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Abstract 

The deployment of Smart Grid technologies opens new opportunities to develop new forecasting and 

optimization techniques. The growth of solar power penetration in distribution grids imposes the use of 

solar power forecasts as inputs in advanced grid management functions. This paper proposes a new 

forecasting algorithm for six hours ahead based on the vector autoregression framework, which combines 

distributed time series information collected by the Smart Grid infrastructure. Probabilistic forecasts are 

generated for the residential solar photovoltaic (PV) and secondary substation levels. The test case 

consists of 44 micro-generation units and 10 secondary substations from the Smart Grid pilot in Évora, 

Portugal. The benchmark model is the well-known Autoregressive forecasting method (univariate 

approach). The average improvement in terms of root mean square error (point forecast evaluation) and 

continuous ranking probability score (probabilistic forecast evaluation) for the first 3 lead-times was 

between 8% and 12%, and between 1.4% and 5.9%, respectively. 

 

Keywords: Solar power; forecasting; smart grid; distributed sensors; smart metering; probabilistic; 

gradient boosting. 

 

1. Introduction 

Presently, the economics of photovoltaic (PV) solar power are attractive due to a high reduction in 

market prices of PV panels [1]. Across several countries, the installed solar power capacity is increasing, 

either consisting of medium/large solar parks connected to the medium voltage network or small PV 

installations at the building level (i.e., low voltage network) [2].  

In this context, the power system management tasks of both Transmission System Operator (TSO) and 

Distribution System Operators (DSO) require PV power forecasting. In the DSO case, the advanced 

communication and monitoring capabilities of the Smart Grid infrastructure [3] creates conditions for 

advanced grid management tools, such as security-constrained unit commitment with demand response 
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[4], voltage control [5] and probabilistic power flow [6]. Furthermore, solar power can be combined with 

storage, as a virtual power plant, for energy trading and/or providing system support services [7].     

One key requirement of these advanced grid management tools is solar power forecasts covering two 

time horizons [8]: (i) six hours ahead (i.e., very short-term) and (ii) three days-ahead (i.e., short-term). For 

the first four hours ahead, the relevant inputs consist of past observations of the time series, after those 

lead-times information from Numerical Weather Predictions (NWP) is more relevant [9]. 

In the solar power forecasting literature, it is possible to find a vast number of works devoted to apply 

machine learning and statistical based algorithms to extrapolate solar power from NWP [9], which covers 

the short-term horizon. Fernandez-Jimenez et al. [10] convert NWP information to solar power using  

different statistical learning algorithms, as Auto-Regressive Integrated Moving Average, k-nearest 

neighbors, neural networks, and adaptive neuro-fuzzy models; Zamo et al. [11] compares several 

regression algorithms (e.g., random forests, boosting, support vector machines) that take NWP as input to 

produce solar power forecasts; Bacher et al. [12] proposes an autoregressive model with exogenous inputs 

(ARX) whose feature vectors are a combination of observations of solar power and NWP.  

From a probabilistic forecasting point of view, Lorenz et al. [13] describes a method for computing 

situation-dependent predictions intervals for a single solar park. Also, Bacher et al. [12] uses weighted 

quantile regression conditioned to a clearness index (or normalized solar power) to produce probabilistic 

forecasts. 

For the very short-term time horizon, the present literature is driven by statistical and time series 

models that use past values of the same power time series. For instance, Pedro and Coimbra [14] compare 

the performance of different statistical learning algorithms (i.e., Auto-Regressive Integrated Moving 

Average, k-nearest neighbors and neural networks adjusted by genetic algorithms), which only use past 

observations of the time series as inputs. An important characteristic of these algorithms is that 

information from distributed time series data sources are not included in the model, i.e., only past values 

of the local response variable are used. Yet, an interesting development, proposed by Hammer et al. [15], 

uses cloud-index images to produce solar power in the very short-term horizon with motion vector fields 

derived from two consecutive frames. However, this information must be available in almost real-time 

and it may be more complex and expensive to operationalize such forecasting services. Moreover, in 

contrast to models for wind power forecast [16], all these approaches do not provide probabilistic 

forecasts of solar power.  
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The forecasting framework presented in this paper addresses the very short-term horizon and the key 

idea, in a smart grid context is to explore information from spatially distributed smart meters (or sensors). 

We should make sure it is readily available in acceptable “real-time” while it might be additionally 

combined with satellite information.  

In the scientific community, only three publications explore the use of information from neighboring 

solar sites to improve power forecast. Berdugo et al. [17] proposes an analog searching algorithm for 

similar local and global current states as neighbor sites. However, the main goal is not to produce the 

forecast with minimum error, instead, it is to efficiently handle large volumes of streaming data and keep 

power measurements’ confidentiality. Yang et al. [18] proposes an ARX model for each solar site where 

the exogenous variables are measurements from neighbor sites. Lonij et al. [19] combines solar power 

observations from a network of data loggers and wind speed information from a NWP model to estimate 

cloud edge velocity and infer solar power from this information. Considering the reviewed literature, this 

paper presents three main contributions for six hours-ahead solar power forecasts:  

 probabilistic forecasting method based on vector autoregression framework (VAR), which 

combines information from the distributed PV panels collected by the Smart Grid infrastructure. 

The residential PV and secondary substation (i.e., MV/LV) levels are covered by this approach;  

 improve of probabilistic forecast skill at the secondary substation level by introducing exogenous 

variables (i.e. observations from micro-generation units with smart meters) to the VAR model;  

 probabilistic forecasting approach based on gradient boosting technique, which is the main 

contribution compared to [20,21].  

This paper is organized as follows: section 2 describes the information and communication 

infrastructure of the Smart Grid pilot in Portugal; section 3 describes the solar power point and 

probabilistic forecasting algorithms; the test case results are presented in section 4 and section 5 presents 

the conclusions. 

2. Smart Grid Pilot in Portugal 

The Portuguese DSO promoted the development of new ICT technology and computational tools for 

automating network management in order to create a full smart distribution grid [22]. This resulted in a 

large-scale demonstration pilot in the city of Évora in Portugal, named InovCity [23], which is also one 

demonstration site of the EU Project SuSTAINABLE [24]. 

The main smart grid equipment of this infrastructure is the following: EDP Box (EB), the Distribution 
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Transformer Controller (DTC) and Smart Substation Controller (SSC). This architecture covers the whole 

distribution grid and the control layers correspond to the main voltage levels from the HV grid down to 

the LV consumers that define the hierarchy of control and management.  

The SSC, housed in the HV/MV distribution substation level, is responsible for managing the MV grid 

and includes local intelligence (e.g., self-healing and control of distributed generation connected to MV 

network) and several operational functionalities. Regarding the LV grid, it is controlled by a DTC located 

at the secondary (or MV/LV) substation level that will be responsible for managing the distributed energy 

resources at the LV level. The DTC comprises modules for monitoring and remote control. At this level - 

LV level - the smart meters (EB) associated to consumers and microgeneration units also have monitoring 

and management functions, interacting with other devices through a home area network. 

In this architecture, the SSC is responsible for aggregating and managing the operational data from EB 

and DTC, using a GRPS Wide Area Network. The DTC collects data from the EB through a Local Area 

Network with GPRS or PLC technology. 

The forecasting system that is described in section 3 requires a centralized data flow topology and can 

be installed at the DSO control center level, SSC, and DTC. In this paper, without loss of generality, it is 

assumed to be installed at the central management level (i.e., in the DMS). Point and probabilistic 

forecast outputs are generated for each DTC and EB. For the forecast at the DTC or secondary substation 

level, the EB measurements can be used as distributed sensors to better capture the influence of clouds 

and therefore improve the forecast skill, which in turn increase the amount of transferred data. Note that 

even if the system is operating at the EB level, if a centralized topology is created with a peer-to-peer 

communication channel between smart meters [17], it is possible to explore distributed information 

within a neighboring area. 

Finally, driven by the high uncertainty associated to renewable energy, the trend in grid management 

functions falls into a stochastic paradigm. Therefore, the probabilistic forecasts are an important input to 

management functions. 

3. Forecasting Framework 

3.1 Calculation of Clear-sky Generation 

The solar power time series presents a seasonal pattern dependent on the time of the day and day of the 

year [12]. This deterministic variation of the solar irradiance can be modelled with different physical and 

statistical methods, which can be found in [25]. 
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In [12], a statistical model based on quantile regression with varying coefficients is described. It 

computes the clear-sky power for a given solar power time series. The method is presented as a statistical 

normalization of solar power, capable of generating a stationary time series suitable for classical models, 

such as AR and VAR. 

The work described in [12] and [26], indicates that the most relevant predictors of the clear-sky model 

are the time of the day (h) and day of the year (doy). The clear-sky generation ( cs

tp̂ ) is estimated as a 

local constant model and the quantile regression with varying coefficient for quantile τ can be expressed 

as: 
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is the normalized kernel product of the two predictors that locally weights each observation, and  
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is the quantile loss function [27]. Since both variables (ht and doyt) are circular, the following kernel is 

used: 
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where σ is the smoothing parameter and d is the period of variable x (e.g., equal to 24 in the time of the 

day variable). 

The output of the model from Eq. 1 is used to normalize the measured solar power (Pt) as follows: 
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The model’s parameters are the kernel bandwidths σh and σdoy, as well as the quantile τ and are 

determined by trial-error experiences. It is expected to get a result of one for the normalized solar power 

pt
norm in clear-sky days. 

3.2 Vector Autoregressive (VAR) Model  

A widely used class for univariate time series models is the autoregressive (AR) framework [28], in 
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which the value of the target variable for time interval t is expressed as linear regression on past 

observations (or lags) of the time series. For one hour-ahead forecast, the AR model is: 

 
ttltltttt epppp |1121|1

ˆ
     (6) 

where β are the model’s coefficients, α a constant term, l the order of the AR model and et+1|t is a white 

noise process with zero mean and constant variance σe
2.  

This model can be extended with exogenous variables (such as NWP), forming an ARX model. 

However, for the very short-term time horizon, the main limitation of this model is that it only uses the 

past observations as predictors from the target variable. 

In order to improve the forecast skill for this time horizon, a VAR model [29] is used to combine past 

observations from the solar power in each site with past values from neighbor sites, that is, it uses both 

time and spatial information. This consists in a multi-output linear regression model with N observations, 

q-dimensional response and d-lagged terms (or predictors).  

In matrix format, for one step-ahead forecast, it is given by: 

 
ttdtdtttt EPBPBPBP |1121|1

ˆ
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where 
ttP |1

ˆ


is a q x 1 vector, Pt-d the d-th lag, B a coefficient matrix with dimension q x q, α a vector 

with q x 1 intercept (or constant) terms, Et+1|t is a vector with dimension q x 1 containing i.i.d. residuals 

with zero mean and constant covariance Σe. 

Considering a case with two solar sites (i.e., two response variables) and a second order lag, Eq. 7 

becomes: 
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As shown in Eq. 8, the VAR consists of linear regression models, in which the 
tktp |

ˆ


 of each site 

depends on a constant term and lagged terms of the q response variables. Note that each regression 

equation takes the same predictors (Pt-d). In fact, Eq. 7 and 8 have the form of a Seemingly Unrelated 

Regression (SUR) model [29], where Ordinary Least Squares (OLS) can be applied independently to each 

regression equation, if the same predictors appear in every equation.  

3.3 Recursive Least Squares for Point Forecasts 

The communication infrastructure of a Smart Grid generates a large volume of data streams that must 

be handled online with low data storage requirements. The coefficients of the AR and VAR models 
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described in the previous section can be time-adaptive by using the recursive least squares (RLS) method 

with a forgetting factor (extensively described in [30]). This method overcomes the problem of handling 

large volumes of data since it is not necessary to store historical time series data for fitting (or re-fitting) 

the model, in each time step t only Bt, Kt and Qt have to be stored in memory. Furthermore, the RLS 

method, with a forgetting factor λ, copes with concept drifting/shifting problems, such as loss of 

performance due to dust in PV panels or changes in the surrounding environment.  

Since both VAR and AR can be fitted with OLS, the RLS method can also be applied to this model 

and it is of great importance since the relation between distributed PV sites is very dynamic and requires 

time-varying coefficients.  

The update of the VAR model coefficients, using the example from Eq. 8 for site 1, is performed with 

the RLS method as follows for time step t: 
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where Kt+1 is given by, 
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 
1141312111 ,,,,
t

  are the coefficients from time step t-1 and  
t141312111 ,,,,   the updated 

coefficients after receiving the observation pt+1,1. 

A forgetting factor equal to 1 leads to a recursive estimation of the coefficients, while a smaller value 

discounts old data with an exponential decay. Initial values for B0 and Q0 are required.  A simple and 

robust approach, purely as experimental observation, is to initialize B0 with zeros and Q0 as a diagonal 

matrix with a large constant value. 

3.4 Gradient Boosting for Probabilistic Forecasts 

Boosting is an ensemble machine-learning algorithm for classification and regression, which combines 

base learners [31]. It conducts numerical optimization, via steepest-descent, in function space by using a 

user-defined base learner recurrently on modified data that is the output from the previous iterations. 

Following the optimization phase, the final solution F(x) is a linear combination of the base learners, as 

follows: 
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where  xf0
ˆ  is an initial guess,  xfm

ˆ  are the base learners, x the covariates and M is the maximum 

number of “boosts” (i.e., model’s parameter). This algorithm allows different loss functions ρ, and for the 

probabilistic forecast problem the choice is the quantile loss function: 
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where y is the observed value and τ is the quantile nominal proportion. 

The base learner for the model in Eq. 6 and 7 is a linear effect of a continuous predictor. The base 

learner of the component-wise gradient boosting (GB) algorithm proposed by Bühlmann in [32] selects 

only one predictor among all the d-predictors. The algorithm performs automatic variable selection and 

coefficients shrinkage. Like in section 3.3, the GB technique is also separately applied to each equation, 

meaning that, for each solar site, the most relevant lagged terms are selected automatically by the 

following algorithm. 

The component-wise GB applied to the VAR model, using the example from Eq. 8 for site 1, works as 

follows: 

1. initialize  2,12,1,11,0 ,,,ˆ
 tttt ppppf  with the mean value of the solar power in site 1 (response 

variable); 

2. for each m, compute the negative gradient u[i]=-∂ρ/∂F of the loss function and evaluate it 
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, where i takes values between 1 and N (i.e., number of 

fitting samples). For the quantile loss function, the negative gradient is given by: 
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3. using the negative gradient u[i] calculated in step (2) as the response variable, estimate the 

coefficients associated to each candidate base learner:  
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where j takes values between 1 and d (number of predictors or lagged terms) and x is the set 

of d predictors; 
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4. Determine the s-th predictor or base learner (from a set with d candidates) that minimizes the 

quadratic loss function: 
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which gives the following selected base leaner:     s

s

s

m xxf  ˆ ; 

5. update function  mF̂  as follows: 

       s

mmm xfFF ˆˆˆ
1     (17) 

where ν is a shrinkage parameter; 

6. stop when m=M and the final estimator is obtained. 

A model is fitted for each quantile τ ranging between 5% and 95% with 5% increments. 

The GB method has two parameters that need to be set: maximum number of boosting iterations (M); 

shrinkage parameter (ν). The value of M is estimated through 5-fold cross-validation, where the value 

with the lowest square error is selected for each lead-time. The value of ν does not influence significantly 

the results if set to be a low value [32]; a value of 0.15 is used in this problem.  

In contrast to the RLS algorithm described in section 3.3., the GB selects the most relevant predictors 

(i.e., lagged terms), which contributes to increase the sparsity of the coefficients matrices since some 

predictions will never be selected in step (4). 

3.5 VAR Applied to Solar Power Forecast 

In order to apply the forecasting techniques from Eq. 6 and 7, in a first phase, it is necessary to 

normalize the solar power time series with the clear-sky model from section 3.1. The normalized solar 

power values outside the period between 7h00 and 19h00 (i.e., the average period with almost no solar 

generation during the whole year in Portugal) are removed from all sites. An alternative strategy is to 

remove all the hours with zenith angle greater than 90º. 

In a second phase, the normalized solar power values are used to fit the AR and VAR models with 

RLS and GB. Both models are applied to forecast the solar power for each DTC and EB. Furthermore, the 

AR and VAR models are only fully specified after determining the number of lagged terms. The 

following classical model was adopted: (i) the autocorrelation plot of the normalized time series is 

analyzed to make a rough estimation of the relevant lags; (ii) the autocorrelation plot of the residuals is 

analyzed to check if the residuals are white noise (i.e., no autocorrelation remains). Note that the 
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autocorrelation of the residuals can be removed by increasing the order of the model, by adding more 

lagged terms [33]. 

For instance, Figure 1 depicts the autocorrelation function plot (ACF) of the residuals obtained with 

an AR model that includes lags t, t-1 and t-23 for one DTC. As depicted, the residuals are almost 

uncorrelated in time for a 95% confidence interval, which corroborates the choice of the lagged terms.  

 

Figure 1: Autocorrelation plot of the AR model’s residuals 

Since the goal is to produce multi-step-ahead forecasts (in particular six hours-ahead), a different AR 

and VAR model is fitted for each lead-time. For instance, for lead-times 2 and 6, the VAR model has the 

following form: 

 
ttttttt EPBPBPBP |22231212|2

ˆ
   (18) 

 
ttttttt EPBPBPBP |61831216|6

ˆ
   (19) 

where the terms Pt and Pt-1 remain the same, and the seasonal lag associated to the previous day 

changes with the lead-time. The RLS and GB algorithms described in sections 3.3 and 3.4 are now used 

to estimate the coefficients for each lead-time. 

Finally, in addition to the AR and VAR models described in the previous sections, a VAR with 

exogenous variables (VARX) is also proposed and evaluated. The model consists in adding exogenous 

variables to Eq. 7, which are the solar power values collected by each (or a subset of) EB.  

 

The desired output is to have the EB measurements (Pt
EB) improving the solar power forecast at the 

DTC level. The VARX for lead-time t+1 has the following structure:  

 
tt
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t
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tttttt EPBPBPBPBPBP |1154233121|1
ˆ

   (20) 
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Note that, for the EB observations, only the past observations t and t-1 are included in the model since 

the goal is to use the EB as distributed sensors that characterize the current atmospheric conditions (in 

terms of solar power) across the region.   

4. Test Case Results 

4.1 Description 

The dataset used as test case is from the city of Évora, which presently represents a large-scale Smart 

Grid pilot with more than 30 000 EB and 300 DTC (all costumers and substations), in order to have the 

entire municipality covered (an area of 1307 km2). 

The dataset consists of time series from 44 EB associated to residential PV (rated power ranging 

between 1.1 kWp and 3.7 kWp). Moreover, these EB are also related to 10 different DTC, and the total 

values of each DTC are also forecasted. 

The parameters of the clear-sky model determined by trial-error tests are: σh=0.01, σdoy=0.02, τ=85%. 

The forgetting factor λ for both AR and VAR was found to be 0.999.  

The original data was sampled in 15 minutes, but it was resampled to hourly values. The model’s 

fitting period was between 1 February 2011 and 31 January 2012, and the test period was between 1 

February 2012 and 6 March 2013. 

The point forecast results are evaluated with the Root Mean Square Error (RMSE) calculated for the 

kth lead-time [12]: 

  


 
N

t

kttktk pp
N 1

2

|
ˆ

1
RMSE  (21) 

The RMSE is to be normalized with the solar peak power. 

The probabilistic forecast results are evaluated with Continuous Ranking Probability Score (CRPS) 

modified for quantile forecasts [34]: 

   
1

0
|

ˆ,2C   dppRPS tktktk
 (22) 

where ρ is the average of the quantile loss function (Eq. 13) calculated on the test period dataset and 



tktp |
ˆ


 is the quantile forecast. The integral is calculated through numerical integration with the Simpson’s 

rule. 
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The forecast skill of two models (VAR and VARX) is evaluated by computing the improvement over 

AR in terms of RMSE and CRPS: 

 %100
)or(

)or()or(
Imp

,

,,





ARk

VARkARk

k
RMSECRPS

RMSECRPSRMSECRPS  (23) 

4.2 Point Forecast Results 

The improvement of the VAR and VARX over the AR model for each lead-time is plotted in Figure 2 

for two DTC and for the RMSEk calculated with the complete dataset of DTC forecast errors. 

 

Figure 2: Impk of the VAR and VARX models for two DTC and for the RMSE calculated using the entire dataset of forecast 

errors. 

These plots clearly show that the VARX model achieves the highest improvement. From the full set of 

DTC, number 4 is the one with the highest overall improvement, reaching a value around 11% for the 

first lead-time and around 6% for the sixth lead-time. Number 10 is the one with the lowest improvement, 

ranging between 3% and 4%. 
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The VAR model also achieves a positive improvement in all lead-times, but lower than VARX. This 

shows that information from surrounding smart meters (or EB), explored as distributed sensors, can 

improve the forecast skill at the DTC (or MV/LV substation) level. This is corroborated by a global 

improvement of the VARX between 5.5% and 10%.  

Another interesting observation is that the improvement decays with the lead-time, meaning that the 

distributed information is more relevant for the first three hours. This makes sense since the forecasting 

model in this test case only includes information from a small municipality. If solar power data from 

neighboring municipalities and regions is included in the model, a higher improvement for lead-times 

between 4 and 6 is expected.     

Figure 3 shows the improvement obtained with the VAR model for two EB and for the RMSEk 

calculated with the full dataset of EB forecast errors. 

 

Figure 3: Impk of the VAR model for two EB and for the RMSE calculated using the entire dataset of forecast errors. 

The VAR model attained the highest improvement for EB number 16, with a value around 25% for 

lead-time 1 and around 11% for lead-time 6. The lowest improvement was attained for EB number 39, 
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with 6.5% for lead-time 1 and a negative value of around -1% for lead-time 6. The global improvement 

for the EB dataset varies between 0.1% and 12.5%. Compared to the DTC results, the improvement 

obtained for the EB dataset is higher for the first two lead-times. 

Figure 4 depicts the average, minimum and maximum values of the normalized RMSE for the EB and 

DTC datasets, calculated from the individual RMSEk values of each EB and DTC. For the DTC, the 

forecast errors are from the VARX model, while for the EB are from the VAR model. The RMSE 

magnitude is consistent with the state of the art (see [12] and [10]). 

The average RMSEk of the EB and DTC is similar for the first two lead-times, but the difference 

increases for the other lead-times. The main difference is in the minimum and maximum values, with 

higher amplitude for the EB. For instance, there are EB with an RMSE below 10% (even for lead-time 6), 

but also EB with an RMSE close to 20%. Since the variability in solar power due to the clouds is 

smoothed by the aggregation of EB in one DTC, this is an expected result. Nevertheless, this also shows 

that the forecasts for some EB are significantly improved with the distributed information (e.g., EB 

number 16 in Figure 3). 

 

Figure 4: Average, minimum and maximum normalized RMSEk calculated with the individual RMSEk obtained for each EB 

and DTC. 

4.3 Probabilistic Forecast Results 

The improvement in terms of Continuous Ranking Probability Score (CRPS) of the VAR and VARX 

over the AR model for each lead-time is plotted in Figure 5 for two DTC and averaged over the entire 

dataset of DTC. These three plots clearly show that the VAR framework improves over the AR in all 

lead-times. In DTC number 5 the improvement goes up to 12%, while the overall improvement is 

between 1.4% and 5.9%. The DTC number 10 is the one that presents the lowest improvement, with an 
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average value around 0.1%. The results for DTC number 5 and 10, as well as for the global dataset show 

that the VARX achieves the highest improvement for lead-time between 2 and 6 (i.e., 16.4% for lead-time 

3 in DTC 5). 

Similarly to the point forecast results, these results confirm that the distributed information from DTC 

and EB improve the probabilistic forecast skill. 

In terms of absolute values, the CRPS averaged over the entire dataset of DTC ranges between 3.9% 

(normalized by peak power) and 6.2% for AR model, between 3.6% and 6.1% for the VAR model, 

between 3.7% and 6% for the VARX model. 

 

 

Figure 5: Impk of the VAR and VARX models for two DTC and for the CRPS calculated using the entire EB dataset. 

The CRPS improvement obtained with the VAR model is depicted in Figure 6 for the EB dataset. In 

EB number 14 the improvement ranges between 7.3% and 21.4%, while in EB number 29 is negative 

between lead-times 2 and 6. The overall improvement, i.e., average of the individual improvements of the 

44 EB, ranges between -2.8% and 4.6%.  
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In contrast to the DTC dataset, the improvement is negative for lead-times between 4 and 6. These 

results are very different from the point forecast improvement presented in section 4.3 and also the 

improvement obtained with the median, which ranges between 6.5% (lead-time 1) and 3.3% (lead-time 

6). This negative improvement is mainly explained by a poor performance of VAR models in some 

quantiles. This is illustrated by Figure 7 that shows the quantile loss calculated for each nominal 

probability and lead-times 1 and 5. For lead-time 1, the quantile loss of the VAR is lower than the one 

obtained with AR for all quantiles. Conversely, the skill of the VAR model in lead time 5 is lower than 

the AR model for the 5-20% quantiles. In this case, the information from distributed sensors decreases the 

forecast skill of some quantiles, which impacts the overall score.  

This is an interesting result since in [16] is mentioned that, for the wind power problem, “forecast 

improvements mainly come from the space-time correction of the point forecasts”. However, in this 

paper, and for the solar power problem, an improvement in point forecast skill is not translated to an 

improvement in some quantile forecasts. A future development to improve this probabilistic forecast is 

the employment of a method that combines different quantile forecasts [35] (from the AR and VAR 

models in this case), which in turn may improve the individual score of each quantile. For instance, the 

VAR model outperforms AR in quantile 40%, while AR outperforms VAR in the 10% quantile. 

Finally, the absolute values of CRPS are between 4.4% and 6.5% for the AR model, and between 4.2% 

and 6.65% for the VAR model. 
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Figure 6: Impk of the VAR model for two EB and for the CRPS calculated using the entire EB dataset. 
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Figure 7: Quantile loss of the AR and VAR models for lead-times 1 and 5 and EB dataset. 

5. Conclusions 

This paper proposes a new framework for very short-term solar power probabilistic forecasts, which 

uses information collected by a Smart Grid infrastructure (e.g., smart meters, pyranometer sensors, 

remote terminal units). The results for real data from a Smart Grid test pilot, in the city of Évora, 

Portugal, show that information from distributed PV generation, when combined in a common forecasting 

framework, can improve the point forecast skill, compared to an univariate model (i.e., only uses past 

observations of a single time series), between 8% and 12% on average for the first three lead-times and 

the probabilistic forecast skill between 1.4% and 5.9%. Furthermore, time series observations collected by 

smart meters associated to residential PV improve both point and probabilistic forecast skill at the 

secondary substation level. Therefore, the adoption of multivariate (spatial-temporal) models, which fully 

explore the information collected by smart meters and intelligent electronic device, is recommended to 

create high quality forecasting methods that will support Smart Grid management functions. The main 

requirement is to have a quasi-real-time data flow between smart meters and central systems, which can 

be waived by considering upscaling techniques for solar power measurements [36]. 
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These results open new avenues of future research, such as: combination of information from satellite 

frames and weather stations; apply new data mining and optimization techniques to enable an increase of 

the spatial coverage; develop regime-switching models.     
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