
ProcessPAIR: A Tool for Automated Performance Analysis
and Improvement Recommendation in Software

Development

Mushtaq Raza
INESC TEC/University of Porto - Faculty of Engineering

Rua Dr. Roberto Frias, s/n
4200-465 Porto PORTUGAL

+351 225081400

mushtaq.raza@fe.up.pt

João Pascoal Faria
INESC TEC/University of Porto - Faculty of Engineering

Rua Dr. Roberto Frias, s/n
4200-465 Porto PORTUGAL

+351 225081400

jpf@fe.up.pt

ABSTRACT

High-maturity software development processes can generate

significant amounts of data that can be periodically analyzed to

identify performance problems, determine their root causes and

devise improvement actions. However, conducting that analysis

manually is challenging because of the potentially large amount of

data to analyze and the effort and expertise required. In this paper,

we present ProcessPAIR, a novel tool designed to help developers

analyze their performance data with less effort, by automatically

identifying and ranking performance problems and potential root

causes, so that subsequent manual analysis for the identification of

deeper causes and improvement actions can be properly focused.

The analysis is based on performance models defined manually by

process experts and calibrated automatically from the performance

data of many developers. We also show how ProcessPAIR was

successfully applied for the Personal Software Process (PSP). A

video about ProcessPAIR is available in

https://youtu.be/dEk3fhhkduo.

CCS Concepts

• Software and its engineering~Software development process

management

Keywords

software process; performance analysis; improvement

recommendation

1. INTRODUCTION
Software development processes, making intensive use of metrics

and quantitative methods, such as the Team Software Process

(TSP) [1] and Personal Software Process (PSP) [2], can generate

large amounts of data that can be periodically analyzed by

developers to identify their performance problems, determine root

causes and devise improvement actions [3]. Although tools exist to

automate data collection and produce performance charts and

reports for manual analysis of TSP/PSP data [4][5][6], practically

no tool support exists to automate developer performance analysis.

The manual analysis of performance data for determining root

causes of performance problems and devising improvement actions

is challenging because of the amount of data to analyze [3] and the

effort and expertise required.

ProcessPAIR, is a novel tool designed to help developers analyze

their performance data with less effort, by automatically identifying

and ranking performance problems and potential root causes, so

that subsequent manual analysis for the identification of deeper

causes and improvement actions can be properly focused. The

analysis is based on a performance model (PM) defined by experts

in the process under consideration, and calibrated automatically

from the data of many process users. In previous work [7], we

developed the overall technique, PMs specific for the PSP, and a

prototype tool. In this tool demonstration paper, we present a

significantly improved version of ProcessPAIR, available freely in

http://blogs.fe.up.pt/processpair/, together with several tutorials

and videos. A video tutorial is available in

http://blogs.fe.up.pt/processpair/tutorials/videos/.

The paper is organized as follows. Section 2 presents the overall

approach, tool architecture, and underlying metamodels. Sections 3

and 4 explain the model calibration and performance analysis

processes and user interfaces. Section 5 presents some

experimental results. Some related work is presented in Section 6.

Section 7 concludes the paper.

2. APPROACH, ARCHITECTURE, AND

METAMODELS

2.1 Overall Approach and Architecture
Our approach involves three main steps (see Figure 1):

1. Define: Process experts define the structure of a PM suited for

the development process under consideration. In our approach, a

PM comprises a set of performance indicators (PIs) organized

hierarchically by cause-effect relationships [7].

2. Calibrate: The PM is automatically calibrated by

ProcessPAIR based on the performance data of many process users.

The statistical distribution of each PI and statistical relations

between PIs are computed from the data set [7].

3. Analyze: Once a PM is defined and calibrated, the

performance data of individual developers can be automatically

analyzed with ProcessPAIR, to identify and rank performance

problems and root causes.

ProcessPAIR currently comprises a core framework (representing

75% of the code base), independent of the process under analysis,

and an extension for the PSP (representing 25% of the code base),

SAMPLE: Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

as depicted in Figure 2. Other extensions may be easily

implemented in the future for other processes. The core framework

comprises three layers: a graphical user interface layer at the top

(gui package); an intermediate logic layer responsible for the

representation and manipulation of PMs (performancemodel)

and subject data under analysis (subjectdata); a layer with

common utilities at the bottom (statistics). The PSP

extension (pspextension) contains the definition of PMs for

the PSP and subject data loaders from the most relevant project

management tools used by PSP Developers – the SEI’s PSP Student

Workbook and Process Dashboard (http://www.processdash.com/).

Figure 1. UML activity diagram depicting the main activities

and artifacts in the ProcessPAIR approach.

Figure 2. UML package diagram depicting the logical

architecture of the ProcessPAIR tool.

2.2 Performance Model Metamodel
A PM for a development process under consideration is defined by

means of the following information (see Figure 3):

- Set of relevant base measures generated by the development

process, with name, description, scale, and units;

- Set of relevant PIs, with the same attributes as the base

measures, plus the formula for its computation from base

measures and the optimal value (usually implied by the

definition of the PI);

- Subset of top-level PIs;

- Dependencies between PIs, representing cause-effect

relationships, determined by a formula or statistical evidence;

- Sensitivity coefficients [8] 𝜎𝑋𝑖→𝑌 =
𝜕𝑌

𝜕X𝑖
(

X𝑖

𝑌
) , i=1, …, n, for

each PI Y that depends on PIs X1, …, Xn, according to a formula

Y=f(X1, …, Xn).

For example, our PM for the PSP [7] comprises three top-level

indicators: Time Estimation Accuracy, Process Quality Index and

Productivity. The Time Estimation Accuracy is computed from

base measures as a ratio ActualTime/EstimatedTime, being 1 the

optimal value. Since in the PSP’s PROBE estimation method [2], a

time estimate is obtained based on a size estimate of the deliverable

(in added or modified size units) and a productivity estimate (in size

per time units), we consider that the Time Estimation Accuracy

(TimeEA) is affected by (or depends on) the Size Estimation

Accuracy (SizeEA) and the Productivity Estimation Accuracy

(ProdEA). From their definitions [7], we conclude that these PIs are

related by the formula 𝑇𝑖𝑚𝑒𝐸𝐴 = 𝑆𝑖𝑧𝑒𝐸𝐴/𝑃𝑟𝑜𝑑𝐸𝐴, so the

sensitivity coefficients are 𝜎𝑆𝑖𝑧𝑒𝐸𝐴→𝑇𝑖𝑚𝑒𝐸𝐴 = 1 and

𝜎𝑃𝑟𝑜𝑑𝐸𝐴→𝑇𝑖𝑚𝑒𝐸𝐴 = −1. Sensitivity coefficients are used for

ranking the causes of performance problems.

Figure 3. UML class diagram depicting the main concepts in

the performancemodel package.

The PM is automatically calibrated by ProcessPAIR from training

data sets, generating the following data (also visible in Figure 3):

- approximate statistical distribution of each PI, represented by

a cumulative distribution function;

 act Process v iew

P
ro

c
e

s
s

P
A

IR
P

ro
c

e
s

s
 e

x
p

e
rt

1. Define performance

model structure

2. Calibrate performance

model

3. Analyze dev eloper

performance data

Performance model structure

Performance indicators (PIs)

Relationships between PIs

Calibrated performance model

Statistical distribution of PIs

Statistical relationships between PIs

Performance analysis and

recommendation report

Performance problems

Ranked root causes

Performance data

of a single

dev eloper

Performance data

from many

dev elopers

 pkg Logical View

extensions

core

gui

statistics

performancemodel subjectdata

pspextension

 class performancemodel

PerformanceIndicator

formula: NumericFunction<Project>

optimalValue: double

recommendedRanges: Map<Interval, Semaphor>

approximateStatisticalDistribution: StatisticalDistribution

PerformanceModel

name: String

Dependency

sensitivityCoefficient: NumericFunction<Project>

Semaphor

Green

Yellow

Red

Measure

name: String

description: String

scale: Interval

units: String

BaseMeasure

*

11

topLevelIndicators*

childIndicator * parentIndicator *

/allIndicators *

1

http://www.processdash.com/

- recommended performance ranges for each PI;

- sensitivity coefficients between PIs not related by an exact

formula.

The approximate cumulative distribution function of each PI is

computed by linear interpolation between a few percentiles

computed from the training data.

Performance ranges are needed for classifying values of each PI of

a subject under analysis into three categories (semaphores): green -

no performance problem; yellow - a possible performance problem;

red - a clear performance problem. Such ranges are determined

automatically from the statistical distribution of the training data so

that there is an even distribution of data points by the colors.

Sensitivity coefficients between PIs not related by an exact formula

are computed by first determining a linear regression equation from

the training data and subsequently computing the corresponding

sensitivity coefficient.

2.3 Subject Data Metamodel
The base performance data of a subject under analysis (developer,

team or company) that need to be uploaded by ProcessPAIR,

consists in the values of the base measures defined in the PM for a

sequence of projects (see Subject, Project, and

ProjectBaseMeasure in Figure 4).

Based on that information, ProcessPAIR computes the following

data for each PI and project (see ProjectIndicator and

IndicatorInstance in Figure 4):

- value – computed from the base measures and PI’s formula;

- percentile – computed from the previous value and the

statistical distribution of the PI in the PM, normalized so that

100% corresponds to the optimal value and 0% corresponds to

extreme values to the left or to the right of the optimal value;

- semaphore – computed from the previous percentile as

follows: green for the 66.7%-100% range, yellow for the

33.3%-66.7% range, and red for the 0%-33.3% range;

- percentile coefficient – computed from the percentile and the

statistical distribution of the PI, as explained in [7]; it is used

as an indicator of the ‘cost’ (or difficulty) of improving the

value of the PI, based on the idea that the closer a value is to

the optimal, the more difficult it is to improve.

Summary information for each PI is computed at the subject level

(see SubjectIndicator and IndicatorInstance in

Figure 4):

- minimum, maximum, average – simple statistics calculated

from the values computed at the project level;

- percentile – weighted average of the percentiles computed at

the project level, using an exponentially decaying weight for

older projects with a configurable time constant;

- semaphore and percentile coefficient – computed from the

previous percentile.

For each dependency defined in the PM and project, it is computed

the following information (see DependencyInstance in

Figure 4):

- sensitivity coefficient – computed from the project data and

the sensitivity formula defined in the PM;

- ranking coefficient - computed as the product of the previous

sensitivity coefficient and the percentile coefficient of the

child PI; it is used to rank child PIs based on a cost-benefit

estimate of improvement actions (with the cost factor given by

the percentile coefficient and the benefit factor given by the

sensitivity coefficient) [7];

- ranking label – a discretization of the ranking coefficient, by

orders of magnitude, for user presentation purposes.

Similar information is also computed at the subject level (by

summarization) and between leaf and top-level indicators (by using

the laws of partial differentiation of composite functions for

computing leaf-to-top sensitivity coefficients).

Figure 4. UML class diagram depicting the main concepts in

the subjectdata package.

3. MODEL CALIBRATION
The user interface for performing the automatic calibration is

shown in Figure 5. The user has to select the PM to be calibrated

(from the list of PMs previously defined as tool extensions), the file

with the data set to be used for calibration (in a format supported

by the data loaders defined together with the PM) and the XML file

for saving the calibration results.

Figure 5. Model calibration window.

In this example, to calibrate the PSP PM, we used a large PSP data

set from the Software Engineering Institute (SEI) referring to

31,140 projects concluded by 3,114 engineers during 295 classes

of the classic PSP for Engineers I/II training courses running

between 1994 and 2005. In this training course, targeting

professional developers, each engineer develops 10 small projects.

ProcessPAIR performs several data quality checks during the

calibration process (according to rules defined together with the

 class subjectdata

Project

seqNumber: int

name: String

/ProjectIndicator

/value: double

Subject

ProjectBaseMeasure

value: double

/SubjectIndicator

/minimum: double

/maximum: double

/average: double

«enumeration»

RankingLabel

Very Large

Large

Medium

Small

Very Small

/DependencyInstance

/sensitivityCoefficient: double

/rankingCoefficient: double

/rankingLabel: RankingLabel

/IndicatorInstance

/percentile: double

/sempahor: Semaphor

/percentileCoefficient: double

PerformanceModel

BaseMeasure Dependency

PerformanceIndicator

*

1

*1

*

1

*

1

*

parentOrTopInd

1

1 *

*

0..1

*

1

*

childOrLeafInd

1

1

*

PM) and presents a summary of problems encountered at the end

of the calibration process, as illustrated in Figure 6.

Figure 6. Summary of calibration results.

Instead of using the full dataset for calibration, it is also possible to

filter the data points to be used for calibration. One possibility is

to restrict the data points (projects) to the ones most similar to a

given user profile, as illustrated in Figure 7. The parameters that

can be provided depend on the PM and data loader. Similarity is

computed with the Gower similarity coefficient [9]. In this example

(see Figure 8), only the 50 most similar data points were selected

(minimum number required by the tool for statistical significance),

with a similarity coefficient greater than 0.889.

Figure 7. Dialog for providing a user profile.

Figure 8. Calibration results with filtering.

4. PERFORMANCE ANALYSIS
Having defined and calibrated the PM, the performance data of

individual developers can be automatically analyzed by

ProcessPAIR, to identify and rank performance problems and

potential causes. As exemplified in Figure 9, the user has to select

the PM (from the list of PMs previously defined as tool extensions),

the calibration file (generated as previously explained), the type of

input file with performance data to analyze (according to the data

loaders defined together with the PM), and the file with the actual

data. By pressing the “Analyze file” button, the analysis is

performed and the results are presented in multiple views.

Figure 9. Entry window.

4.1 Table View
The Table view (Figure 10) shows the values of the PIs defined in

the model for the projects described in the input file, as well as

summarized performance information. Each cell is colored green,

yellow or red, in case its value suggests no performance problem, a

potential performance problem, or a clear performance problem,

respectively (see calculations in Section 2). This way, the Table

View helps in quickly identifying the performance problems. The

exact ranges considered can be consulted in the “Indicator

View”. The “Percentile (all)” column shows an overall percentile

for each PI, computed from the per project values (with higher

importance for the last projects), and colored according to the

percentile.

The PIs are organized hierarchically, starting from the top-level

indicators (Time Estimation Accuracy, Process Quality Index, and

Productivity in this case), and descending to lower level indicators

(child indicators) that affect the higher level ones according to a

formula or statistical evidence [6]. This way, by drilling down from

the top-level indicators to the lower level ones, focusing on the red

(or yellow) colored cells, one can easily identify potential root

causes of performance problems.

Figure 10. Table view example (partially expanded).

4.2 Report View
The goal of the Report view (Figure 11) is to indicate in a simple

way, overall (“Summary”) or project by project, the most relevant

top-level performance problems (colored red or yellow in the

Table View) and potential root causes (leaf causes in the Cause-

Effect View) properly prioritized (according to the ranking

coefficients explained in Section 2). Intermediate causes can be

consulting by unchecking the “Show only leaf causes” checkbox.

Comboboxes allow selecting information for specific projects

and/or PIs. The links skip to the Indicator View, for detailed

information about each PI.

Figure 11. Report view example.

4.3 Indicator View
The goal of the Indicator view (Figure 12) is to show the

behavior of each PI along the projects under analysis and provide

associated model definition and calibration information

(description, units, optimal value, recommended performance

ranges and statistical distribution).

In the bottom left, it is presented the statistical distribution of the PI

in the data set used for calibrating the model. The colors correspond

to the performance ranges. The actual values in the file under

analysis are also shown, marked with the “+” symbol, for

benchmarking purposes.

The user may also select multiple PIs for comparative visualization

in a single chart.

Figure 12. Indicator view example.

4.4 Cause-effect View
The Cause-Effect view (Figure 13) is an advanced view that

provides essentially the same information as the report view with

additional details but in a diagrammatic way.

The goal of the Cause-Effect View it to help identifying and

prioritizing, project by project or overall, the root causes of

performance problems, so that subsequent improvement actions

can be properly directed. The child indicators are sorted according

to the value of the ranking coefficient.

As explained in Section 2, the ranking coefficient represents a cost-

benefit estimate that relates the cost of improving the value of the

child PI with the benefit on the value of the parent PI.

Intermediate causes may be consulted by unselecting the “Show

only leaf causes” checkbox. By default, the ranking coefficients are

shown by means of T-shirt sizes (ranking labels). The

numerical values of the ranking coefficients can be consulted by

selecting “Numerical Ranking Labels” in a combo box.

Figure 13. Cause-effect view example.

5. EXPERIMENTAL RESULTS
Two experiments have been conducted to evaluate ProcessPAIR.

5.1 Postmortem Experiment
The goal of the first experiment was to assess the accuracy of

automatic performance problem and root cause identification with

ProcessPAIR.

To that end, we used as input the PSP performance data and final

reports of 10 master students from Tec de Monterrey in Mexico that

attended the “Software Quality and Testing” course in 2015. In that

course, each student developed 6 projects using the PSP and

collected base measures with Process Dashboard

(http://www.processdash.com/). In the end of the sequence of

projects, the students analyzed their personal performance in those

projects and documented their findings and improvement proposals

in a “PSP Final Report”.

We compared the performance problems and root causes identified

and documented by the students in their final reports, with the

performance problems and root causes identified automatically by

ProcessPAIR from the students’ performance data.

Regarding problem identification, from the 187 cases in which

students explicitly characterized their performance (regarding a

specific PI and a specific project or all projects), we compared the

student assessment with the tool-based assessment, and got the

following results:

- In 96% of the cases, the results of manual and automatic

analysis matched (i.e., both the student and the tool indicated

good performance or bad performance);

- In 1% of the cases, the tool indicated a clear or potential

problem and the manual analysis indicated good performance

(false positives);

- In 3% of the cases, the tool indicated no performance problem

but the developer explicitly indicated a performance problem

(false negatives).

For each performance problem identified both in manual and

automatic analysis and with root causes explicitly pointed out by

the students (52 cases), we compared the causes identified in

manual and automatic analysis, and got the following results:

- In 19% of the cases, the tool and the developer pointed out the

same causes (tool benefit: eliminate manual effort);

- In 54% of the cases, the tool accurately pointed out

intermediate causes, and the developer pointed out deeper

causes (tool benefit: reduce manual effort);

- In 27% of the cases, the causes identified were inconsistent,

because of faults in manual analysis (tool benefit: prevent user

errors).

These results show that ProcessPAIR has indeed the potential to

accurately identify performance problems and causes, and

consequently, reduce the user effort and errors in performance

analysis.

5.2 Controlled Experiment
The second experiment is an ongoing controlled experiment,

involving 61 master students from Tec de Monterrey in Mexico that

are attending the “Software Quality and Testing” course edition in

2016. The main goal is to quantify the benefits of using

ProcessPAIR in performance analysis, in terms of time spent and

quality of the results.

In their final assignment, students were asked to analyze their

personal performance along the PSP projects and document their

findings and improvement proposals in a “PSP Final Report”. To

http://www.processdash.com/

perform the assignment, students were randomly split into two

groups: a control group and an experimental group. The students in

the control group did the final assignment in a traditional way, by

inspecting their performance data stored in the Process Dashboard

tool through the standard PSP forms, charts, and reports. The 30

students in the experimental group used ProcessPAIR for analyzing

their performance data.

Upon completion of the assignment, students in both groups

responded a questionnaire containing some free text questions plus

14 questions in a five-point scale related with installability,

usability, efficiency, usefulness and level of support provided by

the tool they used for conducting the performance analysis. The

average scores given by the students were as follows:

- Average score given by the 30 students that used

ProcessPAIR: 4.78 (in a scale of 1 to 5);

- Average score given by the 31 students that used Process

Dashboard: 3.81 (in a scale of 1 to 5).

This shows a very favorable evaluation of ProcessPAIR. The time

spent by the students in performing their final assignment and the

grades given by their instructor (still being collected) will allow us

to assess the benefits of ProcessPAIR as compared to the traditional

approach in terms of effort needed and quality of results produced.

6. RELATED WORK
Our approach draws inspiration from existing work on process

performance models (PPM) [8][10], benchmark-based approaches

for software product evaluation [11], and defect causal analysis

(DCA) techniques [12].

In the context of the CMMI process improvement framework, a

PPM is a description of the relationship among attributes of a

process or sub-process and its outcomes, developed from historical

performance data, and calibrated using collected process and

product measures [13]. The main difference is that our PM conveys

additional elements needed to identify performance problems (in

the outcomes) and rank potential root causes (factors):

recommended ranges for each PI; approximate statistical

distribution of each PI; sensitivity coefficients (derived from exact

or regression equations).

In our approach, in order to enable the automated identification of

performance problems, after deciding on the relevant PIs, one has

to decide on the relevant ranges. Our approach for defining such

ranges draws inspiration from the benchmark-based approach

developed by researchers of the Software Improvement Group

[11][14] to rate the maintainability of software products, with

adaptations for process evaluation instead of product evaluation.

The DCA approach [12] is essentially complementary to our

approach. The main advantage of our approach is that it has the

potential to identify relevant performance problems and causes in a

fully automatic way so that subsequent manual activities can be

conducted in a more focused and efficient way, to further determine

root causes and devise improvement actions.

7. CONCLUSIONS AND FUTURE WORK
We presented a novel tool (ProcessPAIR) for automating the

identification and prioritization of performance problems and root

causes in software development, and showed its successful

application for the PSP.

As future work, we intend to add to ProcessPAIR the capability of

recommending detailed improvement actions for the identified

causes of performance problems. We also intend to apply

ProcessPAIR for other software development processes.

8. ACKNOWLEDGMENTS
The authors would like to acknowledge the SEI and Tec de

Monterrey for facilitating the access to the PSP data for performing

this research and AWKUM for their partial initial grant. This work

is partially financed by the ERDF – European Regional

Development Fund through the Operational Programme for

Competitiveness and Internationalisation - COMPETE 2020

Programme within project «POCI-01-0145-FEDER-006961», and

by National Funds through the FCT – Fundação para a Ciência e a

Tecnologia as part of project UID/EEA/50014/2013 and research

grant SFRH/BD/85174/2012.

9. REFERENCES
[1] Davis, N., and Mullaney, J. 2003. The Team Software

Process (TSP) in Practice: A Summary of Recent Results.

CMU/SEI-2003-TR-014.

[2] Humphrey, W. 2005. PSPsm: A Self-Improvement Process

for Software Engineers. Addison-Wesley Professional.

[3] Burton, D. and Humphrey, W. 2006. Mining PSP Data. In

TSP Symposium 2006 Proceedings.

[4] The Software Process Dashboard Initiative home page.

http://www.processdash.com/.

[5] Philip, J., Kou, H., Agustin, J., Christopher, C., Moore, C.,

Miglani, J., Zhen, S., Doane, W. 2003. Beyond the Personal

Software Process: Metrics Collection and Analysis for the

Differently Disciplined. In ICSE 2003. Portland, Oregon.

[6] Shin, H., Choi, H., and Baik, J. 2007. Jasmine: A PSP

Supporting Tool. In Proc. of the Int. Conf. on Software

Process (ICSP 2007), LNCS 4470, Springer-Verlag, 73-83.

[7] Raza, M., Faria, J. 2015. A Model for Analyzing

Performance Problems and Root Causes in the Personal

Software Process. Journal of Software: Evolution and

Process, John Wiley & Sons

[8] Saltelli, A., Chan, K., Scott, E. M. 2008. Sensitivity

Analysis, Wiley.

[9] Gower, J. C. 1971. A General Coefficient of Similarity and

Some of Its Properties. Biometrics. Vol 27, No. 4 (Dec.,

1971), pp. 857-87.

[10] Tamura, S. 2009. Integrating CMMI and TSP/PSP: Using

TSP Data to Create Process Performance Models. CMU/SEI-

2009-TN-033.

[11] Alves, T., Ypma , C., Visser, J. 2010. Deriving Metric

Thresholds from Benchmark Data. In 2010 IEEE

International Conference on Software Maintenance (ICSM),

1-10.

[12] Card, D.N. 2005. Defect Analysis: Basic Techniques for

Management and Learning. Advances in Computers, vol. 64,

259-295, Elsevier.

[13] Chrissis, M. B., Konrad, M., Shrum, S., 2003. CMMI:

Guidelines for Process Integration and Product Improvement,

2nd Edition. Addison-Wesley.

[14] Alves, T. 2012. Benchmark-based Software Product Quality

Evaluation. PhD Thesis. U. Minho

