solved. Actually, only for 3 problem instances (problems in case studies 4 and
5) the local search has not been effective. The results also show another important fea-
ture, which is lower variability. It is important to highlight that for the most commonly
used problems the difference between the best and the worst solutions is always below
0.14 %, while the difference between the best and the average solutions is always below
0.05 %. This is very important since the methods to be used in industrial applications
must be robust in order to guarantee that poor solutions are not implemented.
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