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Abstract

This paper presents numerical analysis of two ratiére optimization approaches intended to support
an EV aggregation agent in optimizing buying bids the day-ahead electricity market. A study with
market data from the Iberian electricity marketisged for comparison and validation of the foreogsti
and optimization performance of thobal anddivided optimization approaches. The results show that
evaluating the forecast quality separately fromiitgact in the optimization results is misleading,
because a forecast with a low error might resubi inigher cost than a forecast with higher errathB
bidding approaches were also compared withirdlexible EV loadapproach where the EV are not
controlled by an aggregator and start charging whew plug-in. Results show that optimized bidswll
a considerable cost reduction when compared tanfiexible load approach, and the computational
performance of the algorithms satisfies the reeqoinats for operational use by a future real EV

aggregation agent.

Keywords. Electric vehicles; aggregator; electricity markébrecasting; optimization; operational
management.
1. Introduction

Policy makers and researchers working in eledtriazbility have conducted studies for assessing the
impact of electric vehicles (EV) in power systenemion and planning [1] and the possible business
models for companies operating in this activity. [Phe figure of an EV aggregation agent (aggregiator
abbreviated form) has been proposed as an inteanyebétween vehicle driver, the system operators of
the transmission and distribution grid and the telg@ty market [1][3]. The aggregator is an elecity
retailer that has direct control over the chargprgcess of the EV in its portfolio of clients arsl i

responsible first for purchasing electrical enefgythese clients in the electricity market andnthe
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control the charging process to comply with theteted quantities of electrical energy.

A number of optimization algorithms for supportitige aggregator activity in the short-term horizon
(i.e. participation in day-ahead markets) have h@esented [4]-[9]. Two alternative bidding approes
(global anddivided for minimizing the cost of purchasing electriesergy in the day-ahead market are
described in a companion paper [10]. Hhebal approach uses aggregated values of the EV vasiabie
the optimization model determines the bids exckigibased on total values. TH&idedapproach uses
individual information from each EV. Moreover, apevational management algorithm is used for
minimizing the deviation between market bids andstwned electrical energy for charging EV. The
models take as inputs forecasts from market pacesEV variables.

This paper presents numerical analyses for a tiealimse-study with synthetic time series of
availability and consumed electrical energy fromean fleet, generated using statistics from thefizaf
patterns in Portugal. The two optimization appre@achre evaluated and compared, and an assessment of
the EV variables forecast’s quality and value @e&nomic benefits) is also presented.

This paper is organized as follows: sections 2 riless the case-study; section 3 presents the fereca
evaluation results for the market and EV variabsegtion 4 compares the costs of gf@bal, dividedand

inflexible loadbidding approaches; section 5 presents the cdnakis

2. Case-Study Description

This section presents the case-study used for camgpand evaluating the bidding approaches. The
case-study is more representative as possible aed real electricity market data. Only EV data is
synthetic and tries to simulate a forthcoming sitra

2.1 EV Synthetic Time Series

For producing time series of the EV availabilitydanonsumption, the generation mechanism for
synthetic EV charging time series described in (&} used. The movement of a fleet with 3000 batter
EV along one year was simulated using a discrete-8pace Markov chain at each time step of half-
hour, in accordance with the common traffic patem the northern region of Portugal [12]. The
statistical post-processing of these traffic pates described in [13]. Having the EV movemently fu
defined, their power requirements were computed.

Each EV was initially characterized in terms oftbgt capacity, energy consumption and battery state
of charge (SOC) in the beginning of the simulatibhese values were defined according to truncated

Gaussian probability density functions. The metandard deviation, maximum and minimum values are



64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

given in [11]. The initial battery SOC values weatefined as a parameter in the simulation, while the
other two variables were gathered from the inforomamade available by 42 different EV manufacturers
The charger efficiency was assumed to be 90%.

A specific driver behavior was also assigned itijtieo each EV. The possible behaviors considened i
this paper were obtained from a survey made withen framework of the MERGE project [14]. The
results revealed that there are three major typbelmavior regarding EV charging, as presentetiable

1

Table 1: Threetypes of behavior regarding EV charging.

For the drivers who charge their EV only when iedg it was defined that the battery SOC threshold
for charging equal to 40%.

The simulation methodology assumes that, at evieng interval, each EV can be in one of the
following states: in movement, parked in a resi@ggrdrea, parked in a commercial area or parkeahin
industrial area. When the state is “in movememt&, ¢nergy consumption and the respective reduition
the battery SOC are computed. At each time intems@ EV battery SOC is updated according to the
energy spent travelling or according to the enatggorbed from the electrical network.

Three charging levels were considered for the stman: EV “parked in a residential area” and
“parked in an industrial area” charge at 3 kW (sldvarging mode), EV “parked in a commercial area”
charge at 12 kW (normal charging mode) and thegihgrpower in fast charging stations is 40 kW (fast
charging mode) [14]. When an EV is parked, the sleniof whether or not plugging it in for chargiisg
made taking into consideration its driver behaysgeTable 1) and its current SOC (only for type C
drivers). This case-study only studies EV parkecegidential area (slow charging mode).

The simulation methodology provides, for a one-ypariod with 30 minutes time intervals, the
following time series: the periods where EV areggled-in and available to charge, the EV power
absorbed at each time interval (assuming that thetgrts charging when plugs-in), the EV batteryCSO
evolution and the EV travelled distances. Theseetiseries are used for training the forecasting
algorithms (as historical data) and testing thénsigation and forecasting algorithms.

2.2  Electricity Market

The case-study follows the data and rules of theadeead Iberian electrical energy market [15]. The

market agents may present buy and sell hourly tiids cover all 24 hours of the next day (physical

delivery period). The gate closure occurs at tHe Hdur. Two types of simple hourly bids are possible
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price independent bid for all hours regardless haf price level, with only a price cap, or a price
dependent hourly bid for all hours where a stepwis®e is submitted.

In general, the day-ahead session structure apd dd not change from market to market. Therefore,
the global and divided algorithms can be directly applied to differeneaticity markets without
significant changes.

The total cost, in addition to the cost of purchgstlectrical energy in the electrical energy marke
also includes costs associated to deviations framned consumption. When the aggregator has surplus
of electrical energy in the market bid it has tt $8s extra electrical energy at a regulatiorcprips™9
in general below the day-ahead electrical energepif the situation is shortage of electrical eye it
has to pay a regulation prices{°"% in general above the day-ahead electrical enprige [16]. This

corresponds to the following equation for the tatzdt:

_ cons (pt - ptsurplus)l:ﬁE(bid _ E(cons), E[bid > [Econs (1)
Total Cost= Z(Et Ept + {( tshortage_ pt)EﬂEtcons _ Etbid )' Etbid < [Econs

whereE is the electrical energy purchased in the day-@leéectrical energy market for time intertal
p, is the day-ahead electrical energy priE€"™is the consumed electrical energy“™*is the regulation
price for positive deviations am""*%is the regulation price for negative deviations.

The second component of this equation is the ssirpifshortage costs, where the price differgnce

surplus ;

is the positive deviations price{), and the differencp "%

o p: is the negative deviations price

().

The regulation prices, in the Portuguese contredhaare related with the tertiary reserve (or i
reserve) prices.

The electricity market data of the case-studyasnfla three years period (2009-2011) and consists of
electrical energy price of the day-ahead markePfatugal (downloaded from [17]); price of upwardia
downward reserve for Portugal (downloaded from Y{1Biterconnection exchanges (imported electrical
energy) between Portugal and Spain (downloaded fi®@}); load and wind power forecast in the lberian
peninsula for the next day (downloaded from [17]).

In general, the European market designs have diffgoenalization prices for negative and positive
real-time deviations from the market dispatch [2Zjese prices result from regulation market session
(e.g. with manual reserve bids cleared in real-timpethe system operator) or are established by the

regulator to provide incentives for better resostaeheduling. The operational management algorithm



123 can be generalized for any electricity market wagymmetric or symmetric regulation prices. Other
124  market designs, such as the U.S. markets, havaldime market session where the price differeme f
125 the day-ahead market price can induce significasgds in case of deviation from the day-aheaddifl [
126 In this case, the objective function of the operasdi management algorithms needs to be redesigned t
127 include this price difference, which, dependingtbe deviation sign, might represent a profit foe th
128  aggregator (sell surplus of electrical energy laigher price).

129 Finally, this paper does not consider the partidgpain intraday and hour-ahead markets [22],
130 although this is an important topic for future workhe participation in the intraday market sessimn
131 not mandatory, but it is foreseen that the aggorgatll use these sessions to calculate new bidsgus
132  updated information (e.g. forecasts). For examiplthe amount of forecasted consumption for theetim
133 intervals covered by the intraday session is latigen the amount contracted in the day-ahead segsio
134  in the previous intraday session), the aggregatostrbuy the deficit of energy from the pool at the
135 intraday price (which represents a cost incred@enversely, if the amount of forecasted consumpson
136  smaller than the amount contracted in the day-alseadion (or in the previous intraday session), the
137  aggregator makes an offer for selling this eleatrémergy surplus in the intraday market (obtaimpngfit
138 if the intraday market price is higher than the-dagad price). In both cases, the aggregator igatirig
139  deviation penalties.

140 2.3 Participation in the Electricity Market

141 Figure 1 depicts a diagram with the sequence of tasks ft@raggregator participation in the Iberian
142  electricity market. Before the Tthour of day 0, the aggregator forecasts the makdtEV variables,
143  computes optimal bids based on these forecastsghandoresents bids in the day-ahead electricaggne
144  market. The market settlement process takes pleiveekn the 1 .and 14 hours of day 0. Then, during
145  the 24 hourly intervals of day 1, the aggregatonages the EV individual charging for minimizing the
146  deviation between bids (presented in day 0) angbhcbnsumption.

Figure 1: Diagram with the sequence of tasks for participating in the Iberian electricity market.

147 Figure 2 depicts the diagram with the temporal horizonshef forecast and optimization algorithms
148  for the Iberian electricity market. The bidding iomization is performed for the market settlemeniquk
149 (24 hourly intervals in day 1), but extended toéa2 additional hours since most of the EV are etque
150 to depart in day 2. Since the gate closure of theahead electrical energy market is th& h6ur, the

151  aggregator needs to forecast the EV variables foima horizon of 100 half-hour time intervals (i.e.
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between the 10of day 0 and the 2hour of day 2). Only the forecast between the firse interval of
day 1 and the f2time interval of day 2 is an input of the biddimgtimization model.

Figure 2: Diagram with the temporal horizons of the forecast and optimization algorithms.

The output of the bidding optimization until the™#our of day 1 is one input of the bidding
optimization exercise in day 2 (as illustrated bg arrow inFigure 2), and this interaction is repeated in
each day. This guarantees the temporal contintiitfyeocharging process.

The output of the market settlement (accepted)bisl an input of the operational management
algorithm. The time horizon of the algorithm is iedle and equal to the maximum of departure hour of
all the EV. The time step is the same of gift@bal or dividedapproaches, which is half-hour. The output
until the 24" hour of day 1 is an input of the subsequent ogétion in day 2 (as illustrated by the arrow
in Figure 2).

The two bidding approaches will be compared withghuation where all the clients andlexible EV
loads In this mode, the EV driver is completely freectinnect and charge the vehicle whenever he/she
wants. The charging starts automatically when tWepkigs-in. The aggregator in this case is a stahda
electricity retailer that forecasts the total cangtion and offers in the day-ahead electrical eperg
market a bid equal to the forecasted values fan &awe interval.

2.4 Sampling Process for Evaluation

For a robust evaluation of the bidding’s resultséction 4, a sampling process based on the eia@iuat
made in [23] was adopted for producing random igpes$ of a simulation experiment. The objective is
to evaluate the optimization results for differenarket data randomly sampled (but maintaining the
temporal sequence) from the three year period.eSthe forecasting algorithms require training and
testing datasets, a fixed length for these two watsdefined: 9 months for the training datasehodiths
for the testing dataset.

Then, a sampling process without replacement igl tsedraw the first hour of the day, from the
candidate set. This sample is used to split theetlyears of data in training (between t and t-9thg)n
and testing (between t and t+3 months) datasetspidress is repeated 100 times, and for each sampl
the global anddivided optimization algorithms are applied to the tedadat, and corresponding costs of
purchasing electricity are computed. The resudtteiad of a single value for the total cost, issdrithiution
with 100 samples.

This sampling process is only used in the eletyritiarket data. Because of a high calculation {jime
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particular in thedivided approach), it is not possible to apply this predesthe EV data. In order to test
the optimization methodologies in different EV datse synthetic time series for 3000 EV is divided
two groups of 1500 EV: datasets A and B. Moreogach EV dataset is divided in training and testing

periods: the first 9 months for training and th&t B months for testing.

3. Evaluation of the Forecasting Performance

3.1 Aggregated EV Variables

Three different EV variables are required for ¢hebal approach: total maximum available power for
charging, total charging requirement and chargaguirement distribution. Moreover, for th&lexible
EV loadapproach it is also necessary to forecast thédotesumption.

The application of the unit-roots Kwiatkowski-Phik-Schmidt-Shin (KPSS) test [24] showed that all
the four time series are stationary. The analy$ishe autocorrelation diagrams for the aggregated
variables shows a daily (higher peak in lag 48) amékly (higher peak in lag 336) patterns. Thersfor
based on the autocorrelation diagram and using Akaike information criterion (AIC)[25] as a

performance metric, the following model was useddoecasting the four variables:

Vo=l ta Yt 6 Yio t 6 1Yt ¢ [Yigee+ H + Dy (2)
whereg are the model’s coefficientg,; is the |" lag of the response variablel is the lag ordert, is

a seasonal index that takes a different valuedohdour of the day, arig is a seasonal index that takes
a different value for each day of the week.
The following metrics measure the forecast stastquality. The classical MAPE (Mean Absolute
Percentage Error), given by
MAPE= ;z?{ngjy‘J [100 (3)

wherey; is the realized valuey, the forecasted value amithe number of samples in the test dataset.

The modified MAPE for time series with zero val(i2§]:

Zuyj -9, )

ZL (yj )

mMMAPE= 100 (4)

The percentage bias:

PBIAS= 1%((%_”) %100 ()
N 7= Y

A modified percentage bias (MPBIAS) similar to Bds used in variables with zero values.

Table 2 presents the forecasting quality evaluation fer fisur EV variables in dataset A and B. The
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forecast time horizon is 100 look-ahead time stgyadf-hour data). The error values show that the
forecasts present a good quality.

Table 2: Forecasting performance for the EV aggregated variablesfor dataset A and B.

It is important to stress that these statisticalfggenance metrics, in particular for the charging
requirement variable, measure only the forecaslityu@.e. match between forecasted and realized
value). In fact, their true forecast value can dmyassessed by computing the total cost of thairigd
process. For example, the forecasts could indiaat® kWh of charging requirement that need to be
satisfied until hour 6h, while the realized valsel kWh until hour 8h. This represents a high das¢
error in the mMAPE sense, but, actuality, it copmsds only to an anticipation of the charging
requirement. An evaluation of the economic valui vé presented in section 4.

3.2 Individual EV Variables

For each EV, the availability is first forecasteddathen non-parametric bootstrapping is used to
estimate the charging requirement for each plugggukriod.

The three different drivers’ behavior dfable 1 have availability time series with different
autocorrelation diagrams. The difference is paldidy clear between types A/B and type C. EV driver
of type A and B have a clear double seasonal pafiex. daily and weekly), while type C drivers’
behavior does not have a seasonal cycle. Becaudiéferent autocorrelation patterns, two Generalize

Linear Models (GLM) were considered:
ply, =1y, vy ) = VA+exd— (g + & 1Yy + & [V + & [ Vi ¥ ¢ [Vise + & [Visss)  (6)
for type A and B drivers, and
PV, =10 Vs Vi) = YL+ exil= (g + 4 [V + & Do + 6 Vs + 44 1Y) )
for type C drivers. In both casesis a binary variable indicating whether or not ¥ is plugged-in and
P(Y=1|yr1..- W) is the posterior probability.
The same lagged variables were used for all EV filoensame type. A topic for future research is to
develop an automatic procedure for selecting difieinput variables for each EV.
The performance of the availability forecast is m@ad with a metric from the literature about

evaluation in classification problems [27]:

Accuracy:\/ ™ 5 TP g (8)
TP+FP TP+EN

whereTP is the number of correct plugged-in predictiomadtpositives)FN is the number of wrong
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zero predictions (false negative) dfid is the number of wrong plugged-in predictionsggapositive).
Figure 3 summarizes the availability forecast results didicdby drivers’ type with a boxplot for the
two datasets, and for a time horizon up to 100 fimervals ahead.

Figure 3: Boxplot for the accuracy of the availability forecast and for dataset A and B. The boxplot havefive statistics:
lowest datum (within 1.5 1QR) of the lower quartile, lower quartile, median, upper quartile, and the highest datum (within

1.51QR) of the upper quartile. The outliersarealso identified on the boxplot.

The availability forecast for type C drivers presemhe lowest accuracy, suggesting that these
availability patterns are difficult to forecast. rBe forecasts for type A drivers also present a \@ny
accuracy. The forecasts with low accuracy for t¢pand C drivers have in common a low number of
time intervals in one year during which the EV isgged-in for charging. For example, an EV of type
with accuracy equal to 4.31% is only plugged-ininigir24.60% of one year time, and a type C driver
with accuracy equal to 4.76% is only plugged-ininigr12.37%. EV with better performance has a higher
rate of plugged-in hours. For example, an EV wifl#8of accuracy is plugged-in during 52.5% of the
time.

These results suggest that the asymmetry in thévauof plugged-in hours has a considerable impact
on the model performance.

The mMAPE computed for the aggregated availab{stym of the individual availability forecasts) is
6.99% for dataset A, and 8.09% for dataset B. Thdified PBIAS is 4.45% in dataset A, and -4.60% for
the dataset B. These results show a good foreaasitygfor the aggregated availability.

As mentioned in the previous section, the individttaarging requirement forecast quality cannot be
assessed with classical statistics that quantiéy diference between realized and forecasted value.
Nevertheless, the aggregated values of the indiiftwecasts can give a reference value for corapari
with the values ifTable 2. For dataset A the mMAPE is 29.93%, while for datéB it is 30.69%. These
errors are higher than the ones of the aggregadeidbles from the previous section, but only the
evaluation of the final deviations’ magnitude awdtccan give a true picture of the forecast error.

3.3 Market Prices

The KPSS test showed that the price time series@mestationary and a differentiation of order 1 is

needed. Moreover, based on the autocorrelationratiagnd using the AIC, the following model was

used for forecasting the day-ahead electrical gnerige:

=Pt @lPa+ 6P, P+ owp)+H, +D, (9)
where p is the [" lag of the price variablé,is the lag ordert, takes a different value for each hour
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of the day, andD, takes a different value for each day of the wegedse cubic basis splines, awg is the
forecasted wind power penetration.

The interior knots of the basis splines were plaoeglach quantile according to 6 degrees of freedom
(which attains the lowest AIC). The boundary knetse placed in the extremes of the data.

For forecasting the negative deviation price (@iéerence between shortage regulation and eledtric

energy price) the following model was used:

=, v, + @ O, + @ O, + owp) + g(1™")+ o(p,) + H, + D, (10)

wherep; is the electrical energy price of the day-aheadkatal """

is the interconnection exchange
(imported electrical energy) of the bulk power systthat results from the market mechanismapds
the forecasted wind power penetration. The degréeedom for this model is 10.

For the positive deviation price’; (i.e. difference between surplus regulation aretteical energy
price) the model of Eq. 11 is used, but witf"*" replaced by,=***".

For participating in the market with buying bidsetmost important information is the ranking of the
prices [5]. Therefore, in addition to the mean alsoerror (MAE), the Spearman rank correlationssd
for measuring the prices ranking quality. The Spear correlation coefficient is computed for each pa
of forecasted and realized values of a time horizb86 hours ahead, and then averaged over thee enti

test period.Figure 4 depicts boxplots summarizing the evaluation resultthe 100 random samples for

the three market variables: electrical energy, lssrand shortage prices.

Figure 4: Spearman correlation and mean absolute error of the pricesforecastsfor 100 samples.

The performance of the electrical energy pricecieptable, the median for the rank correlation7§ 0
and MAE is 5.21 €/MWh. The forecasts for the dawiafprices present a low performance because their
rank correlation is around 0.25 for both pricese Bhortage price presents a low MAE (median of 7.45
€/MWh) when compared to the surplus price (medibhilo67 €/ MWh). These results indicate that the
forecasting approach for the deviations pricesrbam for improvement.

3.4  Computational Implementation Issues

The presented case-study was tested on a laptoputemwith an Intel Core i5 CPU M450 @ 2.40
GHz processor and 4 GB of RAM memory.

In order to forecast the aggregated variables 2Egfunctiongls from R packagelme[28] was used
for fitting a linear model using generalized lesgtiares. The execution time for estimating the ede

parameters is 106 seconds on average. Howeveratksis conducted offline and only one time. The

10
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average execution time was 0.45 seconds for prodwcsingle forecast with 100 look-ahead time steps

For fitting the price forecasting models (Eq. 9-10¢ functiongamfrom R packagengcv([29] was
used. The average execution time for parametetshatson was 0.78 seconds and 0.42 seconds for a
single forecast with 36 look-ahead time steps.

For forecasting EV availability, the functidrayesglmfrom R packagerm [30] was used for fitting
the GLM. The charging requirement was estimateth wibootstrapping process. The execution time for
the charging requirement forecast (including theMGlraining and availability forecast) was 8.56
seconds for one EV and for a single forecast with tbok-ahead time steps. The execution timesisf th
forecasting algorithm might be prohibitive if thember of EV is high. However, this process can be
parallelized and an implementation in C or Fortmeould increase considerably the computational
performance. For the simulations, the executior tisrof several hours when simulating thousands\of

for a test period with 3 months.

4. Comparison between Global and Divided Bidding Apoites

In this section, the sampling process describeskeition 2.4 is used for comparing the costs of the
global anddividedapproaches for 100 samples. Forglabal approach, it is necessary to set the value of
one parameterg. This parameter is included in a constraint of timization problem where the
purchased electrical energy is limited by the fasted total maximum available pow&™{). P™ is
adjusted, as the charging process evolves, linearhgs; more details can be found in [10]. Thealue
was estimated from the first 9 months (trainingadat). For each, the mMMAPE was computed and ke
value that leads to its lowest value was seledthd.result was A equal to 1.0 and 0.8 for datasets A and
B.

4.1  Computational Implementation Issues

The optimization problems were solved with IBM ILGZPLEX optimizer [31] using the Python API.
For the global optimization, the number of decisi@riables is 72 (for a programming horizon of 72
half-hours time intervals), the number of constismis 216, and the execution time on average wWa&l0.
seconds. For the divided optimization, the numiedezision variables and constraints varies with th
number of EV plugged-in in each time interval. Eaample, for the day 1 of the case-study, the numbe
of decision variables was 43,461 and the numbeonétraints was 46,078. The average execution time
was 0.639 seconds.

The number of decision variables and constrainteénoperational management algorithm also varies

11
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with the number of EV plugged-in in each time intdr For the first time interval of day 1 (period
between 0 and 1 AM with 1096 plugged-in EV) the hemof decision variables was 17,952 and the
number of constraints was 19,079. The average &redime was 0.475 seconds.
4.2 Visual Comparison of Days
Figure 5 depicts a visual comparison between the two bgldjpproaches (i.e. optimized bids) for the
6" day from the test dataset of a sample.

Figure5: Optimized bids obtained from the divided and global approachesfor the 6 day of the test period.

The plots show dissimilarity between the two apphes in all the time intervals. Tigdobal approach
has time intervals with no bids in both days (imtijalar during the last ten time intervals), white
divided approach has bids in all the time intervals. Thiggests that the bids from thbal approach
are more concentrated, which may create difficsilteavoiding deviations. Conversely, the bids fiitve
divided approach are more dispersed, which may facilihéeoperational management algorithm. As
expected, the hours with the highest bid valuesiarang the night, where the forecasted prices tawe
values.

4.3 Comparison of the Deviations between Bid and Redli2onsumption

The deviation between bid and realized consumpsomeasured by the mMAPIEigure 6 depicts
boxplots for thedividedapproach with forecasted information and for btdbasets. Since the EV dataset
is always the same in each random sample, thiqti@miin deviations from sample to sample is only
because of different electrical energy and dewumgidces. In other words, these deviations occuabse
the bids are placed in different time intervalsaading to the forecasted prices. The small vaain
both metrics indicates that tliivided approach is robust to the electricity market cbads (i.e. prices
ranking).

Figure 6: MM APE of the divided approach with forecasted information for dataset A and B.

Figure 7 depicts the mMAPE for thglobal approach with forecasted and realized values YohEd
market variables) as input. The deviations in tidding approach, in contrast to tberided approach,
have a more widespread variation for different readonditions. For example, the mMAPE boxplot for
dataset A with forecasted information varies betw&8% and 29%. Note that, as demonstrated in a
companion paper [10], the global model with realizalues presents deviations. These deviationsaire
due to forecast errors, but related to informatmss when only aggregated values are used as foput

computing the optimal bid.
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Figure 7. mMAPE of the global approach with forecasted and realized information for dataset A and B.

4.4  Comparison of the Costs from Participating the tieity Market

This section compares the costs from participaitintpe electricity market-igure 8 depicts the total
cost (computed with Eq. 1) of thdivided approach with perfect and forecasted informatidn. both
datasets, the difference between the total costiredd with perfect and forecasted information is.lo
The difference between the medians is 1.73 k€ @289 k€, cost increase of 7.5%) for dataset A and
3.15 k€ (57.77-54.62 k€, cost increase of 5.76%)dfitaset B. This cost difference suggests thaemor
advanced bidding models, including stochastic imi&tion, can only improve over this small percentage

Figure 8: Resultswith perfect and forecasted information for the divided approach in dataset A and B.

Figure 9 depicts the total cost of tlggobal approach with realized and forecasted valuesmg.ihe
difference between medians is 0.62 k€ (26.60-2588ost increase of 2.4%) for dataset A and 1.48%
(64.18-62.70 k€, cost increase of 2.36%). Thesdteemdicate that the forecast errors have a loyaict
on results. This is an expected conclusion sineest@own in section 3, the forecast error for the
aggregated variables is low. This low impact ofefast errors is traded-off with deviation costs
originated from modeling the EV fleet only with aggated information.

Figure 9: Resultswith perfect and forecasted information for the global approach in dataset A and B.

Figure 10 depicts the total cost and its three componemst of electrical energy purchased in the
day-ahead markeE{".p), cost of positive deviations or surplus cogt.[E?™-E*" in Eq. 1), and cost of

consEP) in Eq. 1). For comparison, the costs obtained with

negative deviations or shortage cost[E
EV asinflexible loadsare also presented.

Figure 10: Costs comparison between divided, global and inflexible EV load approaches obtained using forecasted values for

dataset A.

The global approach has the highest deviation costs sinaésdt has the highest deviation values.
Nevertheless, in all the approaches the deviatistscare marginal compared to the day-ahead dose S
the two bidding approaches were underestimatinghiaeging requirement, the shortage costs are highe
on average compared to the surplus cost.ifithexible loadapproach has a low deviation value, but the
surplus cost is higher than tHevidedapproach.

The approach with the lowest day-ahead and tostlisdhedividedapproach, followed by thglobal
approach. The median of the total costs is 24.6fbk&hedividedapproach, 26.60 k€ for thggobal and

31.29 k€ for thanflexible load This translates to a 26.7% total cost decreagbawlivided approach
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compared to thenflexible load and a 17.6% decrease in thbal approach. Note that the main
contribution to increase the total cost of thiéexible loadis from the day-ahead cost, since the EV are
charged in more expensive time intervals.

Figure 11 depicts the total cost and components for dats€éhedividedandglobal approaches have
a lower difference between surplus and shortages,coempared to dataset A. In this dataset, the rat
between deviation and day-ahead costs is lowerpaosd to dataset A.

Figure 11: Costs comparison between divided, global and inflexible EV load appr oaches obtained using forecasted values for

dataset B.

The median of the total costs is 57.76 k€ fordhaeded 64.17 k€ for theylobal and 68.34 k€ for the
inflexible load This translates to an 18.3% total cost decreagbedivided and 6.6% decrease in the
global approach.

An academic exercise was conducted for findangosteriori the retailing tariff that leads to a
breakeven between total cost and retailing revémuthe three bidding approaches. The retailing nese
for different values of a fixed retailing tariff wa&omputed by multiplying the consumed electricedrgy
by the tariff value. The tariffs associated to tlse transmission and distribution networks werergd
because their values are independent from thermdatproach. The average retailing profit from166
samples is given by the average retailing revenumm fapplying a specific tariff minus the averageatto
cost. The breakeven point is the tariff value thakes retailing profit positive.

Table 3 presents the tariff value that leads to breakdnatween total cost and retailing revenue. The
tariff values show that the aggregator with diidedapproach can offer a reduction in the retailingftar
of around 36.4% in dataset A and around 20% insg&td compared to theflexible approach. With the
global approach, the aggregator can offer a discountrafiral 25% in dataset A and around 10% in
dataset B. With this cost reduction, the aggregeithier keeps unchanged the retailing tariffs aoigios
a profit increase or offers a reduction in theilietg tariffs for attracting new clients.

It is important to stress that these tariff valaes theoretical and only indicative because thanitieh
of a retailing tariff is much more complex and riegs mid-term portfolio optimization [32]. Moreovyer
the tariff value varies also with the EV fleet beiloa and characteristics.

Table 3: Retailing tariff value that leads to a breakeven between total cost and retailing revenue.

5. Conclusions

This paper presented the numerical results for tihe alternative optimization and forecasting
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406 approaches for an EV aggregator participating @ Itierian electricity market with two fleets of 160
407 EV.

408 The forecasting results show that the algorithmmvige acceptable quality to be used as input for
409  optimizing the day-ahead bids. The error of theregated variables used in thmbal approach is low,
410 and the evaluation of the total cost indicated twhtanced forecasting algorithms can only accormplis
411  improvements over a small percentage. The foredastshe individual EV variables lead to a low
412  deviation in thadividedapproach, which suggests an acceptable quality.

413 The results showed that the operational manageabgmtithm is crucial for decreasing deviation costs
414 by combining the EV individual charging. This waaricularly significant in thelividedapproach where
415  aforecast error of around 30% for charging regquéet resulted in a final deviation of around 9.5%.

416 The comparison betweeggtobal, divided andinflexible loadbidding approaches lead to the following
417  conclusions: i) thglobal approach has a higher deviation value comparéd/idedone, which results in
418  a higher total cost. For instance, in one EV fibetdivided approach reduced the total cost around 11%
419 compared to thelobal approach; ii) thedivided approach is more robust to different EV fleets and
420 electrical energy price patterns. For the two EVadets and a sampling process with 100 samples, the
421  deviation in thedivided approach ranged from 8.5% to 12%, while in ghabal approach ranged from
422  18% to 30%; iii) theinflexible loadapproach also benefits from aggregating EV, whédds in low
423  forecast error. However, the total cost is highaose the EV are charged during high price perimis
424  bidding optimizing model allows a discount in thetailing tariff of 20% and 36%, compared to an
425 inflexible loadapproach, in two different EV fleets.

426 The algorithms presented a computational performasceptable for practical applications.

427 As an overall conclusion, the results in this pagleow that EV drivers under a contract with the
428  aggregator have one important advantage: the agigregupports the deviations costs, and combirees th
429  EV for decreasing the deviation costs.

430 Conversely, in a situation where the EV behavearagdependent and intelligent agent that could
431  interface directly with the electricity market (ratowed by the current market rules for small lDadhe
432  driver must support financially its deviation cogtevertheless, it is probable that in this motle,driver
433  will use a route planning software for a betterestifie of its trips and bids. In any case, this megylt in
434  high deviation from planning and consequently hdghiation costs that must be supported by the drive

435 The forecasting and optimization algorithms wested with EV synthetic data anticipating a future
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scenario. Nevertheless, the conclusions from thjgep can be generalized to case-studies with réal E
data and the algorithms can be applied withoutcrange.

Future work consists in extending the operationahagement and forecasting algorithms to include
the possibility of upward and downward reserve biHsrthermore, there is also a potential for

improvement in the forecasting algorithms for tiddedapproach.

Appendix — Sensitivity Analysis of tHeParameter

This annex presents a sensitivity analysis offtparameter that was conducted for EV datasets A and
B and the market data was from a period betweeal@ctand December 2010.

Figure 12 depicts the total cost, day-ahead cost, shortagesarplus costs for the global approach
with different values of (ranging from 0 to 1 with 0.05 increments), anddataset A.

The plot shows that the day-ahead cost increasts fwiThis means that a lowdy gives more
“freedom” to the optimization algorithm for placirige bids in the time intervals with the lowestcpri
Conversely, this “freedom” results in a deviationsrease, and consequently in an increase of gerta
and surplus costs. The addition of these threesecestults in a total cost increase wilatecreases.

Figure 13 depicts the same analysis for dataset B. The Hageicost decreases wittbut the surplus
and shortage costs start to increase whisrgreater than 0.8.

Figure 12: Theimpact of g in thetotal cost sharesfor dataset A with 1500 EV.

Figure 13: Theimpact of gin thetotal cost sharesfor dataset B with 1500 EV.
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Figure 1: Diagram with the sequence of tasksfor participating in the |berian electricity market.
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Figure 2: Diagram with the temporal horizons of the forecast and optimization algorithms.
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1.51QR) of the upper quartile. The outliersare also identified on the boxplot.
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Figure 4: Spearman correlation and mean absolute error of the pricesforecastsfor 100 samples.
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Figure 8: Resultswith perfect and forecasted infor mation for the divided approach in dataset A and B.
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Figure 13: Theimpact of p in thetotal cost sharesfor dataset B with 1500 EV.




Table 1: Threetypes of behavior regarding EV charging.

Type Behavior Percentage of the Responses
A EV charge at the end of the day 57%
B EV charge whenever possible 20%
C EV charge only when it needs 23%

Table 2: Forecasting performance for the EV aggregated variablesfor dataset A and B.

Dataset A Dataset B

MAPE[%] PBIAS[%] MAPE[%] PBIAS[%]

Maximum available power for charging [MW] 5.46 -0.62 531 -0.76
Total charging requirements [MWh] 19.43 0.17 17.12 -0.24
Total charging requirements distribution [MWHh] 8.99 -1.89 7.53 -1.51
Tota Inflexible Load [MWHh] 15.75 -3.01 9.60 -1.54

Table 3: Retailing tariff value that leadsto a breakeven between total cost and retailing revenue.
Divided Global Inflexible L oad

Dataset A 0.033 kWh 0.036 kWh 0.045 kWh

Dataset B 0.035 kWh 0.038 kWh 0.042 kwWh




