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Abstract

For a spatial stochastic epidemic model we investigate in the pair approximation scheme the differential equations for the moments. The basic
reinfection model of susceptible–infected–recovered–reinfected or SIRI type is analysed, its phase transition lines calculated analytically in this
pair approximation.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Models for reinfection processes in epidemiology have recently attracted interest, especially for a first description of multi-strain
epidemics [1,2], where after an initial infection immunity against one strain only gives partial immunity against a genetically close
mutant strain. In the physics literature models for partial immunization have also found wide interest [3,4], under somehow different
aspects though. The processes investigated by the two scientific communities are closely related [5]. Transitions between no-growth,
compact growth and annular growth have been observed in both cases [3,5].

Here we analyse the basic model for reinfection or partial immunization SIRI (susceptible, infected, recovered and again in-
fected) beyond the mean field approximation by considering also pair dynamics and obtain a better qualitative understanding of
the process. Namely, in mean field the limiting cases of SIS (susceptible, infected, susceptible), the case of equal primary and
secondary infectivity, and SIR (susceptible, infected, recovered), the case of vanishing reinfection, have the same critical value for
the transition from no-growth to a nontrivial stationary state. In the case of the SIS model that is the transition from no-growth to
compact growth of an area of infection when initially starting with one infected in a susceptible environment. In the case of the SIR
model it is the transition from no-growth to annular growth, a ring of infecteds, leaving recovered behind. In pair approximation
these critical points have different values, as previously calculated for the SIS system [6] and the SIR system [7]. In addition we
calculated the phase transition lines between no-growth and compact growth, between compact growth and annular growth and
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between no-growth and annular growth analytically, and compare the especially tricky phase transition line between no-growth and
annular growth with simulations.

The transition between annular and compact growth has been found for mean field like models under the name of reinfection
threshold [1], and has been under debate [2,8]. The geometric interpretation of this threshold in the context of partial immunization
[3] clears this debate [5] and the analytic results given here further underline the close relation between the models considered in
physics and in epidemiology.

In Section 2 we describe the basic model for reinfection, the SIRI model, in its stochastic description. Deriving dynamic equations
for the expectation values of total number of susceptibles, infected and recovered we obtain expressions of pairs, then writing
dynamic equations for these we obtain triplets, etc. In Section 3 we find a closed system of dynamic equations for means and pairs
via the pair approximation. These equations are analyzed in Section 4 further to obtain the stationary states and critical lines.

2. The SIRI epidemic model

We consider the following transitions between host classes for N individuals being either susceptible S, infected I by a disease
or recovered R,

S + I
β−→ I + I,

I
γ−→ R,

R + I
β̃−→ I + I,

R
α−→ S,

resulting in the master equation [9] for variables Si , Ii and Ri ∈ {0,1}, i = 1,2, . . . ,N , for N individuals eventually on a regular
grid, with constraint Si + Ii + Ri = 1.

The first infection S + I
β−→ I + I occurs with infection rate β , whereas after recovery with rate γ the respective host becomes

resistant up to a possible reinfection R + I
β̃−→ I + I with reinfection rate β̃ . Hence the recovered are only partially immunized.

For further analysis of possible stationary states we include a transition from recovered to susceptibles α, which might be simply
due to demographic effects (or very slow waning immunity for some diseases). We will later consider the limit of vanishing or very
small α. In case of demography that would be in the order of inverse 70 years, whereas for the basic epidemic processes like first
infection β we would expect inverse a few weeks.

The master equation is of the following form

d

dt
p(S1, I1,R1, S2, I2,R2, . . . ,RN, t)

=
N∑

i=1

β

(
N∑

j=1

Jij Ij

)
(1 − Si)p(S1, I1,R1, . . . ,1 − Si,1 − Ii,Ri, . . . ,RN, t)

+
N∑

i=1

γ (1 − Ii)p(S1, I1,R1, . . . , Si,1 − Ii,1 − Ri, . . . ,RN, t)

+
N∑

i=1

β̃

(
N∑

j=1

Jij Ij

)
(1 − Ri)p(S1, I1,R1, . . . , Si,1 − Ii,1 − Ri, . . . ,RN, t)

+
N∑

i=1

α(1 − Ri)p(S1, I1,R1, . . . ,1 − Si, Ii,1 − Ri, . . . ,RN, t)

(1)−
N∑

i=1

[
β

(
N∑

j=1

Jij Ij

)
Si + γ Ii + β̃

(
N∑

j=1

Jij Ij

)
Ri + αRi

]
p(. . . , Si, Ii ,Ri, . . .).

Ji,j ∈ {0,1} are the elements of the N × N adjacency matrix J , symmetric and with zero diagonal elements. The formulation of
the master equation is given in analogy to the one used, e.g., in Glauber [10].

The expectation value, e.g., for the total number of infected hosts at a given time is

(2)〈I 〉(t) :=
1∑

S1=0

1∑
I1=0

1∑
R1=0

1∑
S2=0

· · ·
1∑

RN=0

(
N∑

i=1

Ii

)
p(S1, I1,R1, S2, . . . ,RN, t).
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To calculate the dynamics of the moments, mean total number of infected etc., we take the definition of the moments, Eq. (2), and
take its time derivative

(3)
d

dt
〈I 〉(t) =

1∑
S1=0

1∑
I1=0

1∑
R1=0

1∑
S2=0

· · ·
1∑

RN=0

(
N∑

i=1

Ii

)
d

dt
p(I1,R1, I2, . . . ,RN, t).

Now we have to insert the master equation (1) into Eq. (3) for the expression d
dt

p(S1, I1,R1, S2, . . . ,RN, t) and after some calcu-
lation we find the ordinary differential equations (ODEs) in terms of all variables S, I and R.

For the mean total number of susceptible, infected and recovered hosts we obtain the following equations

d

dt
〈S〉 = α〈R〉 − β〈SI 〉1,

d

dt
〈I 〉 = β〈SI 〉1 − γ 〈I 〉 + β̃〈RI 〉1,

(4)
d

dt
〈R〉 = γ 〈I 〉 − α〈R〉 − β̃〈RI 〉1

which include the pairs, like

(5)〈SI 〉1(t) :=
1∑

S1=0

1∑
I1=0

1∑
R1=0

· · ·
1∑

RN=0

(
N∑

i=1

N∑
j=1

(
J 1)

ij
SiIj

)
p(S1, I1,R1, . . . ,RN, t).

In the equation for the dynamics of 〈SI 〉1 also an expression 〈SI 〉2 could show up. These are longer range correlations, formally
given by a power of two of the adjacency matrix J 2 and then its elements (J 2)ij := ∑N

k=1 Jik · Jkj .
We have to calculate equations for the dynamics of the pairs as well. In the equations for the dynamics of pairs the triples, e.g.,

(6)〈ISI 〉1,1(t) :=
1∑

S1=0

1∑
I1=0

1∑
R1=0

· · ·
1∑

RN=0

(
N∑

i=1

N∑
j=1

N∑
k=1

Jij JjkIiSj Ik

)
p(S1, I1,R1, . . . ,RN, t)

or equivalently

(7)〈ISI 〉1,1(t) =
N∑

i=1

N∑
j=1

N∑
k=1

Jij Jjk〈IiSj Ik〉

appear, where 〈IiSj Ik〉 is the local expectation value. After some calculation in analogy to the calculation for the first moments we
obtain

d

dt
〈SS〉1 = 2α〈RS〉1 − 2β〈SSI 〉1,1,

d

dt
〈II 〉1 = 2β〈ISI 〉1,1 − 2γ 〈II 〉1 + 2β̃〈IRI 〉1,1,

d

dt
〈RR〉1 = 2γ 〈IR〉1 − 2β̃〈RRI 〉1,1 − 2α〈RR〉1,

d

dt
〈SI 〉1 = β〈SSI 〉1,1 + β̃〈SRI 〉1,1 − γ 〈SI 〉1 − β〈ISI 〉1,1 + α〈RI 〉1,

d

dt
〈RS〉1 = γ 〈SI 〉1 − β〈RSI 〉1,1 − β̃〈SRI 〉1,1 + α〈RR〉1 − α〈RS〉1,

(8)
d

dt
〈RI 〉1 = γ 〈II 〉1 + β〈RSI 〉1,1 + β̃〈RRI 〉1,1 − γ 〈IR〉1 − β̃〈IRI 〉1,1 − α〈RI 〉1.

Now, either we have to continue to calculate equations for the triples, which will involve even higher clusters, or we can try to
approximate higher moments by lower ones. The simplest scheme is the mean field approximation, leading to a closed system of
ODEs for the total number of infecteds, recovered and susceptibles only. For the present system this mean field approximation
was analysed previously [5]. Here we go one step beyond by approximating the triples into pairs. There is a vast literature on pair
approximation, with one of the first applications to dynamics by Dickman in 1986 [11] and one of the first to population biology by
Matsuda et al. in 1992 [12]. For a good recent summary see, e.g., [13].
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3. Pair approximation

To obtain approximate expressions for the triples appearing in the equation system (8), we consider only the true triples ˜〈ISI 〉,
where the last site of, e.g., infected is not identical with the first, hence with the definition

(9)˜〈ISI 〉1,1(t) :=
N∑

i=1

N∑
j=1

N∑
k=1, k �=i

Jij Jjk〈IiSj Ik〉

we have as relation with the definition in Eq. (7)

(10)〈ISI 〉 = ˜〈ISI 〉 + 〈SI 〉
when the local variable at site k, here Ik , is of the same type as the one in i, here Ii and simply

(11)〈SIR〉 = ˜〈SIR〉
when the local variable at site k, now Rk , is different from the one in i, now Si . For triples, which are by nature just pairs, i.e.,
with i = k, we have locally 〈IiSj Ik〉 = 〈I 2

i Sj 〉 = 〈IiSj 〉, since Ii ∈ {0,1}, so they should be counted as pairs, i.e., given by Eq. (10),
whereas in Eq. (11) for i = k we have 〈SiIjRk〉 = 〈SiIjRi〉 = 0, since Si,Ri ∈ {0,1} and Si + Ii + Ri = 1. The difference between
˜〈ISI 〉 and 〈ISI 〉 does first appear in the triples, since in the pairs the diagonal of the adjacency matrix is zero, avoiding the eventual
double counting of singlets.

Then we consider all the possible combinations, where sums over the adjacency matrix only come to play
∑N

j=1 Jij =: Qi .
These indicate the number of neighbours to a lattice site i, and from now on we will only consider regular lattices (later the square
lattice with periodic boundary conditions). Hence we can assume that all Qi are equal, i.e., Q = Qi for all i.

The pair approximation yields

(12)˜〈SIR〉 ≈ Q − 1

Q
· 〈SI 〉 · 〈IR〉

〈I 〉
obtained from an analog for the Bayesian formula for conditional probabilities applied to the local expectation values

(13)〈SiIjRk〉 ≈ 〈SiIj 〉 · 〈IjRk〉
〈Ij 〉

and a spatial homogeneity argument, namely

(14)〈IjRk〉 ≈ 〈IiRj 〉 ≈ 〈IR〉
NQ

and

(15)〈Ii〉 ≈ 〈I 〉
N

.

With expressions like the one in Eq. (12) we obtain a closed equation system for the dynamics (8). To simplify this equation
system further we now consider additional balance equations.

3.1. Balance equations for means and pairs

From Si + Ii + Ri = 1 it follows immediately that for the means

(16)〈S〉 + 〈I 〉 + 〈R〉 = N

holds, and from this that d
dt

N = 0 = d
dt

〈S〉 + d
dt

〈I 〉 + d
dt

〈R〉 also holds. A check of the results of the dynamics (4) is to insert the
three equations and verify the sum to be equal to zero. In this case it can be confirmed by eye immediately.

For the pair dynamics in all variables S, I and R, however, the check of the balance is not so obvious. The balance equation is
now, again for regular lattices,

(17)〈SS〉 + 〈II 〉 + 〈RR〉 + 2〈SI 〉 + 2〈SR〉 + 2〈IR〉 = N · Q
which can be obtained by explicitly expressing all terms including variable S in terms of the independent variables I and R, hence

(18)〈SR〉 + 〈IR〉 + 〈RR〉 = Q〈R〉,
etc. The pair balance dynamics now follows from considering d

dt
(N ·Q) from Eq. (18) which is exactly fulfilled by the ODE system

for the pair dynamics as given above. From these balance equations we can reduce the ODE system for total expectation values and
for pair expectation values to five independent variables 〈I 〉, 〈R〉, 〈SI 〉, 〈RI 〉 and 〈SR〉.
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3.2. Pair approximation equations in reduced variables

In independent variables we obtain the following closed ODE system using pair approximations

d

dt
〈I 〉 = β〈SI 〉 − γ 〈I 〉 + β̃〈RI 〉,

d

dt
〈R〉 = γ 〈I 〉 − α〈R〉 − β̃〈RI 〉,

d

dt
〈SI 〉 = α〈RI 〉 − (γ + β)〈SI 〉 + β(Q − 1)〈SI 〉 − β

Q − 1

Q

(2〈SI 〉 + 〈SR〉) · 〈SI 〉
N − 〈I 〉 − 〈R〉 + β̃

Q − 1

Q

〈SR〉〈RI 〉
〈R〉 ,

d

dt
〈RI 〉 = γ

(
Q〈I 〉 − 〈SI 〉) − (α + 2γ + β̃)〈RI 〉 + β

Q − 1

Q

〈SR〉〈SI 〉
N − 〈I 〉 − 〈R〉 + β̃

Q − 1

Q

(Q〈R〉 − 〈SR〉 − 2〈RI 〉) · 〈RI 〉
〈R〉 ,

(19)
d

dt
〈SR〉 = γ 〈SI 〉 + α

(
Q〈R〉 − 2〈SR〉 − 〈RI 〉) − β

Q − 1

Q

〈SR〉〈SI 〉
N − 〈I 〉 − 〈R〉 − β̃

Q − 1

Q

〈RI 〉〈SR〉
〈R〉 ,

which is the basis of the analysis following now.

4. The critical points and phase transition lines of the SIRI model

We investigate the stationary states of the closed equations system (19) in order to obtain the phase transition lines which have
been described in stochastic simulations of simpler time discrete models [3] and also considered for the present basic reinfection
model in mean field approximation [5].

4.1. Stationary states of the SIRI model

The full SIRI system cannot be solved analytically at stationarity. After some simplifications, expressing 〈RI 〉∗, 〈SI 〉∗ and 〈SR〉∗
as functions of the variables 〈I 〉∗ and 〈R〉∗ only, we are left with two implicit equations for the remaining variables 〈I 〉∗ and 〈R〉∗.
Explicitly, we obtain the following equations:

From the ODE system (19), second equation, at stationarity, giving 0 = d
dt

〈R〉∗ = γ 〈I 〉∗ − α〈R〉∗ − β̃〈RI 〉∗ we obtain directly
〈RI 〉∗ as function of 〈I 〉∗ and 〈R〉∗, hence

(20)〈RI 〉∗ = γ

β̃
〈I 〉∗ − α

β̃
〈R〉∗.

From 0 = d
dt

〈I 〉∗ = β〈SI 〉∗ − γ 〈I 〉∗ + β̃〈RI 〉∗ we obtain using Eq. (20)

(21)〈SI 〉∗ = α

β
〈R〉∗.

Further from 0 = d
dt

〈SR〉∗ we obtain

(22)〈SR〉∗ = αQ〈R〉∗ − α〈RI 〉∗ + γ 〈SI 〉∗
2α + Q−1

Q

(
β

〈SI 〉∗
N−〈I 〉∗−〈R〉∗ + β̃

〈RI 〉∗
〈R〉∗

) ,

which is explicitly also expressible as function of 〈I 〉∗ and 〈R〉∗ only.
But from

(23)0 = d

dt
〈RI 〉∗ =: f (〈I 〉∗, 〈R〉∗)

and

(24)0 = d

dt
〈SI 〉∗ =: g(〈I 〉∗, 〈R〉∗)

we only get implicit equations for the variables 〈I 〉∗ and 〈R〉∗. We will first consider some special cases where the above system
can be solved analytically very easily, namely the limiting case for reinfection rate equal to first infection rate (the SIS limit of the
SIRI model), then vanishing reinfection rate (the SIR limit of the SIRI model), and finally the limit of vanishing transition from
recovered to susceptible α. In these cases we can give the stationary values 〈I 〉∗, etc., as well as the critical parameters respectively
critical line. For the general case, Eqs. (20)–(24), we finally can calculate in the limit near criticality via a scaling argument the
critical line. No general solution for the total number of infected, etc., at stationarity can be given.



384 N. Stollenwerk et al. / Physics Letters A 371 (2007) 379–388
4.2. The β̃ = β limit or SIS limit

The ODE system Eq. (19) can be treated analytically to obtain the stationary solution 〈I 〉∗ as a function of the parameters in
various situations, e.g., for β̃ = β . This is the limit in which the SIRI system (19) behaves at stationarity like an SIS system.

When β̃ = β , there is no difference any more between recovered and the susceptibles, hence we can add the recovered individuals
to the susceptibles and treat the SIRI model as an SIS model with infection rate β and recovery rate γ . Now, we only need to consider
the dynamics of 〈I 〉 and 〈SI 〉 which is given, under pair approximation, by the following equations

d

dt
〈I 〉 = β〈SI 〉 − γ 〈I 〉,

d

dt
〈SI 〉 = γQ〈I 〉 + (

β(Q − 2) − 2γ
)〈SI 〉 − 2β

Q − 1

Q

〈SI 〉2

N − 〈I 〉 .
From this we can calculate the stationary value of infected, giving either the trivial disease free state 〈I 〉∗1 = 0 or the endemic state

(25)〈I 〉∗2 = N
Q(Q − 1)β − Qγ

Q(Q − 1)β − γ

and then for the SIS limit the critical value for β is given by

(26)βc = γ

Q − 1

as was calculated previously in Ref. [6] for the SIS epidemics. The resulting critical point is shown in Fig. 1 and lies along the line
where β̃ = β in Fig. 2, the SIS limiting case.

4.3. The α = 0 limit

Considering the stationary state equations (20) to (24) in Section 4.1 in the special case of α = 0 we obtain

(27)〈RI 〉∗ = γ

β̃
〈I 〉∗

and

(28)〈SI 〉∗ = 0, 〈SR〉∗ = 0,

so that also 〈S〉∗ = 0. Hence 〈R〉∗ = N − 〈I 〉∗.
Eq. (24) in the limit α = 0 becomes identical 0 = 0, and the remaining equation (23) becomes

(29)γQ〈I 〉∗ − (2γ + β̃)〈RI 〉∗ + β̃
Q − 1

Q

(Q〈R〉∗ − 2〈RI 〉∗) · 〈RI 〉∗
〈R〉∗ = 0

and inserting the above equations, Eqs. (27) and (28), gives

(30)γQ〈I 〉∗ − (2γ + β̃)
γ

β̃
〈I 〉∗ + γ

Q − 1

Q

(QN − Q〈I 〉∗ − 2 γ

β̃
〈I 〉∗) · 〈I 〉∗

N − 〈I 〉∗ = 0

an equation which is independent of β . It has as one stationary state 〈I 〉∗1 = 0. The remaining equation

(31)γQ − (2γ + β̃)
γ

β̃
+ γ

Q − 1

Q

(QN − Q〈I 〉∗ − 2 γ

β̃
〈I 〉∗)

N − 〈I 〉∗ = 0

gives the solution for 〈I 〉∗2. It is explicitly after some calculation

(32)〈I 〉∗2 = N
Q(Q − 1)β̃ − Qγ

Q(Q − 1)β̃ − γ

which is the solution of the SIS pair approximation dynamics at stationarity equation (25).
From Eq. (31) directly (or from Eq. (32)) the critical value β̃c for the parameter β̃ can be calculated considering the condition

that 〈I 〉∗2 → 〈I 〉∗1 = 0, hence setting 〈I 〉∗2 = 0. The result is

(33)β̃c = γ

Q − 1

independently of the parameter β . This solution (33) gives a straight horizontal line in the parameter phase diagram for β and β̃ , as
shown in Fig. 2.
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Fig. 1. For β̃ = β (the SIS limit) we compare the mean field solution (iso-
lated dashed line) with the pair approximation (dotted line) for 〈I 〉∗(β) and
the convergence of the time dependent solution of the SIRI pair dynamics
(straight lines for various stopping times tmax approximating the dotted line).
Further the critical value for the contact process is given as well, as obtained
from extended spatial stochastic simulation reported in the literature [14] as
βc = 0.4122 (= λc/4 in [14]). The pair approximation solution approaches
the simulation value better than the mean field solution. (Parameters Q = 4
appropriate for spatial two dimensional systems, γ = 1 throughout the fig-
ures, here also N = 100.)

Fig. 2. The phase transition point for β̃ = β as given in pair approximation
in Eq. (26) in the SIS limiting case is the dot on the diagonal β̃ = β . The
phase transition line for α = 0 obtained in pair approximation, according to
Eq. (33) is the horizontal line through that point. The critical point for β̃ = 0
(the SIR-limit) obtained in pair approximation Eq. (36) and the phase tran-
sition line between no-growth and ring-growth determined from the analytic
solution for the α = 0 case which is explicitly given in Eq. (44) connecting
the two points are shown.

4.4. The β̃ = 0 limit or SIR limit

In analogy to Section 4.3 we can calculate from the equation system (19) the stationary state solution for the limit β̃ = 0. The
stationary state 〈I 〉∗1 = 0 can be found and the other stationary state follows from an equation of the form

(34)a2
(〈I 〉∗2

)2 + a1〈I 〉∗2 + a0 = 0

with the coefficients

a2 = βQ2(Q − 1)
(
α3 + 2α2γ + 2αγ 2 + γ 3) − Qγ

(
α3 + γ 3) − (α + γ )

(
2αγQ + βQ(α + γ ) + αγ

)
γ,

a1 = −αβQ2N
[
2α2(Q − 1) + 3γ (Qα − γ ) + 2γ (Qγ − 2α)

]
+ αγQN

[
Q

(
α2 + αγ + γ 2) + β(α + γ ) + (

α2 + 3αγ + γ 2)],
a0 = α2Q2N2(αβ(Q − 1) + βγ (Q − 2) − γ (α + γ )

)
.

Setting 〈I 〉∗2 = 0 (which is the same as a0 = 0), like shown in Section 4.3, gives the explicit solution for the critical value βc as

(35)βc = γ + α

Q − 2 + (Q − 1) α
γ

and in the limit of α = 0,

(36)βc = γ

Q − 2

in agreement with previously reported results [7]. The solution of the critical value βc = γ
Q−2 is shown in the phase diagram for β

and β̃ in Fig. 2.

4.5. Numerical integration of the pair approximation dynamic system

We numerically integrate the ODE system (19) for fixed γ := 1 and small α := 0.05, varying the infection rates β and β̃ . From
the simulations analogously to Figs. 3 to 5 we can determine the critical line for a small but finite α value between the no-growth
and the annular growth region in pair approximation.
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(a) (b)

Fig. 3. (a) Integrating the system (19) numerically up to time tmax gives I (tmax) with changing β̃ for β = γ /(Q − 1) the SIS critical point value. (b) The logarithm
of I (t), ln(I (t)) versus ln(t) for various β̃ values. A clear distinction is visible for the sub-critical versus (going towards minus infinity) the supercritical values
(going to finite values at tmax).

(a) (b)

Fig. 4. (a) I (tmax) for β = γ /(Q− 2) the SIR critical point value in the limit α = 0. However the numerics are done for small but finite α = 0.05. (b) ln(I (t)) versus
ln(t) for various β̃ values. For all β̃ values the curves finally go to finite values, none towards minus infinity, hence all β̃ values are supercritical.

We can determine for small values of α from the numeric solutions of the SIRI pair dynamics (19) directly the critical values.
The result is shown in Fig. 6 as a line between the SIS limiting critical point and the SIR limiting critical point. The numerical
integration for Fig. 6 have α = 0.05 as small α value. The SIRI pair dynamics, Eq. (19), is varied between β = γ /(Q − 1) and
β = γ /(Q − 2), then the critical value for β̃ is determined for each value of β .

4.6. Analytic expression

We investigate Eqs. (20)–(24) further, using the information that when 〈I 〉∗ goes to zero, so does 〈R〉∗, but the quotient stays
finite

(37)lim〈I 〉∗→0

〈R〉∗
〈I 〉∗ = γ · B

2α · E
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(a) (b)

Fig. 5. (a) I (tmax) for β = γ /(Q − 1.5), i.e., between the values for the SIS critical point value β = γ /(Q − 1) and the SIR critical point value β = γ /(Q − 2).
(b) ln(I (t)) versus ln(t) for various β̃ values. Sub-critical and super-critical values for β̃ can be distinguished finally, but initially some of the supercritical curves
go to very low numbers, which for smaller tmax could be mistaken as sub-critical.

Fig. 6. Comparison for the phase transition line between no-growth and ring-growth determined numerically for small but finite α = 0.05, straight line, and the
analytic solution for the α = 0 case, dotted line. The analytic curve for finite α = 0.05 agrees completely with the simulations.

(with B and E given below). Only later performing the limit of α → 0, we obtain the following solution for the curve β(β̃) for
general γ and also non-vanishing α as

(38)β(β̃) = C(β̃)

D(β̃)

with the expressions

(39)A :=
√

(Q − 1)2β̃2 + 2Q(Q − 1)(α − γ )β̃ + Q2(α + γ )2

and

(40)B := α + Qγ − (Q − 1)(α + β̃) + A

and numerator and denominator of Eq. (38), first the numerator

(41)C = Qγ β̃ · B2
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respectively with

(42)E := α + β̃ + Qγ

the denominator

(43)D = (
Qγ − (Q − 1)α

) · B2 + 2
(
Q(Q − 1)β̃ + 2(Q − 1)α − Qγ

) · E · B − 4(Q − 1)α · E2.

This complets the expression for the critical curve β(β̃) for the general α and γ case. For the limit of α → 0 we obtain again a
rather simple expression

(44)β(β̃) = γ 2Q − γ β̃(Q − 1)

γQ(Q − 2) + β̃(Q − 1)

shown graphically in Fig. 2. We also tested the general α case and the general γ case against the numerical solutions given above
with success (not shown here, since the curves lie exactly on top of each other inside the graphical resolution).

We finally show the finite α = 0.05 case in comparison with the α = 0 curve, finding only small differences (Fig. 6). So the
numerical procedure shown above gives a rather good impression of the phase diagram in the limiting but numerically difficult
to access case of vanishing α as expected. This is a good sign for future studies of purely stochastic simulations, which close to
criticality are expected to be rather time consuming.

5. Summary

We have calculated the phase diagram for the basic reinfection model SIRI analytically in the pair approximation frame work
and confirmed the results with simulations. The limiting cases of the SIS and SIR epidemics agree with previously reported results
in the literature.
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