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Abstract: Histogram-valued variables are a particular kind of variables studied in Symbolic Data Analysis where to each
entity under analysis corresponds a distribution that may be represented by a histogram or by a quantile function. Linear
regression models for this type of data are necessarily more complex than a simple generalization of the classical model: the
parameters cannot be negative; still the linear relation between the variables must be allowed to be either direct or inverse. In
this work, we propose a new linear regression model for histogram-valued variables that solves this problem, named Distribution
and Symmetric Distribution Regression Model. To determine the parameters of this model, it is necessary to solve a quadratic
optimization problem, subject to non-negativity constraints on the unknowns; the error measure between the predicted and
observed distributions uses the Mallows distance. As in classical analysis, the model is associated with a goodness-of-fit
measure whose values range between 0 and 1. Using the proposed model, applications with real and simulated data are
presented. © 2015 Wiley Periodicals, Inc. Statistical Analysis and Data Mining, 2015
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1. INTRODUCTION

Classical multivariate statistics studies data tables that
summarize observations made on “statistical units” (indi-
viduals); each row of the table represents one individual
and each of these individuals is characterized by differ-
ent variables (in columns). The “values” attained by the
variables may be real values if the variable represents the
measurement of a quantity (quantitative variables) or a cat-
egory if the variable is qualitative. As an example, let us
have classical quantitative variables such as the age, weight,
or height of a particular football player. The observations of
these data are typically represented in classical data tables.
But how can we represent the result of the weight of the
football player if we do not know his exact weight? And
what if we are interested in studying the age, weight, and
height not of one single player but of a football team? In
the first situation, the individuals are described by attributes
whose associated values are quantitative values that cannot
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be “measured” with precision. In cases like this, we are
in the presence of imprecise data. In the second situation,
we are interested in describing one class of individuals. The
“best values” attained by the variables that characterize each
class are not real values or categories but sets of “values”,
intervals, or distributions. Even though data with variabil-
ity or uncertainty may be represented by the same type of
elements, the meaning of these elements is different. For
example, the interval [80, 82] may mean that the weight
of one football player is between 80 and 82 Kg. On the
other hand, the interval [75, 80] may represent the weights
of all players of a given football team. In the first situation,
the interval represents the imprecision of the weight value,
whereas in the second situation, the interval considers the
variability of weight values in the football team.

In this research, we will focus on situations where
variability in data description occurs. The classical solu-
tion to analyze these data is to reduce the collection of
records associated to each individual or class of individuals
to one value, which may be the mean, mode, or maxi-
mum/minimum; however, with this option, the variability
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Table 1. Data for three healthcare centers.

Healthcare centers Age Waiting time for consultation (minutes)

A [25, 53] {[0, 15) , 0; [15, 30) , 0.25; [30, 45) , 0.5; [45, 60) , 0;≥ 60, 0.25}
B [33, 68] {[0, 15) , 0.25; [15, 30) , 0.25; [30, 45) , 0.25; [45, 60) , 0.25; ≥ 60, 0}
C [20, 75] {[0, 15) , 0.33; [15, 30) , 0; [30, 45) , 0.33; [45, 60) , 0; ≥ 60, 0.33}

across the records is lost. As an alternative to applying the
classical analysis to these kinds of data, Diday [1] intro-
duced Symbolic Data Analysis, where the term symbolic
data refers precisely to data with variability. To understand
the concept of symbolic data, it is important to assess where
variability comes from. The variability of the data might
emerge due to the aggregation of observations [2] that can
be contemporary, if the records are collected in the same
temporal instant or the temporal instant is not relevant, and
temporal if the time is the aggregation criterion, and if the
records are grouped along one unit of time, for example,
one day. In both situations, the initial data or microdata are
organized in classical data tables where each individual,
termed first-level unit, is described by classical variables.
Depending on the type of aggregation, the construction of
the symbolic data table is different. When the aggregation
is temporal, the entities under analysis are the original first-
level units, now characterized by sets of values originating
from the records collected over a unit of time. In situa-
tions where the aggregation is contemporary, the entities -
higher-level units - are classes of individuals (sets of first-
level units) grouped according to specific characteristics. In
this situation, the variables describing both the higher-level
and the respective first-level units are the same; however,
the “values” that the variables take for each higher-level
unit are now sets of values or functions obtained from the
respective first-level units.

Similar to the classical case, symbolic variables can also
be classified as quantitative or qualitative. For quantitative
symbolic variables, each unit is allowed to take a single
value (single-valued variables); a finite set of values (multi-
valued variables); an interval (interval-valued variables);
or a mapping that can be a probability/frequency/weight
distribution (modal-valued variables). In this paper, we will
be dealing with a particular type of modal-valued variables,
the histogram-valued variables.

As an example, consider a symbolic data table containing
information about patients (adults) attending healthcare
centers, during a fixed period of time. In healthcare center
A, the age of patients ranged from 25 to 53 years; in
healthcare center B, it ranged from 33 to 68 years; and
in healthcare center C, the age of patients ranged from 20
to 75 years, so that the age is an interval-valued variable.
Now consider another variable that records the waiting
time for consultations. In this case, information is recorded
with respect to five intervals of time: 0−15 minutes;

15−30 minutes; 30−45 minutes; 45−60 minutes; and > 60
minutes, with associated frequencies of the waiting time
in each healthcare center. Each entity is a histogram and
the waiting time for consultation is a histogram-valued
variable (see Table 1). Notice that in this example, the
entities under analysis are the healthcare centers (higher-
level units), for each of which we have aggregated
information (contemporary aggregation), and NOT the
individual patients attending each center (first-level units).

Since the eighties of the last century, Symbolic Data
Analysis has achieved considerable development of new
statistical and (multivariate) data analysis techniques to ana-
lyze multi-valued data (see, for instance, [3-7]). Recently,
there has been a growing interest in the analysis of
histogram-valued variables, although still more research
is developed for interval-valued variables. The methods
proposed so far for the former are indeed, frequently, a
generalization of their counterparts for the latter. The main
definitions of descriptive statistics for one, two, or more
histogram-valued variables have already been studied. Bil-
lard and Diday [4] defined mean; observed and relative
frequency; empirical density function and empirical joint
density function. For variance and covariance, two defini-
tions were proposed [3,4,8]; Arroyo [2] defined distribution
functions and joint distribution functions.

The first definitions and methods for histogram-valued
variables are generally obtained from the application of
the classic concepts to the midpoints of the histograms’
subintervals, using the respective weights. Furthermore,
although the symbolic variables’ values are distributions
and not real numbers, the results of the application of
these concepts are real numbers. For example, the mean of
m observations of a histogram-valued variable, proposed
by Billard and Diday [4], is a real number. It should
be noticed, however, that in recent years, other works
have been put forward where the “results” are already
distributions. For example, Irpino and Verde [9] present
an alternative definition of mean for histogram-valued
variables, which produces a mean distribution, that they
termed by barycentric histogram.

Work with histogram-valued variables has been recently
reported in different domains, such as Principal Component
Analysis [10,11]; Cluster Analysis [9,12,13]; Time series
[14]; and Linear Regression [8,15].

The first linear regression model for histogram-valued
variables was a generalization of the first model proposed
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for interval-valued variables by Billard and Diday [3,16].
Other models have also been proposed for interval-valued
variables [17,18]; however, these models present some
limitations: firstly, they are based on differences between
real values and do not appropriately quantify the closeness
between intervals; then, the elements predicted by the
models may fail to build an interval; the most recent model
imposes non-negativity constraints on the coefficients,
therefore forcing a direct linear relation. These limitations
prevent a generalization of the models to histogram-valued
variables, so that alternative models are being developed
(see, e.g., [15,19]). Our goal is to propose a linear regression
model for histogram-valued variables allowing predicting
distributions from other distributions, without forcing the
linear relation to be direct.

The development of nondescriptive methods in Symbolic
Data Analysis is still an open research topic for almost all
kinds of symbolic variables. Notice, however, papers are
recently being published proposing probabilistic models for
interval-valued variables [20,21].

The remaining of the paper is organized as fol-
lows. Section 2 introduces histogram-valued variables and
presents a short study about the space of the quantile func-
tions. In Section 3, the problem of defining a linear regres-
sion model for histogram-valued variables is addressed. A
model and a respective goodness-of-fit measure are also
proposed. Section 4 reports results of a simulation study and
two examples that illustrate the application of the model.
Finally, Section 5 concludes the paper, pointing out direc-
tions for future research.

2. SYMBOLIC DATA ANALYSIS: HISTOGRAM
DATA

2.1. Histogram-valued Variables

According to the formal definition presented in Chapter
3 of the book [5], a symbolic variable may be defined as
follows:

DEFINITION 1: A symbolic variable Y is a mapping

Y : E→ B

j �→ Y (j) = ξj

defined on a set E of statistical entities.
We have � = E = {1, 2, . . . , m} when the individuals

are first-level units or E = {C1, C2, . . .} with Cj ⊆ � when
the individuals are higher-level units (classes/concepts or
categories). Each unit j in E takes its “values” in B.

According to the type of realization of the symbolic
variables, the set B will be: B = Y (classical variables);

B = {D : D ⊆ Y,D �= ∅} ; B a set of intervals in Y ⊆ R

or B a family of distributions on Y.

The histogram-valued variables are a particular case of
modal-valued variables [4,5].

DEFINITION 2: When B is a set of distributions on Y,

a particular outcome in modal-valued variables takes the
form:

Y (j) = {
ηi, pi; i = 1, . . . , nj

}
where pi is a nonnegative measure (weight, probability,
relative frequency) associated with ηi ∈ Y and nj is the
number of ηi taken by Y for each element j ; ηi can be
finite or countably infinite in number and categorical or
quantitative in value.

If the “values” ηi with i ∈ {1, . . . , nj } are ordered and
disjoint intervals of values in Y ⊆ R and

∑nj

i=1 pij = 1, the
symbolic variable Y is a histogram-valued variable.

Each realization j of the histogram-valued variable may
be represented by the histogram

HY(j) = {[
IY(j)1

, I Y (j)1

)
, pj1;

[
IY(j)2

, I Y (j)2

)
, pj2; . . .[

IY(j)nj
, I Y (j)nj

]
, pjnj

}
(1)

where IY(j)i
and IY(j)i represent the lower and upper

bounds of the subinterval i, respectively; pji is the fre-
quency associated to the subinterval

[
IY(j)i

, I Y (j)i

)
with

i ∈ {1, 2, . . . , nj

} ; nj is the number of subintervals for
the j th unit, j ∈ {1, . . . , m}, ∑nj

i=1 pij = 1, I Y (j)i
≤ IY(j)i

and IY(j)i ≤ IY(j)i+1
. Furthermore, it is also assumed that

within each subinterval
[
IY(j)i

, I Y (j)i

)
, the values of the

variable Y for each unit j ∈ {1, . . . , m}, are uniformly
distributed.

Each realization Y (j), of the histogram-valued variable
Y can be represented by the cumulative empirical distribu-
tion function, as well as by its inverse, also called quantile
function [9]:

�−1
Y(j)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

IY(j)1
+ t

wj1
aY(j)1 if 0 ≤ t < wj1

IY(j)2
+ t−wj1

wj2−wj1
aY(j)2 if wj1 ≤ t < wj2

...

I Y (j)nj
+ t−wjnj −1

1−wjnj −1
aY(j)nj

if wjnj −1 ≤ t ≤ 1

(2)

where wjl =
{

0 if l = 0∑l
h=1 pjh if l = 1, . . . , nj

and

aY(j)i = IY(j)i − IY(j)i
with i ∈ {1, . . . , nj }; nj is the num-

ber of subintervals in Y (j).
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Fig. 1 Representation of the histograms HX and HY in Example 1.

Or, considering the subintervals of the histograms
defined by their centers cY(j)i and half-ranges rY (j)i , the
representation of Y (j) can be given by

HY(j) = {[
cY(j)1 − rY (j)1 , cY (j)1 + rY (j)1

)
, pj1; . . . ;[

cY(j)nj
− rY (j)nj

, cY (j)nj
+ rY (j)nj

]
, pjnj

}
(3)

or

�−1
Y(j)(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cY(j)1 +
(

2t
wj1

− 1
)

rY (j)1 if 0 ≤ t < wj1

cY(j)2 +
(

2(t−wj1)

wj2−wj1
−1
)

rY (j)2 if wj1 ≤ t < wj2

...

cY (j)nj
if wjnj −1 ≤ t ≤ 1

+
(

2(t−wjnj −1)

1−wjnj −1
−1

)
rY (j)nj

(4)

Any of these representations of the empirical distribution
that each unit takes can be termed histogram value.
Henceforth, when we use the term distribution, we are
referring to an empirical distribution of a continuous
variable.

If any of the weights pji with i > 1 is null, the function
�Y(j) does not have inverse with domain between 0 and 1.
Consequently, the function �−1

Y(j) is not continuous and has
nj − 1 pieces. In this case, it is not possible to calculate
the value of �−1

Y(j)(wji−1) but only limt→w−
ji−1

�−1
Y(j)(t) and

limt→w+
ji−1

�−1
Y(j)(t).

When we work with histogram-valued variables, it is
important to note that for different observations, the number
of subintervals in the histograms or the pieces in functions
have to be the same. In addition, the subintervals of
histograms HY(j) are considered ordered and disjoint, and
if this is not the case, it must be possible to rewrite them
in the required form [2,22].

EXAMPLE 1: Consider the histograms

HX = {[1, 3) , 0.1; [3, 5) , 0.6; [5, 8] , 0.3}

and
HY = {[0, 1) , 0.8; [1, 4] , 0.2}

that characterize a unit for the histogram-valued variables
X and Y, respectively. These histograms are represented in
Fig. 1.

Alternatively, these histograms can be represented by
their quantile functions (see Fig. 2):

�−1
X (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + t

0.1 × 2 if 0 ≤ t < 0.1

3 + t−0.1
0.6 × 2 if 0.1 ≤ t < 0.7

5 + t−0.7
0.3 × 3 if 0.7 ≤ t ≤ 1

�−1
Y (t) =

{ t
0.8 if 0 ≤ t < 0.8

1 + t−0.8
0.2 × 3 if 0.8 ≤ t ≤ 1

It is important to bear in mind that in a histogram IY(j)i ≤
IY(j)i and IY(j)i ≤ IY(j)i+1; consequently, the quantile
function that represents the empirical distribution is always
a nondecreasing function in the domain [0, 1].

Many concepts and methods for histogram-valued vari-
ables have been defined using the representation of their
realizations in the form of histograms [3,4]. Only in more
recent studies have the values of these variables been
represented as quantile functions [9,14,23,24]. When the
distributions are represented as histograms, the choice of
the arithmetic becomes crucial. The complexity of the
arithmetics [22,25] that have been proposed so far for
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

X
−1(t)

Y
−1(t)

Fig. 2 Representation of the quantile functions �−1
X and �−1

Y in Example 1.

histograms was arguably the reason why the distributions
began to be represented as quantile functions. If we repre-
sent the distribution that each unit takes on a histogram-
valued variable by a quantile function, then operations
are simplified because, as quantile functions are piecewise
functions, the adequate arithmetic for them is a function
arithmetic. In this work, the option is to represent the distri-
butions by quantile functions. However, this representation
raises other questions.

To operate with quantile functions, it is necessary to
define all functions involved with an equal number of pieces
and the domain of each piece has to be the same for all
functions. In other words, it is necessary to rewrite all
correspondent histograms with the same number of subin-
tervals and the weight associated to each subinterval has
to be the same in all units but not in all subintervals of
each unit, i.e. the histogram associated to each unit is not
necessarily an equiprobable histogram. For this, it may be
necessary to apply the procedure defined by Irpino and
Verde [9]. In addition, it is important to avoid that the num-
ber of subintervals for each histogram becomes “too” large
(which could happen by applying the referred process), in
which case the distributions that represent the data would be
meaningless. To prevent the situation mentioned above and
when the microdata are known, we may consider the option
of Colombo and Jaarsma [25], which encountered simi-
lar problems when operating with histograms and has been
considered to be advantageous to work with equiprobable
histograms (histograms with equal probability subintervals).
In their study, Colombo and Jaarsma [25] refer that the use
of equal probability intervals offers many advantages: the
distributions are reasonably well approximated by equiprob-
able histograms, the subintervals into which a distribution

is subdivided are small when the frequency is high and
large when the frequency is low; operations/combinations
of equal frequency subintervals form again equal frequency
subintervals.

2.2. The Space of Quantile Functions

Quantile functions are a particular kind of functions.
If we consider the set of the functions defined from R

in R, F(R, R) and the usual operations defined in F :
addition (f + g)(x) = f (x) + g(x),∀x ∈ R and product of
a function by a real number (λf )(x) = λf (x),∀x ∈ R, and
λ ∈ R, it follows that (F,+, .) is a vector space. However,
if we consider the particular case of the set E of the quantile
functions from [0, 1] in R, E([0, 1], R) is not a subspace
of the vector space (F,+, .). Analyzing the behavior of
these operations, it is possible to understand why the space
(E,+, .) with the usual operations does not verify the vector
space definition.

The usual addition between two quantile functions is a
nondecreasing function; however, when a quantile function
is multiplied by a real number, different behaviors may
be observed. If the real number is positive, we will
have a nondecreasing function, but if the real number is
negative, we will obtain a decreasing function that cannot
be a quantile function, because quantile functions must
always be nondecreasing functions. It is for this reason
that (E,+, .) is a semi-vector (or semi-linear) space. The
following example illustrates this situation.

EXAMPLE 2: Consider the distribution represented by
the quantile function �−1

X (t) presented in Example 1. If we
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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−8
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X
−1(t) −

X
−1(t)

Fig. 3 Representation of the functions �−1
X (t) and −�−1

X (t) in Example 2.

multiply the quantile function �−1
X (t) by the negative real

number −1, the resulting function is not a nondecreasing
function. The representations in Fig. 3 illustrate this case.

In conclusion, (E,+, .) is not a vector space. If we have
a quantile function �X(t), the function −�−1

X (t) is not
a nondecreasing function and consequently cannot be a
quantile function. However, if we consider the distributions
represented by histograms and use the histograms arithmetic
proposed by Colombo and Jaarsma [25] and afterwards by
Case [26], it is possible to obtain a new histogram, that is,
the symmetric of the histogram HX. The histogram −HX

is the symmetric of the histogram HX if −HX and HX are
symmetric in relation to the yy−axis.

As an example of the situation above, Fig. 4 represents
the histogram HX in Example 1 and the respective
symmetric histogram.

It is obviously possible to define the quantile function
that represents the distribution of the histogram −HX.

This quantile function is −�−1
X (1 − t) with t ∈ [0, 1] and

is not the function obtained by multiplying the quantile
function �−1

X (t) by −1. Fig. 5 shows that the function
−�−1

X (t) in Example 2 is different from the quantile
function −�−1

X (1 − t) that corresponds to the histogram
−HX.

To conclude this section, it is important to underline some
conclusions about the function −�−1

X (1 − t), t ∈ [0, 1]:

• As it is required for quantile functions,
−�−1

X (1 − t) is a nondecreasing function;

• �−1
X (t) − �−1

X (1 − t) is not a null function, as
expected, but is a quantile function with null
(symbolic) mean [4];

• the functions −�−1
X (1 − t) and �−1

X (t) are lin-
early independent, provided that −�−1

X (1 − t) �=
�−1

X (t);

• −�−1
X (1 − t) = �−1

X (t) only when the histogram
HX is symmetric with respect to the yy−axis.

3. LINEAR REGRESSION MODEL FOR
HISTOGRAM-VALUED VARIABLES

The first linear regression models for histogram-valued
variables were proposed by Billard and Diday [3]. These
models are an extension of the first models proposed
by the authors for interval-valued variables [3,8]. The
models proposed by Billard and Diday [3] for histogram-
valued variables present some limitations. The main method
consists in the fact that those models are a simple adaptation
of the classical linear regression model. The estimation
parameters are not deduced from the model but are an
adaptation of the solution obtained by the Least Squares
estimation method for the classical model where the
variance and covariance symbolic definitions are applied.
Moreover, the process to build the predicted histograms is
not clear and when the estimated parameters are negative,
we may obtain predictions that are not histograms, because
subintervals where the lower bound is greater than the upper
bound may occur. The authors do not present a solution to
this problem.

An alternative method was proposed by Irpino and
Verde [15,19]. This model is defined taking into account
the entire distributions that are represented by quantile
functions and relies on the exploitation of the properties
of a decomposition of the Mallows distance [27] (that
the authors name Wasserstein distance). Using a particular
decomposition of this distance, the authors propose the
Least Squares method where the quantile functions of the
predictors may be obtained by a linear combination of
the averages and the centered quantile functions of the
explicative distributions. Because the space of the quantile
functions is not a vector space, non-negative constraints are
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Fig. 4 Representation of the histogram HX in Example 1 and the respective symmetric histogram −HX .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6
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6

8

X
−1(t)  −

X
−1(t) −

X
−1(1−t)

Fig. 5 Representation of the functions �−1
X (t), −�−1

X (t), and −�−1
X (1 − t), in Example 2.

imposed to the parameters of the model associated with the
centered quantile functions. From the model of Irpino and
Verde, a goodness-of-fit measure, named “Pseudo-R2”, was
deduced.

The main goal in this work is to propose an alternative
linear regression model for histogram-valued variables.
More precisely, to provide a linear regression model
that considers data with variability and allows predicting
histogram values, without forcing a direct linear relation.
To address this latter point, it is necessary to solve the
problem raised by the semi-linearity of the space of the
quantile functions. Moreover, it is important to underline

that the methods used to find the parameters of the model
are simple and that it is possible to deduce a goodness-of-
fit measure, analogous to what happens in classical linear
regression.

3.1. Error Measure

In classical linear regression, to quantify the error
between the observed values yj and the predicted values
ŷj , the difference between two real numbers, ej = yj − ŷj ,
is used. In this case, the model to estimate the values
ŷj minimizes the quantity

∑m
j=1(yj − ŷj )

2. However, due
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to the complexity of histogram-valued variables, the error
between the observed and predicted distributions requires a
different approach.

In their work on forecasting time series, applied to
histogram-valued variables, Arroyo and Maté [2,14] also
needed to measure the error between the observed and
forcasted distributions. Therefore, they sought for a good
measure to analyze the similarity between two distributions.
Firstly, they considered the possibility of computing the
difference between two distributions represented by their
respective histograms using histograms arithmetic. How-
ever, this option turned out to be of little use. It is not easy
to operate with histograms arithmetic and some results are
not as expected. This shows that it is not adequate to ana-
lyze the similarity between distributions with this concept.
The options of those authors were to use dissimilarity mea-
sures for distributions and they opted for the Wasserstein
and Mallows distances [14,28] to measure the difference
between the observed and predicted distributions. The jus-
tification for the choice of the Wasserstein and Mallows
distance was the fact that they are distances and thus present
interesting properties for error measurement: positive def-
initeness, symmetry, and triangle inequality condition. On
the other hand, for Arroyo and Maté [2,14], the Mallows
distance is the one that better adjusts to the concept of
distance as assessed by the human eye. This distance was
also used in other works such as those by Irpino and Verde
[9], where the Mallows distance was used to determine
the barycentric histogram and then successfully applied to
cluster histogram data. The same authors used this distance
in their linear regression model for histogram-valued vari-
ables [15,19].

When using the Wasserstein and Mallows distances, the
distributions taken by the histogram-valued variables are
represented by their quantile functions. These distances are
defined as follows:

DEFINITION 3: Given two quantile functions �−1
X(j)(t)

and �−1
Y(j)(t) that represent the distributions that the

histogram-valued variables X and Y take at unit j , the
Wasserstein distance is defined as:

DW(�−1
X(j)(t), �

−1
Y(j)(t)) =

∫ 1

0

∣∣∣�−1
X(j)(t) − �−1

Y(j)(t)

∣∣∣ dt

(5)

and the Mallows distance:

DM(�−1
X(j)(t), �

−1
Y(j)(t)) =

√∫ 1

0
(�−1

X(j)(t) − �−1
Y(j)(t))

2dt

(6)

It seems therefore appropriate to choose the Wasserstein
or the Mallows distance to measure the similarity between
the observed and predicted distributions in the linear regres-
sion model. Because of the properties of the absolute value
function, we choose to define the error measure between
two distributions with the Mallows distance.

DEFINITION 4: Consider, for each unit j , �−1
Y (j)(t)

the quantile function of the observed distribution Y (j) and
�−1

Ŷ (j)
(t) the quantile function that represents the predicted

distribution Ŷ (j). The error between Y (j) and Ŷ (j) is
defined by:

SSE(j) = D2
M(�−1

Y(j)(t), �
−1
Ŷ (j)

(t)) (7)

Irpino and Verde [9] rewrote the Mallows distance using
the center and half-range of the subintervals that compose
the histograms. According to this result, the total error may
be written as follows:

SSE =
m∑

j=1

SSE(j) =
m∑

j=1

D2
M(�−1

Y(j)(t), �
−1
Ŷ (j)

(t))

=
m∑

j=1

nj∑
i=1

pji

[
(cY(j)i − cŶ (j)i

)2 + 1

3
(rY (j)i − rŶ (j)i

)2
]
(8)

3.2. The DSD Regression Model

The first option to define the functional linear relation
between histogram data was to adapt the classical model
to these kinds of data. Consider that we want to predict
the distributions of histogram-valued variable Y from p

histogram-valued variables Xk with k ∈ {1, . . . , p}. At each
unit j , j ∈ {1, . . . , m}, the predicted distribution Ŷ (j)

would then be obtained as follows:

Ŷ (j) = v + a1X1(j) + a2X2(j) + . . . + apXp(j).

As already mentioned, in this work, we chose to represent
the distributions by quantile functions. However, when
we multiply a quantile function by a negative number,
we do not obtain a nondecreasing function. Therefore, it
is necessary to impose non-negativity constraints on the
parameters of the model. As such, a functional linear
relation between the observations of the histogram-valued
variables, represented by the respective quantile functions,
may be defined as follows:

�−1
Ŷ (j)

(t) = v + a1�
−1
X1(j)(t) + a2�

−1
X2(j)(t)

+ . . . + ap�−1
Xp(j)(t) (9)

with ak ≥ 0 and k ∈ {1, 2, . . . , p}.
Statistical Analysis and Data Mining DOI:10.1002/sam
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The non-negativity constraints imposed on the coeffi-
cients force a direct linear relation, and limitations similar
to those present in linear regression models defined for
interval-valued variables occur (see, e.g., [17]). Although
we did not generalize the model of interval-valued vari-
ables to histogram-valued variables, by defining a model
that allows predicting a quantile function from other quan-
tile functions, we obtain a model with similar limitations
as observed before.

It is not possible to have negative parameters in the
previous model. Nevertheless, it is fundamental to allow
for the possibility of a direct and an inverse linear relation
between the variable Y and the variables Xk. For this
reason, our proposal is to include in the linear regression
model both the quantile functions �−1

Xk(j)(t), that represent
the distributions that the histogram-valued variables Xk take
for each unit j, and the quantile functions that represent
the respective symmetric histograms −�−1

Xk(j)(1 − t) (see
Section 2.2). Therefore, despite non-negativity constraints
being imposed on the coefficients of the model, the linear
relation may be direct or inverse because both the quantile
functions that represent the distributions Xk(j) and the
quantile functions that represent the respective symmetric
histogram will be in the model proposed next.

DEFINITION 5: Consider the histogram-valued vari-
ables X1;X2; . . . ;Xp. The quantile functions that repre-
sent the distribution that these histogram-valued variables
take for each unit j are denoted �−1

X1(j)(t), �−1
X2(j)(t), . . . ,

�−1
Xp(j)(t) and the quantile functions that represent the

respective symmetric histograms associated to each unit of
the referred variables are −�−1

X1(j)(1 − t),−�−1
X2(j)(1 − t),

. . . ,−�−1
Xp(j)(1 − t), with t ∈ [0, 1]. Each quantile function

�−1
Y(j) can be expressed as follows:

�−1
Y(j)(t) = �−1

Ŷ (j)
(t) + ej (t).

where �−1
Ŷ (j)

(t) is the predicted quantile function for unit
j, obtained from

�−1
Ŷ (j)

(t) = v + a1�
−1
X1(j)(t) − b1�

−1
X1(j)(1 − t)

+ a2�
−1
X2(j)(t) − b2�

−1
X2(j)(1 − t)

+ . . . + ap�−1
Xp(j)(t) + bp�−1

Xp(j)(1 − t).

with t ∈ [0, 1] ; ak, bk ≥ 0, k ∈ {1, 2, . . . , p} and v ∈ R.

The error, for each unit j , is the piecewise function given
by ej (t) = �−1

Y(j)(t) − �−1
Ŷ (j)

(t).

It should be noted that �−1
Ŷ (j)

(t) is always a quantile
function since it is a linear combination of quantile
functions where the coefficients are always nonnegative real
values.

For each unit j, the predicted distribution Ŷ (j) can
be represented by the quantile function �−1

Ŷ (j)
or by the

respective histogram HŶ(j). This linear regression model
will be named Distribution and Symmetric Distribution
(DSD) Regression Model.

Consider the particular case of the linear regression
model where there is only one explicative histogram-valued
variable X. In this case, we can obtain the quantile function
�−1

Y(j)(t), for each unit j, by the model:

�−1
Y(j)(t) = v + a�−1

X(j)(t) − b�−1
X(j)(1 − t) + ej (t) (10)

with a, b ≥ 0, and v ∈ R.

To define the DSD Regression Model, it is necessary to
take into account that:

1. For none of the histogram-valued variables, all
m observations present a histogram, which is
symmetric as it relates the yy-axis, because in
this case �−1

X(j)(t) and −�−1
X(j)(1 − t) would be

colinear.

2. For all observations of each variable, the his-
tograms are assumed to be defined with the same
number n of subintervals, and to each subinter-
val i of each observation, and for all variables,
is associated the same weight pi, that verifies the
condition pi = pn−i+1, i ∈ {1, ..., n} .

If the histograms do not follow the conditions referred
in 2, it is necessary to apply the process proposed by
Irpino and Verde [9]. Using this process, it is possible
to rewrite all distributions associated with each histogram-
valued variable Xk, k ∈ {1, 2, . . . , m}, the distributions that
represent the respective symmetric histograms and the dis-
tributions associated with the response variable Y, with the
same number of subintervals and weights. When we rewrite
the histograms and respective symmetric with the same
number of subintervals, the condition pi = pn−i+1, with
i ∈ {1, 2, . . . , n} is verified. To define a linear regression
model, we consider also the distributions associated with
the response variable but not the distributions that represent
the respective symmetric. Because of this, in some situa-
tions, the condition pi = pn−i+1 may not occur. When this
happens, we consider the symmetric of the histograms that
are the observations of the response variable Y but only
with the goal of defining the weights of the subintervals
such that pi = pn−i+1, i ∈ {1, 2, . . . , n} .

As an alternative to rewriting all distributions using the
process of Irpino and Verde [9] and when the microdata are
known, we may organize all histograms as equiprobable and
use the respective distributions that represent them.

In this work, we consider that all distributions of all
variables and the respective symmetric distributions are

Statistical Analysis and Data Mining DOI:10.1002/sam
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defined with n subintervals and with the set of cumulative
weights {0, w1, . . . , wn−1, 1} .

3.3. Parameters of the DSD Regression Model

In classical statistics, the parameters of the linear
regression model are estimated by solving the minimization
problem

∑m
j=1(yj − ŷj )

2, where yj are the observed values
and ŷj the predicted values, with j ∈ {1, . . . , m}. To solve
this problem, the least squares method is used.

For histogram-valued variables, the parameters of the
DSD Model, in Definition 5, are estimated by solving a
quadratic optimization problem, subject to non-negativity
constraints on the unknowns.

DEFINITION 6: Consider �−1
Ŷ (j)

(t) obtained by the
DSD Model. The quadratic optimization problem is written
as:

Minimize SSE =
m∑

j=1

D2
M(�−1

Y(j)(t), �
−1
Ŷ (j)

(t))

with ak, bk ≥ 0, k ∈ {1, 2, . . . , p} and v ∈ R.

To present more specifically the function to minimize, it
is important to define all the quantile functions involved
in this expression considering the conditions referred to
in Section 3.2. The quantile functions that represent the
distributions taken by Xk and the respective symmetric, for
a given unit j , are, respectively:

�−1
Xk(j)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cXk(j)1 +
(

2t
w1

−1
)

rXk(j)1 if 0 ≤ t < w1

cXk(j)2 +
(

2(t−w1)

w2−w1
−1
)

rXk(j)2 if w1 ≤ t < w2

...

cXk(j)n if wn−1 ≤ t ≤ 1

+
(

2(t−w(n−1))

1−w(n−1)
−1
)

rXk(j)n

(11)

− �−1
Xk(j)(1 − t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− cXk(j)n +
(

2t
w1

− 1
)

rXk(j)n if 0 ≤ t < w1

−cXk(j)n−1 if w1 ≤ t < w2

+
(

2(t−w1)

w2−w1
− 1

)
rXk(j)n−1

...

− cXk(j)1 if wn−1 ≤ t ≤ 1

+
(

2(t−wn−1)

1−wn−1
− 1

)
rXk(j)1

(12)

Similarly, the quantile function that represents the
distribution taken by the histogram-valued variable, Y , may
be given by expression (4).

According to the DSD Model, the quantile function that
represents the distribution taken by the predicted histogram-
valued variable Ŷ , for a given unit j is:

�−1
Ŷ (j)

(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∑
k=1

(
akcXk(j)1

− bkcXk(j)n

)
+ v +

(
2t
w1

− 1
)

if 0 ≤ t < w1

×
p∑

k=1

(
akrXk(j)1

+ bkrXk(j)n

)
p∑

k=1

(
akcXk(j)2

− bkcXk(j)n−1

)
+ v +

(
2(t−w1)
w2−w1

− 1
)

if w1 ≤ t < w2

×
p∑

k=1

(
akrXk(j)2

+ bkrXk(j)n−1

)
.
.
.

p∑
k=1

(
akcXk(j)n − bkcXk(j)1

)
+ v +

(
2(t−wn−1)

1−wn−1
− 1

)
if wn−1 ≤ t ≤ 1

×
p∑

k=1

(
akrXk(j)n + bkrXk(j)1

)
(13)

Consider these quantile functions and the Definition 4.
The quadratic optimization problem presented in Defini-
tion 6 can then be rewritten as follows:

Minimize SSE =
m∑

j=1

n∑
i=1

pi

×
⎡⎣(cY(j)i −

p∑
k=1

(
akcXk(j)i − bkcXk(j)n−i+1

)− v

)2

+ 1
3

(
rY (j)i −

p∑
k=1

(
akrXk(j)i + bkrXk(j)n−i+1

))2
⎤⎦

(14)

subject to ak, bk ≥ 0, k ∈ {1, 2, . . . , p} and v ∈ R.
The quadratic optimization problem that allows estimat-

ing the parameters of the DSD Model may be rewritten
in matricial form as a constraint quadratic problem or as
a constraint least squares problem1. In this paper, we will

1 In practical examples of this work, the optimization problems
to estimate the parameters of the DSD Model are solved using the
Matlab function quadprog if we treat the problem as a constraint
quadratic problem and the Matlab function lsqlin when we write
the problem as a constraint least squares problem.
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only consider the matricial form of the DSD Model written
as a constraint quadratic problem:

Minimize SEE = 1

2
BT HB + FT B + C (15)

subject to −ak,−bk ≤ 0; k ∈ {1, 2, . . . , p} and v ∈ R.
In this case, H = [

hlq

]
is the hessian matrix, a symmet-

ric matrix of order 2p + 1, with p the number of variables
Xk. The elements of the symmetric matrix H are defined
as follows:

hlq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

n∑
i=1

pi

(
2cX l+1

2
(j)i

cX q+1
2

(j)i
if l,q are odd

and l, q ≤ 2p

+ 2
3 rX l+1

2
(j)i

rX q+1
2

(j)i

)
m∑

j=1

n∑
i=1

pi

(
2cX l

2
(j)n−i+1

cX q
2

(j)n−i+1
if l,q are even

and l, q ≤ 2p

+ 2
3 rX l

2
(j)n−i+1

rX q
2

(j)n−i+1

)
m∑

j=1

n∑
i=1

pi

(
− 2cX l

2
(j)n−i+1

cX q+1
2

(j)i
if l is even, q is odd

and l, q ≤ 2p

+ 2
3 rX l

2
(j)n−i+1

rX q+1
2

(j)i

)
m∑

j=1

n∑
i=1

2picX q+1
2

(j)i
if q is odd and

l = 2p + 1
m∑

j=1

n∑
i=1

−2picX q
2

(j)n−i+1
if q is even and

l = 2p + 1

The vector column of independent terms, F = [
fl

]
with

2p + 1 rows is given by:

fl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

n∑
i=1

pi

(
− 2cY (j)i

cX l+1
2

(j)i
if l is odd

and l ≤ 2p

− 2
3 rY (j)i

rX l+1
2

(j)i

)
m∑

j=1

n∑
i=1

pi

(
2cY (j)i

cX l+1
2

(j)n−i+1
if l is even

and l ≤ 2p

− 2
3 rY (j)i

rX l+1
2

(j)n−i+1

)
m∑

j=1

n∑
i=1

−2picY (j)i
if l = 2p + 1

The elements of the matrices H and F are computed
from the first order partial derivatives of the function SEE

in (14). These derivatives are presented in Appendix A.
Finally, the vector column of the parameters, B, and the
real value C, are defined as follows:

B = [
a1 b1 a2 b2 . . . ap bp v

]T
and

C =
m∑

j=1

n∑
i=1

pi

(
c2
Y(j)i

+ 1

3
r2
Y(j)i

)
.

For each particular situation, it is possible to solve this
quadratic optimization problem, subject to non-negativity
on the constraints, and find the optimal solution. Consider
the optimal solution for this optimization problem,

B∗ = [
a∗

1 b∗
1 a∗

2 b∗
2 · · · a∗

n b∗
n v∗]T .

It is then possible to predict the distributions Ŷ (j), for each
j ∈ {1, . . . , m}, considering the obtained matrix B∗. Each
predicted distribution may be represented by the quantile
function as in (13) or by the respective histogram

HŶ(j) =
{[

p∑
k=1

(
a∗

k IXk(j)1
− b∗

k IXk(j)n

)
+ v∗,

p∑
k=1

(
a∗

k IXk(j)1 − b∗
k IXk(j)n

)
+ v∗

]
, p1; . . . ;

[
p∑

k=1

(
a∗

k IXk(j)n
− b∗

k IXk(j)1

)
+ v∗,

p∑
k=1

(
a∗

k IXk(j)n − b∗
k IXk(j)1

)
+ v∗

]
, pn

}

Consider the minimization problem defined in (14) or
matricially in (15). The optimal solution of the quadratic
optimization problem, subject to non-negativity constraints,
verifies the Kuhn Tucker conditions [29]. Therefore, the
optimal solution B∗ for this optimization problem, for all
k ∈ {1, . . . , p} verifies the following conditions:

• −a∗
k ,−b∗

k ≤ 0;

• ∂SEE
∂ak

(B∗) ≥ 0; ∂SEE
∂bk

(B∗) ≥ 0; ∂SEE
∂v

(B∗) = 0;

a∗
k

∂SEE
∂ak

(B∗) = 0; b∗
k

∂SEE
∂bk

(B∗) = 0;

From the Kuhn Tucker conditions, it is possible to prove
some properties associated with the predicted distribution.
Some of these are the counterparts of the corresponding
properties in classical statistics, and will allow defining
a measure to evaluate the goodness-of-fit of the model.
Before describing these properties, it is necessary to present
two important definitions of the concept of mean for
histogram-valued variables.

DEFINITION 7 [4]: Consider the histogram-valued
variable Y. For each unit j, with j ∈ {1, . . . , m}, Y (j) may
be represented by the histogram defined in (4). The mean
of variable Y is defined as follows:

Y = 1

m

m∑
j=1

( nj∑
i=1

cY(j)i pji

)
.

where nj is the number of subintervals for the j th unit.
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Irpino and Verde [9] defined the barycentric histogram
as the histogram that is at a minimum distance - in the
sense of the Mallows distance - of the m distributions. In
this case, a mean distribution is obtained instead of a mean
that is a real number.

The quantile function of the barycentric histogram is the
same as the mean quantile function that is computed from
the average of the m quantile functions that represent the m

given distributions. The mean quantile function is defined
as follows:

DEFINITION 8: Consider the m quantile functions
�−1

Y(j)(t), j ∈ {1, . . . , m}, all defined with n pieces. The

mean quantile function �−1
Y (t) is the function where each

piece is the mean of the corresponding m pieces involved.
The function is then,

�−1
Y (t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

cY(j)1

m
+
(

2t

w1
− 1

)
rY (j)1

m
if 0 ≤ t < w1

m∑
j=1

cY(j)2

m
+
(

2(t −w1)

w2 −w1
−1

)
rYj2

m
if w1 ≤ t <w2

...
m∑

j=1

cY(j)n

m
+
(

2(t −wn−1)

1−wn−1
−1

)
rYjn

m
if wn−1 ≤ t ≤ 1

So, we have �−1
Y (t) = 1

m

∑m

j=1
�−1

Y(j)(t).

These two concepts of mean for histogram-valued
variables are related as we can see in the following
proposition.

PROPOSITION 1: Considering the mean quantile func-
tion �−1

Y (t) of the histogram-valued variable Y and its
mean Y , we have

Y =
∫ 1

0
�−1

Y (t)dt.

This result is due to Irpino and Verde [23] and may easily
be proved considering Definitions 7 and 8.

Now, considering the previous results and the Kuhn Tuc-
ker conditions, we may prove the following propositions.

PROPOSITION 2: For each unit j, let Ŷ (j) be the
distribution predicted by the DSD Model and consider
the parameters obtained for the optimal solution B∗ =[
a∗

1 b∗
1 a∗

2 b∗
2 · · · a∗

n b∗
n v∗]T . The mean of the

predicted histogram-valued variable Ŷ is given by:

Ŷ =
p∑

k=1

(
a∗

k − b∗
k

)
Xk + v∗.

Proof: Each observation j, of the predicted histogram-
valued variable Ŷ (j), can be represented by the quantile
function as in (13) considering for parameters the optimal
solution B∗, of the quadratic optimization problem in (14).
As such, the mean quantile function �−1

Ŷ
can be calculated

by Definition 8. So, applying Proposition 1, we can prove
that Ŷ =

∑p

k=1

(
a∗

k − b∗
k

)
Xk + v∗. �

When including in the DSD Model, both the distribu-
tion of the explicative histogram-valued variables and the
respective symmetric distributions, the restrictions on the
parameters are imposed; however, this does not imply a
direct linear relation. In the particular case of single regres-
sion (10), we consider that the linear regression is direct if
a > b and inverse if a < b. To have a better insight of this
behavior, it is necessary to consider Proposition 2.

EXAMPLE 3: In a first situation, consider a symbolic
dataset where 10 units are described by two symbolic vari-
ables: Y the response histogram-valued variable and X the
explicative histogram-valued variable. All observations of
the histogram-valued variables are rewritten as histograms
with six subintervals and for all units, the weights associ-
ated to each subinterval i are the same.

In a second situation, the explicative histogram-valued
variable is the symmetric of the histogram-valued variable
X, denoted −X, Y as in the first case.

The scatter plots of both situations are represented in
Fig. 6.

Comparing the expressions of the DSD Models, in both
situations, we can observe that in the second, as expected,
the values of the parameters a and b change relatively to
the first.

DSD Model - Situation 1:

�−1
Ŷ (j)

(t) = −1.95 + 3.56�−1
X(j) (t) − 0.41�−1

X(j)(1 − t)

DSD Model - Situation 2:

�−1
Ŷ (j)

(t) = −1.95 + 0.41�−1
X(j) (t) − 3.56�−1

X(j)(1 − t)

Observing the behavior of the scatter plots, it is important
to underline that two orientations can be distinguished:
1) The orientation of the subintervals of each histogram,
which obviously is always direct (when the histograms are
represented by quantile functions, which are nondecreasing
functions) and 2) the orientation of each subinterval i for
all units j ; it is this latter orientation, and consequently
the orientation of the mean values of the histograms, that
induces the direct or inverse relation between the histogram-
valued variables.

In the first situation, a > b so, according to Propo-
sition 2 and having Xk(j) =

∑n

i=1
cXk(j)i pji, Ŷ (j) =

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 6 Scatter plots (projection in z = 0) of the observations of the histogram-valued variables X and Y in (a); −X and Y in (b).

Fig. 7 Scatter plots considering the mean values of the observations of the histogram-valued variables X and Y in (a); −X and Y in (b).∑n

i=1
cŶ (j)i

pji, the classical linear relation between the
mean values of the histograms, which are the observations
of the histogram-valued variables, is a direct linear rela-
tion, as illustrated in Fig. 7(a). This behavior means that the
relation between histogram-valued variables is classified as
direct. On the other hand, we consider that the linear rela-
tion between the histogram-valued variables Y and −X is
inverse because the parameter a is lower than b. As we can
observe in Fig. 7(b), the classical linear relation between the
mean values of the histograms Y (j) and Xk(j) is inverse.

From the above propositions, it is still possible to prove
other results.

PROPOSITION 3: The mean of the predicted histogram-
valued variable Ŷ is equal to the mean of the observed
histogram-valued variable Y .

Proof: Consider the function to minimize in (14),

SEE =
m∑

j=1

n∑
i=1

pi

×
[(

cY(j)i −
p∑

k=1

(akcXk(j)i
− βkcXk(j)n−i+1) − v

)2

+ 1
3

(
rY (j)i −

p∑
k=1

(akrXk(j)i
+ bkrXk(j)n−i+1)

)2]

For the optimal solution B∗, we have ∂SEE
∂v

(B∗) = 0.

Consequently,

2
m∑

j=1

n∑
i=1

pi

(
p∑

k=1

a∗
k cXk(j)i

)
− 2

m∑
j=1

n∑
i=1

pi

×
(

p∑
k=1

b∗
kcXk(j)(n−i+1)

)
+ 2mv∗ − 2

m∑
j=1

n∑
i=1

picY(j)i = 0

⇐⇒
m∑

j=1

n∑
i=1

pi

p∑
k=1

a∗
k

cXk(j)i

m
−

m∑
j=1

n∑
i=1

pi

×
p∑

k=1

b∗
k

cXk(j)(n−i+1)

m
+ v∗ =

m∑
j=1

n∑
i=1

pi

cY(j)i

m

⇐⇒
p∑

k=1

(
a∗

kXk − b∗
kXk

)+ v∗ = Y

From Proposition 2, it follows that

Ŷ =
p∑

k=1

[(
a∗

k −b∗
k

)
Xk

] + v∗,

so Ŷ = Y . �

PROPOSITION 4: For each unit j, the quantile func-
tion of the distribution Ŷ (j) predicted by the DSD Model

Statistical Analysis and Data Mining DOI:10.1002/sam
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can be rewritten as follows:

�−1
Ŷ (j)

(t) − Y =
p∑

k=1

[
a∗

k

(
�−1

Xk(j)(t) − Xk

)
+ b∗

k

(
−�−1

Xk(j)(1 − t) + Xk

)]
.

Proof: In Proposition 3, we proved that

Y =
p∑

k=1

[(
a∗

k − b∗
k

)
Xk

]+ v∗ ⇐⇒ v∗ = Y −
p∑

k=1

(
a∗

k − b∗
k

)
Xk.

For the optimal solution B∗, for each unit j, the quantile
function predicted by the linear regression model DSD, in
Definition 5, is given by

�Ŷ(j)(t) =
p∑

k=1

(
a∗

k�
−1
Xk(j)(t) − b∗

k�
−1
Xk(j)(1 − t)

)
+ v∗

which may then be rewritten as

�−1
Ŷ (j)

(t) − Y =
p∑

k=1

[
a∗

k

(
�−1

Xk(j)(t) − Xk

)
+b∗

k

(
−�−1

Xk(j)(1 − t) + Xk

)]
. �

PROPOSITION 5: For the observed and predicted
distributions Y (j) and Ŷ (j), respectively, with j ∈
{1, . . . , m}, of the variable Y, we have

m∑
j=1

∫ 1

0

(
�−1

Y(j)(t) − �−1
Ŷ (j)

(t)
) (

�−1
Ŷ (j)

(t) − Y
)

dt = 0.

Proof: The proof is given in Appendix B.

3.4. Goodness-of-fit measure

To complete the investigation of the linear regression
model for histogram-valued variables, a goodness-of-fit
measure remains to be deduced. We define this measure
in a similar way as in the classical model for real data.

PROPOSITION 6: The sum of the square of the
Mallows distance between each observed distribution j,

j ∈ {1, . . . , m}, of the histogram-valued variable Y, and
the mean of the histogram-valued variable Y, Y , can be

decomposed as follows:

m∑
j=1

D2
M

(
�−1

Y(j)(t), Y
)

=
m∑

j=1

D2
M

(
�−1

Y(j)(t), �
−1
Ŷ (j)

(t)
)

+
m∑

j=1

D2
M

(
�−1

Ŷ (j)
(t), Y

)
Proof: Consider each observation j of the histogram-

valued variable Y, represented by its quantile function
�−1

Y(j)(t), and the mean of this histogram-valued variable,
Y . We have,

m∑
j=1

D2
M

(
�−1

Y(j)(t), Y
)

=
m∑

j=1

∫ 1

0

(
�−1

Y(j)(t) − Y
)2

dt

=
m∑

j=1

∫ 1

0

(
�−1

Y(j)(t) − �−1
Ŷ (j)

(t) + �−1
Ŷ (j)

(t) − Y
)2

dt

=
m∑

j=1

∫ 1

0

(
�−1

Y(j)(t) − �−1
Ŷ (j)

(t)
)2

dt

+
m∑

j=1

∫ 1

0

(
�−1

Ŷ (j)
(t) − Y

)2
dt

+ 2
m∑

j=1

∫ 1

0

(
�−1

Y(j)(t) − �−1
Ŷ (j)

(t)
) (

�−1
Ŷ (j)

(t) − Y
)

dt

From Proposition 5 we have,

m∑
j=1

∫ 1

0

(
�−1

Y(j)(t) − �−1
Ŷ (j)

(t)
) (

�−1
Ŷ (j)

(t) − Y
)

dt = 0.

So, we may write

m∑
j=1

D2
M

(
�−1

Y(j)(t), Y
)

=
m∑

j=1

∫ 1

0

(
�−1

Y(j)(t) − �−1
Ŷ (j)

(t)
)2

dt

+
m∑

j=1

∫ 1

0

(
�−1

Ŷ (j)
(t) − Y

)2
dt. �

Therefore, similar to the classical model, it is possible to
define the goodness-of-fit measure of the DSD Model.

DEFINITION 9: Consider the observed and predicted
distributions of the histogram-valued variable Y and
Ŷ represented, respectively, by their quantile functions
�Y(j)(t) and �−1

Ŷ (j)
(t), and the mean of the histogram-

valued variable Y, Y . The goodness-of-fit measure is
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given by

� =
∑m

j=1
D2

M

(
�−1

Ŷ (j)
(t), Y

)
∑m

j=1
D2

M

(
�−1

Y(j)(t), Y
) .

In classical linear regression, the coefficient of determi-
nation R2 ranges from 0 to 1. In this case, the goodness-of-
fit measure, �, also ranges from 0 to 1.

PROPOSITION 7: The goodness-of-fit measure �

ranges from 0 to 1.

Proof: Consider the goodness-of-fit measure

� =
∑m

j=1D2
M

(
�−1

Ŷ (j)
(t),Y

)
∑m

j=1D2
M

(
�−1

Y (j)
(t),Y

) . This measure is nonnegative. So,

�≥ 0.

From Proposition 6, we have

m∑
j=1

D2
M

(
�−1

Y(j)(t), Y
)

=
m∑

j=1

∫ 1

0

(
�−1

Y(j)(t) − �−1
Ŷ (j)

(t)
)2

dt

+
m∑

j=1

∫ 1

0

(
�−1

Ŷ (j)
(t) − Y

)2
dt

⇐⇒ 1 =
∑m

j=1

∫ 1

0

(
�−1

Y(j)(t) − �−1
Ŷ (j)

(t)
)2

dt∑m

j=1
D2

M

(
�−1

Y(j)(t), Y
)

+
∑m

j=1

∫ 1

0

(
�−1

Ŷ (j)
(t) − Y

)2
dt∑m

j=1
D2

M

(
�−1

Y(j)(t), Y
)

⇐⇒ � = 1 −
∑m

j=1

∫ 1

0

(
�−1

Y(j)(t) − �−1
Ŷ (j)

(t)
)2

dt∑m

j=1
D2

M

(
�−1

Y(j)(t), Y
)

Since the term
∑m

j=1
∫ 1

0

(
�−1

Y (j)
(t)−�−1

Ŷ (j)
(t)
)2

dt∑m
j=1 D2

M

(
�−1

Y (j)
(t),Y

) is nonnegative,

the value of � is always less than or equal to 1. So, we
have 0 ≤ � ≤ 1.

Let us now analyze the extreme situations.

Suppose � = 0. In this case,

m∑
j=1

D2
M

(
�−1

Ŷ (j)
(t), Y

)
= 0

⇐⇒
m∑

j=1

∫ 1

0

(
�−1

Ŷ (j)
(t) − Y

)2
dt = 0.

So, for all j ∈ {1, . . . , m} , we have

�−1
Ŷ (j)

(t) − Y = 0 ⇐⇒ �−1
Ŷ (j)

(t) = Y .

In this case, the predicted function for all observations j is
a constant function.

Suppose now that � = 1. In this case,

m∑
j=1

D2
M

(
�−1

Ŷ (j)
(t), Y

)
=

m∑
j=1

D2
M

(
�−1

Y(j)(t), Y
)

.

From the decomposition obtained in Proposition 6, we have,

m∑
j=1

D2
M

(
�−1

Y(j)(t), Y
)

=
m∑

j=1

D2
M

(
�−1

Ŷ (j)
(t), Y

)
+

m∑
j=1

D2
M

(
�−1

Ŷ (j)
(t), �−1

Y (j)(t)
)

⇐⇒
m∑

j=1

D2
M

(
�−1

Ŷ (j)
(t), �−1

Y(j)(t)
)

= 0.

So, for all j ∈ {1, . . . , m} ,

D2
M

(
�−1

Ŷ (j)
(t), �−1

Y(j)(t)
)

= 0

⇐⇒
∫ 1

0

(
�−1

Ŷ (j)
(t) − �−1

Y(j)(t)
)2

dt = 0

�⇒ �−1
Ŷ (j)

(t) = �−1
Y(j)(t).

In this case, for each observation j , the predicted and
observed quantile functions are coincident.

In conclusion, 0 ≤ � ≤ 1. If � = 0, there is no linear
relation between the histogram-valued variable Y and the
histogram-valued variables Xk. If � = 1, the linear relation
is perfect, so the relation between the histogram-valued
variable Y and histogram-valued variables Xk, with k ∈
{1, . . . , p}, is exactly the relation defined by the linear
regression model. �

The goodness-of-fit measure, �, deduced from the
models is computed with respect to the symbolic mean
of the histogram-valued response variable, that is, a real
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value and not an average distribution, the barycentric
histogram. This option is due to the apparent impossibility
in obtaining the decomposition of the total sum of
squares (Proposition 6), when the barycentric histogram is
considered.

4. EXPERIMENTS

To illustrate and analyze the DSD Model, we performed
a simulation study and applied the method to real datasets.

4.1. Simulation Study

To analyze the behavior of the parameter estimation
and the performance of the DSD Model in different
situations, we performed a simulation study. The first
step was to generate the observations of the histogram-
valued variables Xk, k = {1, . . . , p} and Y, where Y is
the variable to be modelized from Xk by the linear rela-
tion. Next, the parameters were estimated by the DSD
Model and goodness-of-fit measures computed, consider-
ing symbolic-simulated data tables covering different sit-
uations. From these results, it was possible to analyze
the behavior of the model and draw some meaningful
conclusions.

4.1.1. Building symbolic-simulated data tables

The observations of the explicative and response
histogram-valued variables Xk and Y were generated in
different ways.

• The observations of each histogram-valued vari-
able Xk are created.
According to the concept of symbolic variables,
to obtain the m observations associated to a
histogram-valued variable Xk , we started by sim-
ulating 5000 real values corresponding to each
unit. These values are then organized in his-
tograms, which represent the empirical distribu-
tion for each unit. It was considered that in all
observations, the subintervals of each histogram
have the same weight (equiprobable) with fre-
quency 0.10. This option is supported by the work
of Colombo and Jaarsma [25]. If equiprobable his-
tograms with the same weight distributions in all
observations were not considered, we would have
obtained a large number of different weights and
consequently the subintervals would have very
low frequencies. It is possible that histograms are
not equiprobable; however, the weight in each

subinterval has to be the same in all observations
(see Section 2.1).

• The observations of the histogram-valued variable
Y are created.
The histograms that are the observations of
the histogram-valued variable Y are obtained in
three steps. First, we consider the perfect linear
regression, without error, given by

�−1
Y ∗(j)(t) = v +

p∑
k=1

ak�
−1
Xk(j)(t)

−
p∑

k=1

bk�
−1
Xk(j)(1 − t),

for particular values of the parameters. The
histogram-valued variables Xk and Y ∗ are in a
perfect linear relation; this is, however, not what
is intended to simulate for the symbolic data
table. Then, we disturb the perfect linear relation
by introducing an error function in the model
�−1

Y(j)(t) = �−1
Y ∗(j)(t) + εj (t). The error function

is a piecewise linear function (but not necessarily
a quantile function) defined by:

ej (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̃(j )1 +
(

2t
w1

− 1
)

r̃(j )1 if 0 ≤ t < w1

c̃(j )1 + r̃(j )1 + r̃(j )2 if w1 ≤ t < w2

+
(

2(t−w1)
w2−w1

− 1
)

r̃(j )2

.

.

.

c̃(j)1 + r̃(j )1 +
n−1∑
i=2

2̃r(j)i if wn−1 ≤ t ≤ 1

+̃r(j)n +
(

2
(
t−w(n−1)

)
1−w(n−1)

− 1

)
r̃(j )n

(16)

The values of c̃(j)1 and r̃(j )i , with i ∈ {1, . . . , n}
that compose the error function ej (t) are ran-
domly selected from intervals with low or high
variation depending on whether we want the lin-
ear regression between the variables to be better
or worse. However, the values of r̃(j )i have a
limitation. Each half-range rY (j)i in the quantile
function �−1

Y(j)(t), which results from the pertur-
bation of �−1

Y ∗(j)(t) by the error function ej (t),

is obtained by rY (j)i = rY ∗(j)i + r̃(j )i, for each
unit j and subinterval i. As it is not imposed that
the error function is a quantile function, the val-
ues of r̃(j )i may be negative but cannot be lower
than −rY ∗(j)i , else for this unit j and subinterval
i, the half-range rY (j)i would be negative. The
expression of the error function in (16) and the
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constraints imposed to the values that compose
it ensure that when we add the quantile function
�−1

Y ∗(j)(t) with the error function ej (t), we obtain
a quantile function. The disturbance induced in
the centers of the subintervals of the histograms
is difficult to control because the building of c̃(j)i
with i ∈ {2, . . . , n} is recursive and depends on
the values of c̃(j)1 and r̃(j )i .

4.1.2. Description of the simulation study

To perform the simulation study, symbolic data tables
that illustrate different situations were created. In this study,
a full factorial design was employed, with the following
factors:

• Sample size: m = 10; 30; 100; 250.

• Number of explicative histogram-valued vari-
ables: p = 1 and p = 3.

• Parameters of the DSD Model.

◦ For p = 1 :

i) a = 2; b = 1; v = −1; (a and b are
close)

ii) a = 2; b = 8; v = 3; (a is lower than b)
iii) a = 8; b = 0; v = 4; (a is larger than

b)

◦ For p = 3 :

i) a1 = 2; b1 = 1; a2 = 0.5; b2 = 3;
a3 = 1.5; b3 = 1; v = −1; (the values
of ak and bk, k ∈ {1, 2, 3} are close)

ii) a1 = 6; b1 = 0; a2 = 2; b2 = 8;
a3 = 10; b3 = 5; v = 3; (the values of
ak and bk, k ∈ {1, 2, 3} are apart)

• Distribution of the microdata (real values xjk(w),

with w ∈ {1, . . . , 5000},) that allows generating
the histograms corresponding to each observation
of the variables Xk, with k = {1, 2, 3} .

i) Uniform distribution: xjk(w) ∼U(δ1(j), δ2(j))

are randomly generated considering for each
j ∈ {1, . . . , m} and k ∈ {1, 2, 3} .

◦ k = 1 : δ1(j) ∼ U(−1.5, 0.5) and
δ2(j) ∼ U(2.5, 4.5);

◦ k = 2 : δ1(j) ∼ U(3, 5) and
δ2(j) ∼ U(11, 13);

◦ k = 3 : δ1(j)∼U(−5,−3) and
δ2(j) ∼ U(9, 11);

ii) Normal distribution: xjk(w)∼N (δ3(j), δ4(j))

are randomly generated considering for each
j ∈ {1, . . . , m} and k ∈ {1, 2, 3} .

◦ k = 1 : δ3(j) ∼ U(1, 2) and
δ4(j) ∼ U(0.5, 1.5);

◦ k = 2 : δ3(j) ∼ U(7.5, 8.5) and
δ4(j) ∼ U(1.5, 2.5);

◦ k = 3 : δ3(j) ∼ U(2.5, 3.5) and
δ4(j) ∼ U(3.5, 4.5);

iii) Log-Normal distribution: xjk(w) ∼
LogN (δ5(j), δ6(j)) are randomly generated
considering for each j ∈ {1, . . . , m} and k ∈
{1, 2, 3} .

◦ k = 1 : δ5(j) ∼ U(−0.5, 0.5) and
δ6 (j) ∼ U(0.5, 1);

◦ k = 2 : δ5(j) ∼ U(1.5, 2.5) and
δ6(j) ∼ U(0, 0.5);

◦ k = 3 : δ5(j) ∼ U(0, 1) and
δ6(j) ∼ U(0.75, 1.25);

iv) Mixture of distributions: xjk(w) are ran-
domly generated considering for each j ∈{
1, . . . , m

}
and k ∈ {1, 2, 3} .

◦ k = 1 : randomly selected from
U (−0.5, 3.5); N (1.5, 1); X 2(1);
LogN (0, 0.75); −LogN (0, 0.75).

◦ k = 2 : randomly selected from
U(4, 12); N (8, 2); LogN (2,0.25);
−Log N (2, 0.25); X 2(8).

◦ k = 3 : randomly selected from
U (−4, 10); N (3, 4); LogN (0.5, 1);
−LogN (0.5, 1); X 2(3).

With the exception of the situation of
the mixture of distributions, and as the
goal is to study the effect of the type of
distribution of the explicative variables, for
each k, the histogram-valued variable Xk is
built from different distributions but those
distributions have similar values for the
mean and standard deviation.
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1. Error level: in the error function ej (t), the values
of c̃(j)1 and r̃(j )i are randomly selected.

i) The values of c̃(j)1 are randomly generated in

◦ Uc1 = 0.1 ∗ U(−maH ,maH );

◦ Uc2 = 0.5 ∗ U(−maH ,maH );

◦ Uc3 = U(−maH ,maH )

with maH = 1
m

∑m
j=1

1
2

(
IY ∗(j)10 − IY ∗(j)1

) ;
ii) The values of r̃(j )i are randomly generated in

◦ Ur1 = 0.1 ∗ U(−mri,mri);

◦ Ur2 = 0.5 ∗ U(−mri,mri);

◦ Ur3 = U(−mri,mri).

with, for each i ∈ {1, . . . , n},
mri = min

j∈{1,...,m}
{
rY ∗(j)i

}
.

The level I error corresponds to the case
where the linearity is slightly disturbed (con-
sidering the variability of values in the dis-
tributions of the response variable), which
implies that the values of c̃(j)1 and r̃(j )i
in the error function ej (t) are randomly
generated in Uc1 = 0.1 ∗ U(−maH ,maH )

and Ur1 = 0.1 ∗ U(−mri,mri), respectively.
The level II error is considered when the
values of c̃(j)1 and r̃(j )i are randomly
generated in intervals with larger vari-
ability, Uc3 = U(−maH ,maH ) and Ur3 =
U(−mri,mri), respectively. Considering �

as the measure to quantify the goodness-of-
fit, it was observed that the disturbance of
a linear relation between distributions must
take into account the variability of the val-
ues in the distributions of the Y ∗. This is the
reason that led us to consider the range of
the distributions of Y ∗ in the disturbance of
the centers.

It is important to underline that in this simulation study, it
was only possible to control the type of distributions of the
observations of the explicative histogram-valued variables.
This simulation does not allow selecting the distributions of
the observations of the response variable. The distribution
of the response variable depends on the distribution of the
variable Y ∗ and/or the disturbance applied to the histograms
Y ∗(j). In the studied cases, the variability of the values in

distribution of the variable Y, when p = 1, is higher when
a = 2; b = 8; v = 3.

In addition to the selection of parameters considered in
the factorial design, other choices were analyzed. However,
as the results were similar, we chose to present only the
cases enumerated above.

The simulated symbolic data tables include the observa-
tions of the histogram-valued variables Xk and Y, according
to the previous description and factors. For these tables,
we computed the estimated parameters for the DSD Model
and the goodness-of-fit measures. As we considered 1000
replications for each situation, the values presented are the
means of the obtained values and the respective standard
deviation values (represented by s).

The goodness-of-fit measures considered in this study
are:

• �, where � is the measure deduced from the DSD
Model (see Section 3.4);

• Root-mean-square error (RMSEM), a measure
defined using the Mallows distance (also used in
the DSD Model ), proposed by Irpino and Verde
[19]; it is defined by

RMSEM =

√√√√√∑m

j=1

∫ 1

0

(
�−1

Ŷ (j)
(t) − �−1

Y(j)(t)
)2

dt

m

• Adaptations of the lower (RMSEL) and the upper
bound (RMSEU) root-mean-square that Neto and
Carvalho [17,18], use to study the performance
of the linear regression models defined for
interval-valued variables. For histogram-valued
variables, the RMSEL and the RMSEU are
given by:

RMSEL =
√√√√ 1

m

m∑
j=1

n∑
i=1

(I Ŷ (j)i
− IY(j)i

)2pi

RMSEU =
√√√√ 1

m

m∑
j=1

n∑
i=1

(I Ŷ (j)i
− IY(j)i )

2pi

with
[
IY(j)i

, I Y (j)i

)
and

[
I Ŷ (j)i

, I Ŷ (j)i

)
the subin-

tervals i ∈ {1, . . . , n} of the observed and pre-
dicted histograms, for each unit j.

4.1.3. Results and conclusions

In Appendix C, three tables are presented, each of
which contains the results obtained when applying the DSD
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Model, with p = 1, in different conditions and considering
the following three selections of the parameters: a = 2;
b = 1; v = −1 (Table C1); a = 2; b = 8; v = 3 (Table C2);
and a = 6; b = 0; v = 2 (Table C3). From Tables C4 to
C7, similar results are presented for the cases obtained by
applying the DSD Model with p = 3.

The main goals of this study are to verify if the goodness-
of-fit measures are in accordance with the considered error
levels and to analyze the performance of the DSD Model
applied to histogram-valued variables evaluating the behav-
ior of the parameters’ estimation. For p = 1, it is also our
goal to analyze how the symmetry/asymmetry of the dis-
tributions of the observations of the explicative histogram-
valued variable affect the symmetry/asymmetry of the dis-
tributions in the observations of the response variable.

Concerning the goodness-of-fit measures versus level of
linearity

To evaluate if the linear relation between distributions is
strong or weak, we used the coefficient of determination �,

deduced from the DSD Model. However, when we delin-
eated this simulation study with the goal of analyzing the
performance of the DSD Model applied to histogram-valued
variables, it was necessary to define what is the meaning of
a high or low disturbance. As � was the selected measure
to quantify the goodness-of-fit, the levels of disturbance
were defined taking into account its expected behavior.

In all studied situations (see tables in Appendix C), when
we consider a disturbance with error level I, � presents
values close to one, i.e. it indicates that the linear rela-
tion between the distributions is strong. When a higher

disturbance (error level II) is considered, the values of �

are, as expected, more distant from one and approach zero.
As the error functions are defined considering the range of
values in distributions of Y ∗, the behavior of � shows that
the disturbance takes into account the variability of the val-
ues in these distributions. Therefore, in order to obtain a
similar value of �, the linear relations when the explica-
tive variables have low variability need to be less disturbed
than in the case when the explicative variables have higher
variability.

The tables in Appendix C record only the values of the
goodness-of-fit measures considering two levels of variabil-
ity for the error function. However, to analyze more com-
prehensively the level of sensitivity of �, for different kinds
of error functions, we must consider some cases where the
error functions affect more the half-range of the subinter-
vals of the histograms and other cases where the centers
are more affected. Tables 2 and 3 illustrate the results that
were obtained for samples with 10 and 100 observations,
for DSD Model with a = 2; b = 8; v = 3. The values of �

were determined considering different error functions that
use three levels of variability for the values of c̃(j)1 : Uc1,

Uc2, Uc3 and, for each one, three levels of variability for
r̃(j )i : Ur1, Ur2, Ur3, as defined in Section 4.1.2.

Based on these results, we can say that the linearity
between histogram-valued variables is more affected by
disturbances in the centers of the subintervals than in the
half-ranges. This behavior is not surprising because the dis-
tance associated with this model is the Mallows distance,
and as we have observed, the contribution of the centers of

Table 2. Mean values of � considering different levels of linearity, when the distributions generating observations of X are Uniform(
�U
)

and Normal
(
�N

)
.

�U (s) �N (s)

m r̃(j)i
∼ Ur1 r̃(j)i

∼ Ur2 r̃(j)i
∼ Ur3 r̃(j)i

∼ Ur1 r̃(j)i
∼ Ur2 r̃(j)i

∼ Ur3

c̃(j)1 ∼ Uc1 10 0.9924 (0.0027) 0.9798 (0.0075) 0.9434 (0.0212) 0.9801 (0.0068) 0.9628 (0.0139) 0.9130 (0.0282)
100 0.9907 (8.4E − 4) 0.9809 (0.0020) 0.9521 (0.0053) 0.9762 (0.0021) 0.9620 (0.0039) 0.9201 (0.0080)

c̃(j)1 ∼ Uc2 10 0.8508 (0.0453) 0.8410 (0.0480) 0.8144 (0.0551) 0.6804 (0.0753) 0.6713 (0.0769) 0.6487 (0.0798)
100 0.8163 (0.0144) 0.8102 (0.0148) 0.7901 (0.0166) 0.6285 (0.0214) 0.6241 (0.0227) 0.6061 (0.0236)

c̃(j)1 ∼ Uc3 10 0.6028 (0.0911) 0.5919 (0.0896) 0.5856 (0.0885) 0.3661 (0.0863) 0.3567 (0.0798) 0.3563 (0.0844)
100 0.5315 (0.0250) 0.5273 (0.0252) 0.5183 (0.0268) 0.3023 (0.0209) 0.3001 (0.0208) 0.2966 (0.0204)

Table 3. Mean values of � considering different levels of linearity, when the distributions generating observations of X are Log-Normal(
�LogN

)
and a mixture of distributions

(
�Mix

)
.

�LogN (s) �Mix (s)

m r̃(j)i
∼ Ur1 r̃(j)i

∼ Ur2 r̃(j)i
∼ Ur3 r̃(j)i

∼ Ur1 r̃(j)i
∼ Ur2 r̃(j)i

∼ Ur3

c̃(j)1 ∼ Uc1 10 0.9779 (0.0074) 0.9424 (0.0209) 0.8459 (0.0460) 0.9800 (0.0066) 0.9773 (0.0077) 0.9699 (0.0104)
100 0.9784 (0.0020) 0.9719 (0.0029) 0.9512 (0.0050) 0.9788 (0.0019) 0.9761 (0.0023) 0.9677 (0.0033)

c̃(j)1 ∼ Uc2 10 0.6692 (0.0736) 0.6450 (0.0804) 0.6108 (0.0939) 0.6707 (0.0767) 0.6702 (0.0811) 0.6648 (0.0813)
100 0.6483 (0.0206) 0.6464 (0.0212) 0.6361 (0.0227) 0.6505 (0.0234) 0.6501 (0.0254) 0.6461 (0.0247)

c̃(j)1 ∼ Uc3 10 0.3439 (0.0867) 0.3416 (0.0829) 0.3305 (0.0896) 0.3520 (0.0983) 0.3533 (0.0970) 0.3568 (0.0958)
100 0.3165 (0.0224) 0.3160 (0.0218) 0.3150 (0.0225) 0.3198 (0.0329) 0.3208 (0.0319) 0.3191 (0.0319)
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the subintervals is three times larger than that of the half-
ranges (see Definition 4). Moreover, the limitation imposed
on the values of r̃(j )i prevents larger disturbances in the
half-ranges of the subintervals of Yj .

Comparing all situations where the considered error
levels are the same, we may conclude that when the
observations of the explicative variables follow a Uniform
distribution, the linearity is less disturbed. This behavior
could be influenced by the non-variability of the half-ranges
associated with each unit j.

An in-depth analysis of the values of the goodness-of-
fit measures (see all tables of Appendix C) shows that
the values of the root mean square error decrease in the
same proportion as the levels of linearity. The mean values
associated with the measures RMSEM ; RMSEL and
RMSEU increase approximately ten times when we pass
from high (error level I) to moderate/low (error level II)
linearity. This increase is an exact reflection of the range
of variability tested in this study for the error function (ten
times from level I to level II). As the measures of the root
mean square errors quantify the differences between the
observed and predicted distributions in ”absolute terms,”
these are not adequate to compare situations with different
selections of parameters in the DSD Model. They are
also not adequate when the selection of parameters is the
same, but the distributions of the explicative variables are
different.

Concerning the analysis of the parameters’ estimation
The results obtained using the DSD Model with one

(Tables C1 to C3) or three (Tables C4 to C7) explicative
variables are in general similar and as such in this section,
we will analyze in detail the results obtained when p = 1.

Comparing the obtained results, we can see that the
behavior of the parameters’ estimation is not very different
for all distributions used to generate the microdata of the
explicative variables and is similar for the three selections
of the parameters. For the situations where the level I

error is considered, we observe that the mean value of
the estimated parameters is close to the true parameter
values; both the standard deviation associated with the
mean values of the estimated parameters and the values of
MSE get closer to zero when the number of observations
increases. This result confirms the empirical consistency of
the estimation and is expected when the linear regression
models are only slightly disturbed.

In Figs. 8, 9 and 10, we may observe the behavior
described above. The figures illustrate only the situation
where a = 2; b = 8; v = 3 (Table C2), but the behavior for
the other selections of parameters is similar. For the differ-
ent distributions used to generate the histogram values of
X, the boxes reduce their ranges around the true values of
the respective parameters as the number m of observations
increases. It may also be observed that it is for the Normal
distribution that the diversity of the estimated values of the
parameters is higher.

The behavior of the independent parameter is always
more unstable than the behavior of the other parameters
of the model. Observing the obtained results, it is when
the variability distributions of the response variable is
higher that the values/quantile functions estimated for the
independent parameters are more apart from the original
values/quantile functions. In Fig. 10, we may observe that
the values of the MSE correspondent to the independent
parameter will be closer to zero when sizes of the samples
increase. It is when the distribution of the explicative
variables is Normal that these values are higher.

When we consider the level II error, the mean values
associated with the estimated parameters a and b are distant
from the original ones, essentially when the distributions
of the explicative variables are Uniform or Normal and
the number of observations is lower. In all situations,
the estimated parameters have higher values of standard
deviation and MSE than in the analogous situations when
level I error is considered.

m=10 m=30 m=100 m=250 m=10 m=30 m=100 m=250 m=10 m=30 m=100 m=250 m=10 m=30 m=100 m=250
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Normal distributionUniform distribution Log−Normal distribution Mixture of distributions

Fig. 8 Boxplots of the values estimated for parameter a, under different conditions, when DSD Model (a = 2, b = 8, v = 3) is applied
to histogram-valued variables and when level I error is considered.
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Fig. 9 Boxplots of the values estimated for parameter b, under different conditions, when DSD Model (a = 2, b = 8, v = 3) is applied
to histogram-valued variables and when level I error is considered.
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Fig. 10 Boxplots of the values estimated for parameter v, under different conditions, when DSD Model (a = 2, b = 8, v = 3) is applied
to histogram-valued variables and when level I error is considered.

Concerning symmetry/asymmetry of Ŷ (j).

In this simulation study, it was possible to analyze the
symmetry/assymetry of the predicted distributions obtained
by the simple DSD Model, taking into consideration the
symmetry/asymmetry of the distributions in the observa-
tions of the histogram-valued variables X and the values
of the parameters of the models. When the observations
of the histogram-valued variable X are symmetric his-
tograms, represented by �−1

X(j)(t), the respective symmetric
histogram represented by −�−1

X(j)(1 − t) is also symmet-
ric; but when the histogram represented by �−1

X(j)(t) is
asymmetric positive (negative) (Log-Normal, for example),
the respective symmetric histogram represented by
−�−1

X(j)(1 − t) is asymmetric negative (positive). In the
DSD Model, the predicted distributions are obtained from
�−1

Ŷ (j)
(t) = v + a�−1

X(j)(t) − b�−1
X(j)(1 − t). Therefore, if

the distribution �−1
X(j)(t) is symmetric, the distribution of

�−1
Ŷ (j)

(t) also tends to be symmetric. If the distribution

�−1
X(j)(t) is asymmetric, the distribution of �−1

Ŷ (j)
(t) tends

to be symmetric when the values of a and b are similar and

asymmetric negative (resp. positive) when the value of a is
lower (resp. higher) than the value of b. These conclusions
are illustrated in Fig. 11 considering all predicted distribu-
tions in the simulation study with DSD Model for p = 1
and for samples with 10 observations.

In conclusion, when the distributions of observations
X(j) are symmetric, asymmetric positive, or asymmetric
negative, it is possible, in several cases, to forecast
whether the distributions of Ŷ (j) will be asymmetric. The
value of the independent parameter does not influence the
symmetry/asymmetry of Ŷ (j).

4.2. Applied examples

4.2.1. The relation between the hematocrit values and
hemoglobin values

This first example was presented in Billard and Diday
[3] to illustrate their linear regression model for histogram-
valued variables. In this case, we have the symbolic data
in Table 4, where 10 units are described by two symbolic
variables, the hematocrit and the hemoglobin.
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Fig. 11 Boxplots that represent the “skewness”2 of the distributions estimated with DSD Model.

Table 4. Example of symbolic data table where the two variables hematocrit and hemoglobin are histogram-valued variables.

Obs. Hematocrit (Y) Hemoglobin (X)

1 {[33.29; 37.52) , 0.6; [37.52; 39.61] , 0.4} {[11.54; 12.19) , 0.4; [12.19; 12.8] , 0.6}
2 {[36.69; 39.11) , 0.3; [39.11; 45.12] , 0.7} {[12.07; 13.32) , 0.5; [13.32; 14.17] , 0.5}
3 {[36.69; 42.64) , 0.5; [42.64; 48.68] , 0.5} {[12.38; 14.2) , 0.3; [14.2; 16.16] , 0.7}
4 {[36.38; 40.87) , 0.4; [40.87; 47.41] , 0.6} {[12.38; 14.26) , 0.5; [14.26; 15.29] , 0.5}
5 {[39.19; 50.86] , 1} {[13.58; 14.28) , 0.3; [14.28; 16.24] , 0.7}
6 {[39.7; 44.32) , 0.4; [44.32; 47.24] , 0.6} {[13.81; 14.5) , 0.4; [14.5; 15.2] , 0.6}
7 {[41.56; 46.65) , 0.6; [46.65; 48.81] , 0.4} {[14.34; 14.81) , 0.5; [14.81; 15.55] , 0.5}
8 {[38.4; 42.93) , 0.7; [42.93; 45.22] , 0.3} {[13.27; 14.0) , 0.6; [14.0; 14.6] , 0.4}
9 {[28.83; 35.55) , 0.5; [35.55; 41.98] , 0.5} {[9.92; 11.98) , 0.4; [11.98; 13.8] , 0.6}

10 {[44.48; 52.53] , 1} {[15.37; 15.78) , 0.3; [15.78; 16.75] , 0.7}

We predicted the quantile function representing the
distribution taken by the histogram-valued variable Y from
the DSD Model, and obtained:

�−1
Ŷ (j)

(t) = −1.953 + 3.5598�−1
X(j)(t)−0.4128�−1

X(j)(1− t)

The value of the goodness-of-fit measure is, for this case,
� = 0.9631.

In Fig. 12, we may compare the quantile functions of
the observed and predicted distributions of the histogram-
valued variable Y. As it may be observed, the distributions
are very similar, in agreement with the value of the coeffi-
cient of determination, �. The observed and predicted his-
tograms of each observation are presented in Appendix D.

When we predict a histogram value, we have always
associated an error function defined according to Definition
5. For this example, in Fig. 13 we can observe the error
function for observations 1 and 3.

The relation between the histogram-valued variables in
Table 4 may be visualized in the scatter plot for histograms

2 The “skewness” in this context is measured by the difference
between the symbolic mean and the symbolic median. A
distribution is considered to be asymmetric positive (negative)
when this difference is positive (negative).

in Fig. 14. In this graphic, each of the distributions is
represented by a histogram with a different color. These
graphics show that a strong linear relation between the
histogram-valued variables hematocrit and hemoglobin is
observed.

From Proposition 2, we may conclude that for the set
of patients to which the data refer, the symbolic mean
of hematocrit increases a − b = 3.1470 for each unit of
increase of the symbolic mean of hemoglobin. As this value
is positive, we may consider that the relation between the
histogram-valued variables is direct.

For this example, we also predicted the hematocrit
distributions using the linear regression models proposed by
Billard and Diday [3] (the Center Model (CM) and Billard
and Diday Model (BD)) and Irpino and Verde [15,19] (the
Verde and Irpino Model (VI)). The hematocrit distributions
obtained by these methods are presented in Appendix D.
Even though a solution to build the predicted histograms
is not proposed by Billard and Diday [3], the predicted
distributions may be built if we consider the process of
Irpino and Verde [9]. In fact, we may rewrite all histograms
(of all variables involved) with the same number n of
subintervals and the weight associated to each subinterval
i = 1, . . . , n in all units, is the same for each i. After this
process, the histograms may be predicted by multiplying the
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Fig. 12 Observed and predicted quantile functions for each observation in Table 4.

subintervals that compose the histogram associated to each
unit j by the respective parameter. The predicted histogram
Y (j) is composed by n subintervals and each subinterval i

with i = {1, . . . , n} is obtained by adding the subintervals
i that compose the distributions of the explicative variables
to the unit j.

To compare the performance of the methods, the
measures RMSEM,RMSEL,RMSEU , and � (see Section
4.1.2) were used (see Table 5).

4.2.2. Distributions of Crimes in USA

In this example, we consider a real data table (microdata)
[30] where we have records related with communities in the
USA. The original data combine socioeconomic data from
the ’90 Census and crime data from 1995. For this study, we
selected the response variable violent crimes (total number
of violent crimes per 100 000 habitants) and four explicative
variables: X1 (percentage of people aged 25 years and
above with less than 9th grade education); X2 (percentage
of people aged 16 years and above who are employed);
X3 (percentage of population who are divorced); and X4

(percentage of immigrants who immigrated within the last
10 years). To build the symbolic data table, we aggregated
the information (contemporary aggregation) for each state.
The units (higher units) of this study are the states of
USA and their observations for each selected variable are
the distributions of the records of the communities of
the respective state. To build the initial data table, we
considered only the states for which the number of records
for the variables selected was higher than 30. Using this
criterion, only 20 states were included (AL, CA, CT, FL,
GA, IN, MA, MO, NC, NJ, NY, OH, OK, OR, PA, TN, TX,
VA, WA, WI). Similar to the simulation study, we consider
that in all observations, the subintervals of each histogram
have the same weight (equiprobable) with frequency 0.20.

Furthermore, as the response variable violent crimes admits
only positive values and the distributions of these values
are asymmetric, we will consider as response histogram-
valued variable the variable LV C whose observations are
the distributions of the logarithm of the number of violent
crimes in each USA state. Considering these conditions, the
model that allows predicting the distribution of LV C from
the distributions of the explicative variables X1, X2, X3 and
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Fig. 13 Error function for the observations 1 and 3.

Fig. 14 Scatter plot of the data in Table 4.

Table 5. Comparison of the expressions and performance of the symbolic linear regression models for histogram-valued variables in
Table 4.

Models Expressions that allow predicting the distributions RMSEL RMSEU RMSEM �

DSD �−1
Ŷ (j)

(t) = −1.95 + 3.56�−1
X(j)(t) − 0.41�−1

X(j)(1 − t) 0.9621 0.9496 0.8946 0.9631

CM Ŷ (j) = −2.16 + 3.16X(j) 1.0636 1.1501 1.0507 0.8460

BD Ŷ (j) = 2.28 + 2.85X(j) 1.1291 1.3480 1.2292 0.6853

VI �−1
Ŷ (j)

(t) = −2.16 + 3.16X(j) + 3.92�c−1

X(j)(t) 1.0072 0.9633 0.9145 0.9613

X4, for each USA state j is as follows:

�−1
L̂V C(j)

(t) = 3.9321 + 0.0009�−1
X1(j)(t)

− 0.0123�−1
X2(j)(1 − t) + 0.2073�−1

X3(j)(t)

− 0.0353�−1
X3(j)(1 − t) + 0.0187�−1

X4(j)(t)

(17)

with t ∈ [0, 1].

The values of the parameters estimated for this situation
allow concluding that the variables X1, X3, and X4 have a
direct influence in the logarithm of the number of violent
crimes and the percentage of employed people has an
opposite effect. From Proposition 2, we may conclude that,
for the set of states to which the data refer, when the
symbolic mean of the percentage of population divorced
increases 1% and the other variables remain constant,
the symbolic mean of the LV C increases 0.1720. The
percentage of divorced population is the one that influences
the most the predicted histogram-valued variable. This
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Fig. 15 Observed and estimated quantile function of the variable LV C in the state of Arkansas

interpretation can be extrapolated for the values of the
associated parameter of all other explicative variables.

Consider one state that was not used to build the model,
the state of Arkansas (AR). It is possible to predict the
distribution of LV C if the distributions of the explicative
variables for this state are known. The histogram predicted
by the DSD Model (17) for the state Arkansas is

HLV C(AR) = {[4.2250, 5.3158), 0.2; [5.3158, 5.8887), 0.2;
[5.8887, 6.4802), 0.2; [6.4802, 7.0509), 0.2;
[7.0509, 7.7913], 0.2}

Fig. 15 illustrates the estimated and observed quantile
function for this state and the values of the measures
RMSEM,RMSEL,RMSEU (see Section 4.1.2 ). The val-
ues of the goodness-of-fit measures are in accordance with
the closeness between the observed and estimated quantile
function that we may see in the figure.

Analyzing the predicted distribution, we may conclude
that in the state of Arkansas, the estimated distribution tends
to a uniform behavior with the values of LV C ranging
between 4.23 and 7.79.

For this example, we also predicted the logarithm of the
number of violent crimes using the linear regression models
proposed by Billard and Diday [3] and Irpino and Verde
[15,19]. In the case of the CM, the predicted histograms
were built using the process described in Section 4.2.1.
However, we obtain results that are not histograms because
in some subintervals, the lower bound is greater than the
upper bound. For each case, to build the subintervals, the
lowest obtained value should be used for the lower bound

Table 6. Comparison of the expressions of the symbolic linear
regression models that predict the number of violent crimes in
USA states.

Models Expressions that allow predicting the distributions

DSD �−1
L̂V C(j)

(t) = 3.93 + 0.001�−1
X1(j)(t)

− 0.01�−1
X2(j)(1 − t) + 0.21�−1

X3(j)(t)

− 0.04�−1
X3(j)(1 − t) + 0.02�−1

X4(j)(t)

CM ̂LV C(j) = 6.01 + 0.09X1(j) − 0.05X2(j)
+ 0.11X3(j) + 0.01X4(j)

BD L̂V C(j) = 4.40 + 0.03X1(j) − 0.02X2(j)
+ 0.11X3(j) + 0.02X4(j)

VI �−1
L̂V C(j)

(t) = 6.01 + 0.09X1(j) − 0.05X2(j)

+ 0.11X3(j) + 0.01X4(j) + 0.01�c−1

X2(j)(t)

+ 0.32�c−1

X3(j)(t) + 0.01�c−1

X4(j)(t)

and the highest for the upper bound. In this way, we obtain
histograms where the subintervals are neither ordered nor
disjoint, but may be rewritten according to the process of
Williamson [22].

In Tables 6 and 7, it is possible to compare results
obtained by different methods and their respective perfor-
mance. The LV C distributions predicted by these methods
are presented in Appendix D.

As we observed in the previous example, the lin-
ear regression models proposed by Billard and Diday
present a weak performance. The behavior of the DSD
Model and of the Verde and Irpino Model are simi-
lar in both examples. A similar performance was also
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Table 7. Performance of the symbolic linear regression models
that predict the number of violent crimes in USA states.

Models RMSEL RMSEU RMSEM �

DSD 0.5571 0.4233 0.4477 0.8680
CM 0.9182 0.5617 0.6717 0.4585
BD 0.7927 0.4665 0.5801 0.4415
VI 0.5214 0.3444 0.3933 0.8982

verified for the example studied in the work of Irpino and
Verde [19].

The advantage of studying a linear relation between
data with variability is the possibility of predicting the
distribution of the values of the response variable instead
of only one real value as in a classical study. The classical
alternative to study the logarithm of the number of violent
crimes in each USA state would be to reduce the records
of all communities of each state, for example to the mean
value, and apply classical linear regression. In this case, the
variability of the records would be lost and the predicted
results would be less informative. Considering the mean
of the records associated to each community, the classical
model is the following:

̂LV C(j) = 6.5817 + 0.0705X1(j) − 0.0503X2(j)

+ 0.0933X3(j) + 0.0177X4(j) (18)

For this model, the value of R2 = 0.75.

Considering again the state of Arkansas, with the

previous model (18), the estimative for ̂LV C(AR) is
6.4511. With this approach, the information about the
behavior of the predicted variable is obviously poorer.

5. CONCLUSION AND PERSPECTIVES

The main advantages of the proposed DSD Model are
that: 1) it allows predicting the distributions taken by one
histogram-valued variable from the distributions taken by
explicative histogram-valued variables; 2) the parameters
are easily estimated by solving a quadratic optimization
problem or a constrained least squares problem, subject
to nonnegative constraints on the unknowns; 3) from
the model, the prediction of the distributions for the
observations of the response histogram-valued variable is
immediate; and 4) it is possible to deduce a goodness-
of-fit measure from the model. This measure is deduced
similarly as to classical statistics and appears to have a good
behavior. When we compare the predicted and observed
quantile functions for each unit, we have good estimates
when the value of the goodness-of-fit measure is close to
one, whereas the predicted and observed quantile functions
are more discrepant when the value of the goodness-of-fit
measure is lower.

An extension of the DSD Model, where instead of a
real number a quantile function is used as the independent
parameter , is under development. With this new approach,
we expect to obtain a more flexible model. As interval-
valued variables are a particular case of histogram-valued
variables, it is possible to particularize the two approaches
of the model to interval-valued variables.

Finally, and as a future research perspective, other
models and methods in Symbolic Data Analysis based on
linear relations between variables may now be developed
using this approach.
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APPENDIX A: FIRST ORDER PARTIAL
DERIVATIVES OF THE FUNCTION SEE

SEE =
m∑

j=1

n∑
i=1

pi

⎡⎣(cY(j)i
−

p∑
k=1

(
akcXk(j)i

− βkcXk(j)n−i+1

)
− v

)2
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3

(
rY (j)i

−
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(
akrXk(j)i

+ bkrXk(j)n−i+1

))2
⎤⎦

In these partial derivatives the subintervals of the histograms are defined
from the center and half-range of the intervals.
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APPENDIX B: PROOF OF PROPOSITION 3.5.

Defining the quantile functions �−1
Y (j)(t) and �−1

Ŷ (j)
(t) from the centers

and half-ranges of the subintervals, according expression (4), in Section
2.1 we have,
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Solving the definite integral, after some algebra and considering
wi − wi−1 = pi , we obtain,
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From the expression (13) in Section 3.3,
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Comparing this expression with the partial derivatives of the function
SEE (see Appendix A) we may write
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Ŷ
B

D
(4

)
{ [ 3

7.
51

;4
0.

72
)
,
0.

3;
[ 4

0.
72

;4
1.

97
)
,
0.

1;
[ 4

1.
97

;4
2.

86
)
,
0.

1;
[ 4

2.
86

;4
3.

45
)
,
0.

1;
[ 4

3.
45

;4
4.

03
)
,
0.

1;
[ 4

4.
03

;4
5.

79
] ,

0.
3}

H
Ŷ
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Example of Section 4.2.2
In Figs. D1 and D2, we compare the observed and predicted

distributions of the logarithm of the number of violent crimes using the
DSD linear regression model and the models proposed by Billard and
Diday [3] and Irpino and Verde [15,19].
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Fig. D1 Observed and predicted quantile functions of LV C considering the models: DSD, CM, BD, VI (part1).
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Fig. D2 Observed and predicted quantile functions of LV C considering the models: DSD, CM, BD, VI (part 2).
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