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Abstract 9 

This paper presents numerical analysis of two alternative optimization approaches intended to support 10 

an EV aggregation agent in optimizing buying bids for the day-ahead electricity market. A study with 11 

market data from the Iberian electricity market is used for comparison and validation of the forecasting 12 

and optimization performance of the global and divided optimization approaches. The results show that 13 

evaluating the forecast quality separately from its impact in the optimization results is misleading, 14 

because a forecast with a low error might result in a higher cost than a forecast with higher error. Both 15 

bidding approaches were also compared with an inflexible EV load approach where the EV are not 16 

controlled by an aggregator and start charging when they plug-in. Results show that optimized bids allow 17 

a considerable cost reduction when compared to an inflexible load approach, and the computational 18 

performance of the algorithms satisfies the requirements for operational use by a future real EV 19 

aggregation agent. 20 
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1. Introduction 26 

 Policy makers and researchers working in electrical mobility have conducted studies for assessing the 27 

impact of electric vehicles (EV) in power system operation and planning [1] and the possible business 28 

models for companies operating in this activity [2]. The figure of an EV aggregation agent (aggregator in 29 

abbreviated form) has been proposed as an intermediary between vehicle driver, the system operators of 30 

the transmission and distribution grid and the electricity market [1][3]. The aggregator is an electricity 31 

retailer that has direct control over the charging process of the EV in its portfolio of clients and is 32 

responsible first for purchasing electrical energy for these clients in the electricity market and then to 33 
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control the charging process to comply with the contracted quantities of electrical energy. 34 

A number of optimization algorithms for supporting the aggregator activity in the short-term horizon 35 

(i.e. participation in day-ahead markets) have been presented [4]-[9]. Two alternative bidding approaches 36 

(global and divided) for minimizing the cost of purchasing electrical energy in the day-ahead market are 37 

described in a companion paper [10]. The global approach uses aggregated values of the EV variables and 38 

the optimization model determines the bids exclusively based on total values. The divided approach uses 39 

individual information from each EV. Moreover, an operational management algorithm is used for 40 

minimizing the deviation between market bids and consumed electrical energy for charging EV. The 41 

models take as inputs forecasts from market prices and EV variables.    42 

This paper presents numerical analyses for a realistic case-study with synthetic time series of 43 

availability and consumed electrical energy from an EV fleet, generated using statistics from the traffic 44 

patterns in Portugal. The two optimization approaches are evaluated and compared, and an assessment of 45 

the EV variables forecast’s quality and value (i.e. economic benefits) is also presented.  46 

This paper is organized as follows: sections 2 describes the case-study; section 3 presents the forecast 47 

evaluation results for the market and EV variables; section 4 compares the costs of the global, divided and 48 

inflexible load bidding approaches; section 5 presents the conclusions.    49 

2. Case-Study Description 50 

This section presents the case-study used for comparing and evaluating the bidding approaches. The 51 

case-study is more representative as possible and uses real electricity market data. Only EV data is 52 

synthetic and tries to simulate a forthcoming situation. 53 

2.1 EV Synthetic Time Series 54 

For producing time series of the EV availability and consumption, the generation mechanism for 55 

synthetic EV charging time series described in [11] was used. The movement of a fleet with 3000 battery 56 

EV along one year was simulated using a discrete-time-space Markov chain at each time step of half-57 

hour, in accordance with the common traffic patterns in the northern region of Portugal [12]. The 58 

statistical post-processing of these traffic patterns is described in [13]. Having the EV movements fully 59 

defined, their power requirements were computed.  60 

Each EV was initially characterized in terms of battery capacity, energy consumption and battery state 61 

of charge (SOC) in the beginning of the simulation. These values were defined according to truncated 62 

Gaussian probability density functions. The mean, standard deviation, maximum and minimum values are 63 
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given in [11]. The initial battery SOC values were defined as a parameter in the simulation, while the 64 

other two variables were gathered from the information made available by 42 different EV manufacturers. 65 

The charger efficiency was assumed to be 90%. 66 

A specific driver behavior was also assigned initially to each EV. The possible behaviors considered in 67 

this paper were obtained from a survey made within the framework of the MERGE project [14]. The 68 

results revealed that there are three major types of behavior regarding EV charging, as presented in Table 69 

1.  70 

Table 1: Three types of behavior regarding EV charging. 71 

For the drivers who charge their EV only when it needs, it was defined that the battery SOC threshold 72 

for charging equal to 40%. 73 

The simulation methodology assumes that, at every time interval, each EV can be in one of the 74 

following states: in movement, parked in a residential area, parked in a commercial area or parked in an 75 

industrial area. When the state is “in movement”, the energy consumption and the respective reduction in 76 

the battery SOC are computed. At each time interval, the EV battery SOC is updated according to the 77 

energy spent travelling or according to the energy absorbed from the electrical network.  78 

Three charging levels were considered for the simulation: EV “parked in a residential area” and 79 

“parked in an industrial area” charge at 3 kW (slow charging mode), EV “parked in a commercial area” 80 

charge at 12 kW (normal charging mode) and the charging power in fast charging stations is 40 kW (fast 81 

charging mode) [14]. When an EV is parked, the decision of whether or not plugging it in for charging is 82 

made taking into consideration its driver behavior (see Table 1) and its current SOC (only for type C 83 

drivers). This case-study only studies EV parked in residential area (slow charging mode). 84 

The simulation methodology provides, for a one-year period with 30 minutes time intervals, the 85 

following time series: the periods where EV are plugged-in and available to charge, the EV power 86 

absorbed at each time interval (assuming that the EV starts charging when plugs-in), the EV battery SOC 87 

evolution and the EV travelled distances. These time series are used for training the forecasting 88 

algorithms (as historical data) and testing the optimization and forecasting algorithms. 89 

2.2 Electricity Market  90 

The case-study follows the data and rules of the day-ahead Iberian electrical energy market [15]. The 91 

market agents may present buy and sell hourly bids that cover all 24 hours of the next day (physical 92 

delivery period). The gate closure occurs at the 10th hour. Two types of simple hourly bids are possible: a 93 
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price independent bid for all hours regardless of the price level, with only a price cap, or a price 94 

dependent hourly bid for all hours where a stepwise curve is submitted.  95 

In general, the day-ahead session structure and rules do not change from market to market. Therefore, 96 

the global and divided algorithms can be directly applied to different electricity markets without 97 

significant changes.  98 

The total cost, in addition to the cost of purchasing electrical energy in the electrical energy market, 99 

also includes costs associated to deviations from planned consumption. When the aggregator has surplus 100 

of electrical energy in the market bid it has to sell this extra electrical energy at a regulation price (pt
surplus) 101 

in general below the day-ahead electrical energy price; if the situation is shortage of electrical energy, it 102 

has to pay a regulation price (pt
shortage) in general above the day-ahead electrical energy price [16]. This 103 

corresponds to the following equation for the total cost: 104 
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where Et
bid is the electrical energy purchased in the day-ahead electrical energy market for time interval t, 106 

pt is the day-ahead electrical energy price, Et
cons is the consumed electrical energy, pt

surplus is the regulation 107 

price for positive deviations and pt
shortage is the regulation price for negative deviations. 108 

The second component of this equation is the surplus or shortage costs, where the price difference pt-109 

pt
surplus is the positive deviations price (πt

+), and the difference pt
shortage- pt is the negative deviations price 110 

(πt
-).  111 

The regulation prices, in the Portuguese control area, are related with the tertiary reserve (or regulation 112 

reserve) prices.  113 

The electricity market data of the case-study is from a three years period (2009-2011) and consists of: 114 

electrical energy price of the day-ahead market for Portugal (downloaded from [17]); price of upward and 115 

downward reserve for Portugal (downloaded from [18]); interconnection exchanges (imported electrical 116 

energy) between Portugal and Spain (downloaded from [19]); load and wind power forecast in the Iberian 117 

peninsula for the next day (downloaded from [17]). 118 

In general, the European market designs have different penalization prices for negative and positive 119 

real-time deviations from the market dispatch [20]. These prices result from regulation market sessions 120 

(e.g. with manual reserve bids cleared in real-time by the system operator) or are established by the 121 

regulator to provide incentives for better resources’ scheduling. The operational management algorithm 122 
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can be generalized for any electricity market with asymmetric or symmetric regulation prices. Other 123 

market designs, such as the U.S. markets, have a real-time market session where the price difference for 124 

the day-ahead market price can induce significant losses in case of deviation from the day-ahead bid [21]. 125 

In this case, the objective function of the operational management algorithms needs to be redesigned to 126 

include this price difference, which, depending on the deviation sign, might represent a profit for the 127 

aggregator (sell surplus of electrical energy at a higher price). 128 

Finally, this paper does not consider the participation in intraday and hour-ahead markets [22], 129 

although this is an important topic for future work.  The participation in the intraday market sessions is 130 

not mandatory, but it is foreseen that the aggregator will use these sessions to calculate new bids using 131 

updated information (e.g. forecasts). For example, if the amount of forecasted consumption for the time 132 

intervals covered by the intraday session is larger than the amount contracted in the day-ahead session (or 133 

in the previous intraday session), the aggregator must buy the deficit of energy from the pool at the 134 

intraday price (which represents a cost increase). Conversely, if the amount of forecasted consumption is 135 

smaller than the amount contracted in the day-ahead session (or in the previous intraday session), the 136 

aggregator makes an offer for selling this electrical energy surplus in the intraday market (obtaining profit 137 

if the intraday market price is higher than the day-ahead price). In both cases, the aggregator is mitigating 138 

deviation penalties. 139 

2.3 Participation in the Electricity Market 140 

Figure 1 depicts a diagram with the sequence of tasks from the aggregator participation in the Iberian 141 

electricity market. Before the 10th hour of day 0, the aggregator forecasts the market and EV variables, 142 

computes optimal bids based on these forecasts, and then presents bids in the day-ahead electrical energy 143 

market. The market settlement process takes place between the 11th and 14th hours of day 0. Then, during 144 

the 24 hourly intervals of day 1, the aggregator manages the EV individual charging for minimizing the 145 

deviation between bids (presented in day 0) and actual consumption.   146 

Figure 1: Diagram with the sequence of tasks for participating in the Iberian electricity market. 

Figure 2 depicts the diagram with the temporal horizons of the forecast and optimization algorithms 147 

for the Iberian electricity market. The bidding optimization is performed for the market settlement period 148 

(24 hourly intervals in day 1), but extended to have 12 additional hours since most of the EV are expected 149 

to depart in day 2. Since the gate closure of the day-ahead electrical energy market is the 10th hour, the 150 

aggregator needs to forecast the EV variables for a time horizon of 100 half-hour time intervals (i.e. 151 
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between the 10th of day 0 and the 12th hour of day 2). Only the forecast between the first time interval of 152 

day 1 and the 12th time interval of day 2 is an input of the bidding optimization model.   153 

Figure 2: Diagram with the temporal horizons of the forecast and optimization algorithms. 

The output of the bidding optimization until the 24th hour of day 1 is one input of the bidding 154 

optimization exercise in day 2 (as illustrated by the arrow in Figure 2), and this interaction is repeated in 155 

each day. This guarantees the temporal continuity of the charging process. 156 

  The output of the market settlement (accepted bids) is an input of the operational management 157 

algorithm. The time horizon of the algorithm is variable and equal to the maximum of departure hour of 158 

all the EV. The time step is the same of the global or divided approaches, which is half-hour. The output 159 

until the 24th hour of day 1 is an input of the subsequent optimization in day 2 (as illustrated by the arrow 160 

in Figure 2). 161 

The two bidding approaches will be compared with the situation where all the clients are inflexible EV 162 

loads. In this mode, the EV driver is completely free to connect and charge the vehicle whenever he/she 163 

wants. The charging starts automatically when the EV plugs-in. The aggregator in this case is a standard 164 

electricity retailer that forecasts the total consumption and offers in the day-ahead electrical energy 165 

market a bid equal to the forecasted values for each time interval. 166 

2.4 Sampling Process for Evaluation    167 

For a robust evaluation of the bidding’s results in section 4, a sampling process based on the evaluation 168 

made in [23] was adopted for producing random repetitions of a simulation experiment. The objective is 169 

to evaluate the optimization results for different market data randomly sampled (but maintaining the 170 

temporal sequence) from the three year period. Since the forecasting algorithms require training and 171 

testing datasets, a fixed length for these two sets was defined: 9 months for the training dataset, 3 months 172 

for the testing dataset. 173 

Then, a sampling process without replacement is used to draw the first hour of the day, t, from the 174 

candidate set. This sample is used to split the three years of data in training (between t and t-9 months) 175 

and testing (between t and t+3 months) datasets. The process is repeated 100 times, and for each sample t, 176 

the global and divided optimization algorithms are applied to the test dataset, and corresponding costs of 177 

purchasing electricity are computed. The result, instead of a single value for the total cost, is a distribution 178 

with 100 samples. 179 

This sampling process is only used in the electricity market data. Because of a high calculation time (in 180 
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particular in the divided approach), it is not possible to apply this process to the EV data. In order to test 181 

the optimization methodologies in different EV data, the synthetic time series for 3000 EV is divided in 182 

two groups of 1500 EV: datasets A and B. Moreover, each EV dataset is divided in training and testing 183 

periods: the first 9 months for training and the last 3 months for testing. 184 

3. Evaluation of the Forecasting Performance  185 

3.1 Aggregated EV Variables 186 

Three different EV variables are required for the global approach: total maximum available power for 187 

charging, total charging requirement and charging requirement distribution. Moreover, for the inflexible 188 

EV load approach it is also necessary to forecast the total consumption. 189 

The application of the unit-roots Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [24] showed that all 190 

the four time series are stationary. The analysis of the autocorrelation diagrams for the aggregated 191 

variables shows a daily (higher peak in lag 48) and weekly (higher peak in lag 336) patterns. Therefore, 192 

based on the autocorrelation diagram and using the Akaike information criterion (AIC)[25] as a 193 

performance metric, the following model was used for forecasting the four variables: 194 

 
ttttttt DHyyyyy ++⋅+⋅+⋅+⋅+= −−−− 336448322110 φφφφφ  (2) 195 

where ϕ are the model’s coefficients, yt-j is the jth lag of the response variable y, l is the lag order, Ht is 196 

a seasonal index that takes a different value for each hour of the day, and Dt is a seasonal index that takes 197 

a different value for each day of the week. 198 

The following metrics measure the forecast statistical quality. The classical MAPE (Mean Absolute 199 

Percentage Error), given by 200 

 100
ˆ1

1
⋅












 −
= ∑ =

N

j
j

jj

y

yy

N
MAPE  (3) 201 

where yj is the realized value, 
jŷ the forecasted value and N the number of samples in the test dataset. 202 

The modified MAPE for time series with zero values [26]: 203 
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The percentage bias: 205 
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A modified percentage bias (mPBIAS) similar to Eq. 4 is used in variables with zero values. 207 

Table 2 presents the forecasting quality evaluation for the four EV variables in dataset A and B. The 208 
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forecast time horizon is 100 look-ahead time steps (half-hour data). The error values show that the 209 

forecasts present a good quality.  210 

Table 2: Forecasting performance for the EV aggregated variables for dataset A and B. 211 

It is important to stress that these statistical performance metrics, in particular for the charging 212 

requirement variable, measure only the forecast quality (i.e. match between forecasted and realized 213 

value). In fact, their true forecast value can only be assessed by computing the total cost of the bidding 214 

process. For example, the forecasts could indicate a 16 kWh of charging requirement that need to be 215 

satisfied until hour 6h, while the realized value is 16 kWh until hour 8h. This represents a high forecast 216 

error in the mMAPE sense, but, actuality, it corresponds only to an anticipation of the charging 217 

requirement. An evaluation of the economic value will be presented in section 4.  218 

3.2 Individual EV Variables 219 

For each EV, the availability is first forecasted and then non-parametric bootstrapping is used to 220 

estimate the charging requirement for each plugged-in period. 221 

The three different drivers’ behavior of Table 1 have availability time series with different 222 

autocorrelation diagrams. The difference is particularly clear between types A/B and type C. EV drivers 223 

of type A and B have a clear double seasonal pattern (i.e. daily and weekly), while type C drivers’ 224 

behavior does not have a seasonal cycle. Because of different autocorrelation patterns, two Generalized 225 

Linear Models (GLM) were considered: 226 

 ( ) ( )( )( )336548433221101 exp11|1 −−−−−−− ⋅+⋅+⋅+⋅+⋅+−+== tttttlttt yyyyyyyyp φφφφφφL  (6) 227 

for type A and B drivers, and 228 

 ( ) ( )( )( )4433221101 exp11|1 −−−−−− ⋅+⋅+⋅+⋅+−+== ttttlttt yyyyyyyp φφφφφL  (7) 229 

for type C drivers. In both cases, y is a binary variable indicating whether or not the EV is plugged-in and 230 

p(yt=1|yt-1…yt-l) is the posterior probability. 231 

The same lagged variables were used for all EV from the same type. A topic for future research is to 232 

develop an automatic procedure for selecting different input variables for each EV. 233 

The performance of the availability forecast is measured with a metric from the literature about 234 

evaluation in classification problems [27]:  235 
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where TP is the number of correct plugged-in predictions (true positives), FN is the number of wrong 237 
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zero predictions (false negative) and FP is the number of wrong plugged-in predictions (false positive). 238 

Figure 3 summarizes the availability forecast results divided by drivers’ type with a boxplot for the 239 

two datasets, and for a time horizon up to 100 time intervals ahead.  240 

Figure 3: Boxplot for the accuracy of the availability forecast and for dataset A and B. The boxplot have five statistics: 

lowest datum (within 1.5 IQR) of the lower quartile, lower quartile, median, upper quartile, and the highest datum (within 

1.5 IQR) of the upper quartile. The outliers are also identified on the boxplot. 

The availability forecast for type C drivers presents the lowest accuracy, suggesting that these 241 

availability patterns are difficult to forecast. Some forecasts for type A drivers also present a very low 242 

accuracy. The forecasts with low accuracy for type A and C drivers have in common a low number of 243 

time intervals in one year during which the EV is plugged-in for charging. For example, an EV of type A 244 

with accuracy equal to 4.31% is only plugged-in during 24.60% of one year time, and a type C driver 245 

with accuracy equal to 4.76% is only plugged-in during 12.37%. EV with better performance has a higher 246 

rate of plugged-in hours. For example, an EV with 80% of accuracy is plugged-in during 52.5% of the 247 

time.  248 

These results suggest that the asymmetry in the number of plugged-in hours has a considerable impact 249 

on the model performance.  250 

The mMAPE computed for the aggregated availability (sum of the individual availability forecasts) is 251 

6.99% for dataset A, and 8.09% for dataset B. The modified PBIAS is 4.45% in dataset A, and -4.60% for 252 

the dataset B. These results show a good forecast quality for the aggregated availability. 253 

As mentioned in the previous section, the individual charging requirement forecast quality cannot be 254 

assessed with classical statistics that quantify the difference between realized and forecasted value. 255 

Nevertheless, the aggregated values of the individual forecasts can give a reference value for comparison 256 

with the values in Table 2. For dataset A the mMAPE is 29.93%, while for dataset B it is 30.69%. These 257 

errors are higher than the ones of the aggregated variables from the previous section, but only the 258 

evaluation of the final deviations’ magnitude and cost can give a true picture of the forecast error. 259 

3.3 Market Prices 260 

The KPSS test showed that the price time series are non-stationary and a differentiation of order 1 is 261 

needed. Moreover, based on the autocorrelation diagram and using the AIC, the following model was 262 

used for forecasting the day-ahead electrical energy price: 263 

 ( ) tttttttt DHwpgppppp +++⋅+⋅+⋅+= −−−− 3322111ˆ φφφ  (9) 264 

where  pt-j is the jth lag of the price variable, l is the lag order, Ht takes a different value for each hour 265 
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of the day, and Dt takes a different value for each day of the week, g are cubic basis splines, and wp is the 266 

forecasted wind power penetration. 267 

The interior knots of the basis splines were placed in each quantile according to 6 degrees of freedom 268 

(which attains the lowest AIC). The boundary knots were placed in the extremes of the data. 269 

For forecasting the negative deviation price (i.e. difference between shortage regulation and electrical 270 

energy price) the following model was used: 271 

 ( ) ( ) ( ) tttttttttt DHpgIgwpg +++++⋅+⋅+⋅+= −
−

−
−

−
−

−
−

− Import
3322111ˆ πφπφπφππ  (10) 272 

where pt is the electrical energy price of the day-ahead market, I t
import  is the interconnection exchange 273 

(imported electrical energy) of the bulk power system that results from the market mechanism and wpt is 274 

the forecasted wind power penetration. The degree of freedom for this model is 10. 275 

For the positive deviation price π+
t (i.e. difference between surplus regulation and electrical energy 276 

price) the model of Eq. 11 is used, but with It
Import replaced by I t

Export . 277 

For participating in the market with buying bids, the most important information is the ranking of the 278 

prices [5]. Therefore, in addition to the mean absolute error (MAE), the Spearman rank correlation is used 279 

for measuring the prices ranking quality. The Spearman correlation coefficient is computed for each pair 280 

of forecasted and realized values of a time horizon of 36 hours ahead, and then averaged over the entire 281 

test period.  Figure 4 depicts boxplots summarizing the evaluation results in the 100 random samples for 282 

the three market variables: electrical energy, surplus and shortage prices. 283 

Figure 4: Spearman correlation and mean absolute error of the prices forecasts for 100 samples. 

The performance of the electrical energy price is acceptable, the median for the rank correlation is 0.77 284 

and MAE is 5.21 €/MWh. The forecasts for the deviation prices present a low performance because their 285 

rank correlation is around 0.25 for both prices. The shortage price presents a low MAE (median of 7.45 286 

€/MWh) when compared to the surplus price (median of 11.67 €/MWh). These results indicate that the 287 

forecasting approach for the deviations prices has room for improvement. 288 

3.4 Computational Implementation Issues 289 

The presented case-study was tested on a laptop computer with an Intel Core i5 CPU M450 @ 2.40 290 

GHz processor and 4 GB of RAM memory. 291 

In order to forecast the aggregated variables (Eq. 2), function gls from R package nlme [28] was used 292 

for fitting a linear model using generalized least squares. The execution time for estimating the model’s 293 

parameters is 106 seconds on average. However, this task is conducted offline and only one time. The 294 
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average execution time was 0.45 seconds for producing a single forecast with 100 look-ahead time steps. 295 

For fitting the price forecasting models (Eq. 9-10) the function gam from R package mgcv [29] was 296 

used. The average execution time for parameters’ estimation was 0.78 seconds and 0.42 seconds for a 297 

single forecast with 36 look-ahead time steps. 298 

For forecasting EV availability, the function bayesglm from R package arm [30] was used for fitting 299 

the GLM. The charging requirement was estimated with a bootstrapping process. The execution time for 300 

the charging requirement forecast (including the GLM training and availability forecast) was 8.56 301 

seconds for one EV and for a single forecast with 100 look-ahead time steps. The execution times of this 302 

forecasting algorithm might be prohibitive if the number of EV is high. However, this process can be 303 

parallelized and an implementation in C or Fortran would increase considerably the computational 304 

performance. For the simulations, the execution time is of several hours when simulating thousands of EV 305 

for a test period with 3 months. 306 

4. Comparison between Global and Divided Bidding Approaches 307 

In this section, the sampling process described in section 2.4 is used for comparing the costs of the 308 

global and divided approaches for 100 samples. For the global approach, it is necessary to set the value of 309 

one parameter, β. This parameter is included in a constraint of the optimization problem where the 310 

purchased electrical energy is limited by the forecasted total maximum available power (Pmax). Pmax is 311 

adjusted, as the charging process evolves, linearly using β; more details can be found in [10].  The β value 312 

was estimated from the first 9 months (training dataset). For each β, the mMAPE was computed and the β 313 

value that leads to its lowest value was selected. The result was a β equal to 1.0 and 0.8 for datasets A and 314 

B.  315 

4.1 Computational Implementation Issues 316 

The optimization problems were solved with IBM ILOG CPLEX optimizer [31] using the Python API. 317 

For the global optimization, the number of decision variables is 72 (for a programming horizon of 72 318 

half-hours time intervals), the number of constraints is 216, and the execution time on average was 0.041 319 

seconds. For the divided optimization, the number of decision variables and constraints varies with the 320 

number of EV plugged-in in each time interval. For example, for the day 1 of the case-study, the number 321 

of decision variables was 43,461 and the number of constraints was 46,078. The average execution time 322 

was 0.639 seconds. 323 

The number of decision variables and constraints in the operational management algorithm also varies 324 
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with the number of EV plugged-in in each time interval. For the first time interval of day 1 (period 325 

between 0 and 1 AM with 1096 plugged-in EV) the number of decision variables was 17,952 and the 326 

number of constraints was 19,079. The average execution time was 0.475 seconds.       327 

4.2 Visual Comparison of Days 328 

Figure 5 depicts a visual comparison between the two bidding approaches (i.e. optimized bids) for the 329 

6th day from the test dataset of a sample.  330 

Figure 5: Optimized bids obtained from the divided and global approaches for the 6th day of the test period. 

The plots show dissimilarity between the two approaches in all the time intervals. The global approach 331 

has time intervals with no bids in both days (in particular during the last ten time intervals), while the 332 

divided approach has bids in all the time intervals. This suggests that the bids from the global approach 333 

are more concentrated, which may create difficulties in avoiding deviations. Conversely, the bids from the 334 

divided approach are more dispersed, which may facilitate the operational management algorithm. As 335 

expected, the hours with the highest bid values are during the night, where the forecasted prices have low 336 

values.  337 

4.3 Comparison of the Deviations between Bid and Realized Consumption 338 

The deviation between bid and realized consumption is measured by the mMAPE. Figure 6 depicts 339 

boxplots for the divided approach with forecasted information and for both datasets. Since the EV dataset 340 

is always the same in each random sample, this variation in deviations from sample to sample is only 341 

because of different electrical energy and deviation prices. In other words, these deviations occur because 342 

the bids are placed in different time intervals according to the forecasted prices.  The small variation in 343 

both metrics indicates that the divided approach is robust to the electricity market conditions (i.e. prices 344 

ranking). 345 

Figure 6: mMAPE of the divided approach with forecasted information for dataset A and B. 

Figure 7 depicts the mMAPE for the global approach with forecasted and realized values (of EV and 346 

market variables) as input. The deviations in this bidding approach, in contrast to the divided approach, 347 

have a more widespread variation for different market conditions. For example, the mMAPE boxplot for 348 

dataset A with forecasted information varies between 19% and 29%. Note that, as demonstrated in a 349 

companion paper [10], the global model with realized values presents deviations. These deviations are not 350 

due to forecast errors, but related to information loss when only aggregated values are used as input for 351 

computing the optimal bid.   352 
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Figure 7: mMAPE of the global approach with forecasted and realized information for dataset A and B.    

4.4 Comparison of the Costs from Participating the Electricity Market 353 

This section compares the costs from participating in the electricity market. Figure 8 depicts the total 354 

cost (computed with Eq. 1) of the divided approach with perfect and forecasted information.  In both 355 

datasets, the difference between the total cost obtained with perfect and forecasted information is low. 356 

The difference between the medians is 1.73 k€ (24.69-22.9 k€, cost increase of 7.5%) for dataset A and 357 

3.15 k€ (57.77-54.62 k€, cost increase of 5.76%) for dataset B. This cost difference suggests that more 358 

advanced bidding models, including stochastic information, can only improve over this small percentage.    359 

Figure 8: Results with perfect and forecasted information for the divided approach in dataset A and B. 

Figure 9 depicts the total cost of the global approach with realized and forecasted values as input. The 360 

difference between medians is 0.62 k€ (26.60-25.98 k€, cost increase of 2.4%) for dataset A and 1.48% 361 

(64.18-62.70 k€, cost increase of 2.36%). These results indicate that the forecast errors have a low impact 362 

on results. This is an expected conclusion since, as shown in section 3, the forecast error for the 363 

aggregated variables is low. This low impact of forecast errors is traded-off with deviation costs 364 

originated from modeling the EV fleet only with aggregated information. 365 

Figure 9: Results with perfect and forecasted information for the global approach in dataset A and B. 

Figure 10 depicts the total cost and its three components: cost of electrical energy purchased in the 366 

day-ahead market (Ebid.p), cost of positive deviations or surplus cost (πt
+.[Ebid-Econs]  in Eq. 1), and cost of 367 

negative deviations or shortage cost (πt
-.[Econs-Ebid]  in Eq. 1). For comparison, the costs obtained with all 368 

EV as inflexible loads are also presented.  369 

Figure 10: Costs comparison between divided, global and inflexible EV load approaches obtained using forecasted values for 

dataset A. 

The global approach has the highest deviation costs since it also has the highest deviation values. 370 

Nevertheless, in all the approaches the deviation costs are marginal compared to the day-ahead cost. Since 371 

the two bidding approaches were underestimating the charging requirement, the shortage costs are higher 372 

on average compared to the surplus cost. The inflexible load approach has a low deviation value, but the 373 

surplus cost is higher than the divided approach.  374 

The approach with the lowest day-ahead and total cost is the divided approach, followed by the global 375 

approach. The median of the total costs is 24.69 k€ for the divided approach, 26.60 k€ for the global and 376 

31.29 k€ for the inflexible load. This translates to a 26.7% total cost decrease in the divided approach 377 
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compared to the inflexible load, and a 17.6% decrease in the global approach. Note that the main 378 

contribution to increase the total cost of the inflexible load is from the day-ahead cost, since the EV are 379 

charged in more expensive time intervals. 380 

Figure 11 depicts the total cost and components for dataset B. The divided and global approaches have 381 

a lower difference between surplus and shortage costs, compared to dataset A. In this dataset, the ratio 382 

between deviation and day-ahead costs is lower, compared to dataset A.   383 

Figure 11: Costs comparison between divided, global and inflexible EV load approaches obtained using forecasted values for 

dataset B. 

The median of the total costs is 57.76 k€ for the divided, 64.17 k€ for the global and 68.34 k€ for the 384 

inflexible load. This translates to an 18.3% total cost decrease in the divided and 6.6% decrease in the 385 

global approach.  386 

An academic exercise was conducted for finding a posteriori the retailing tariff that leads to a 387 

breakeven between total cost and retailing revenue for the three bidding approaches. The retailing revenue 388 

for different values of a fixed retailing tariff was computed by multiplying the consumed electrical energy 389 

by the tariff value. The tariffs associated to the use transmission and distribution networks were ignored 390 

because their values are independent from the bidding approach. The average retailing profit from the 100 391 

samples is given by the average retailing revenue from applying a specific tariff minus the average total 392 

cost. The breakeven point is the tariff value that makes retailing profit positive.  393 

Table 3 presents the tariff value that leads to breakeven between total cost and retailing revenue. The 394 

tariff values show that the aggregator with the divided approach can offer a reduction in the retailing tariff 395 

of around 36.4% in dataset A and around 20% in dataset B compared to the inflexible approach. With the 396 

global approach, the aggregator can offer a discount of around 25% in dataset A and around 10% in 397 

dataset B. With this cost reduction, the aggregator either keeps unchanged the retailing tariffs and obtains 398 

a profit increase or offers a reduction in the retailing tariffs for attracting new clients.  399 

It is important to stress that these tariff values are theoretical and only indicative because the definition 400 

of a retailing tariff is much more complex and requires mid-term portfolio optimization [32]. Moreover, 401 

the tariff value varies also with the EV fleet behavior and characteristics.  402 

Table 3: Retailing tariff value that leads to a breakeven between total cost and retailing revenue. 403 

5. Conclusions 404 

This paper presented the numerical results for the two alternative optimization and forecasting 405 
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approaches for an EV aggregator participating in the Iberian electricity market with two fleets of 1500 406 

EV.   407 

The forecasting results show that the algorithms provide acceptable quality to be used as input for 408 

optimizing the day-ahead bids. The error of the aggregated variables used in the global approach is low, 409 

and the evaluation of the total cost indicated that advanced forecasting algorithms can only accomplish 410 

improvements over a small percentage. The forecasts for the individual EV variables lead to a low 411 

deviation in the divided approach, which suggests an acceptable quality.  412 

The results showed that the operational management algorithm is crucial for decreasing deviation costs 413 

by combining the EV individual charging. This was particularly significant in the divided approach where 414 

a forecast error of around 30% for charging requirement resulted in a final deviation of around 9.5%. 415 

The comparison between global, divided and inflexible load bidding approaches lead to the following 416 

conclusions: i) the global approach has a higher deviation value compared to divided one, which results in 417 

a higher total cost. For instance, in one EV fleet the divided approach reduced the total cost around 11% 418 

compared to the global approach; ii) the divided approach is more robust to different EV fleets and 419 

electrical energy price patterns. For the two EV datasets and a sampling process with 100 samples, the 420 

deviation in the divided approach ranged from 8.5% to 12%, while in the global approach ranged from 421 

18% to 30%; iii) the inflexible load approach also benefits from aggregating EV, which leads in low 422 

forecast error. However, the total cost is high because the EV are charged during high price periods; iv) a 423 

bidding optimizing model allows a discount in the retailing tariff of 20% and 36%, compared to an 424 

inflexible load approach, in two different EV fleets. 425 

The algorithms presented a computational performance acceptable for practical applications. 426 

As an overall conclusion, the results in this paper show that EV drivers under a contract with the 427 

aggregator have one important advantage: the aggregator supports the deviations costs, and combines the 428 

EV for decreasing the deviation costs.  429 

Conversely, in a situation where the EV behaves as an independent and intelligent agent that could 430 

interface directly with the electricity market (not allowed by the current market rules for small loads), the 431 

driver must support financially its deviation costs. Nevertheless, it is probable that in this mode, the driver 432 

will use a route planning software for a better schedule of its trips and bids. In any case, this may result in 433 

high deviation from planning and consequently high deviation costs that must be supported by the driver. 434 

The forecasting and optimization algorithms were tested with EV synthetic data anticipating a future 435 



 16

scenario. Nevertheless, the conclusions from this paper can be generalized to case-studies with real EV 436 

data and the algorithms can be applied without any change.   437 

Future work consists in extending the operational management and forecasting algorithms to include 438 

the possibility of upward and downward reserve bids. Furthermore, there is also a potential for 439 

improvement in the forecasting algorithms for the divided approach.  440 

Appendix – Sensitivity Analysis of the β Parameter 441 

This annex presents a sensitivity analysis of the β parameter that was conducted for EV datasets A and 442 

B and the market data was from a period between October and December 2010. 443 

Figure 12 depicts the total cost, day-ahead cost, shortage and surplus costs for the global approach 444 

with different values of β (ranging from 0 to 1 with 0.05 increments), and for dataset A.  445 

The plot shows that the day-ahead cost increases with β. This means that a lower β gives more 446 

“freedom” to the optimization algorithm for placing the bids in the time intervals with the lowest price. 447 

Conversely, this “freedom” results in a deviations increase, and consequently in an increase of shortage 448 

and surplus costs. The addition of these three costs results in a total cost increase when β decreases.  449 

Figure 13 depicts the same analysis for dataset B. The day-ahead cost decreases with β but the surplus 450 

and shortage costs start to increase when β is greater than 0.8. 451 

Figure 12: The impact of β in the total cost shares for dataset A with 1500 EV. 452 

Figure 13: The impact of β in the total cost shares for dataset B with 1500 EV. 453 
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Figure 1: Diagram with the sequence of tasks for participating in the Iberian electricity market. 
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Figure 2: Diagram with the temporal horizons of the forecast and optimization algorithms. 
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Figure 3: Boxplot for the accuracy of the availability forecast and for dataset A and B. The boxplot have five statistics: 

lowest datum (within 1.5 IQR) of the lower quartile, lower quartile, median, upper quartile, and the highest datum (within 

1.5 IQR) of the upper quartile. The outliers are also identified on the boxplot. 
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Figure 4: Spearman correlation and mean absolute error of the prices forecasts for 100 samples. 
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Figure 5: Optimized bids obtained from the divided and global approaches for day 6 of the test period. 

 

Dataset B

Dataset A

9 10 11 12  

Figure 6: mMAPE of the divided approach with forecasted information for dataset A and B. 
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Figure 7: mMAPE of the global approach with forecasted and realized information for dataset A and B. 
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Figure 8: Results with perfect and forecasted information for the divided approach in dataset A and B. 
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Figure 9: Results with perfect and forecasted information for the global approach in dataset A and B. 
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Figure 10: Costs comparison between divided, global and inflexible EV load approaches obtained using forecasted values for 

dataset A. 
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Figure 11: Costs comparison between divided, global and inflexible EV load approaches obtained using forecasted values for 

dataset B. 



beta

kE
U

R

2
1

.2
2

1
.4

2
1

.6
2

1
.8

0.2 0.4 0.6 0.8

Day−ahead Cost

2
.0

2
.5

0.2 0.4 0.6 0.8

Shortage Cost

1
.4

1
.6

1
.8

2
.0

0.2 0.4 0.6 0.8

Surplus Cost

2
7

.5
2

8
.0

2
8

.5
2

9
.0

2
9

.5

0.2 0.4 0.6 0.8

Total Cost

 

Figure 12: The impact of β in the total cost shares for dataset A with 1500 EV. 
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Figure 13: The impact of β in the total cost shares for dataset B with 1500 EV. 

 

 

 



Table 1: Three types of behavior regarding EV charging. 

Type Behavior Percentage of the Responses 

A EV charge at the end of the day 57% 

B EV charge whenever possible 20% 

C EV charge only when it needs 23% 

 

 

Table 2: Forecasting performance for the EV aggregated variables for dataset A and B. 

 Dataset A Dataset B 

 MAPE [%] PBIAS [%] MAPE [%] PBIAS [%] 

Maximum available power for charging [MW] 5.46 -0.62 5.31 -0.76 

Total charging requirements [MWh] 19.43 0.17 17.12 -0.24 

Total charging requirements distribution [MWh] 8.99 -1.89 7.53 -1.51 

Total Inflexible Load [MWh] 15.75 -3.01 9.60 -1.54 

 

 

Table 3: Retailing tariff value that leads to a breakeven between total cost and retailing revenue. 

 Divided Global Inflexible Load 

Dataset A 0.033 kWh 0.036 kWh 0.045 kWh 

Dataset B 0.035 kWh 0.038 kWh 0.042 kWh 

 

 

 

 
 
 


