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A modified particle swarm optimization algorithm to solve 
the part feeding problem at assembly lines 

 
 
 
Abstract  

The Assembly Line Part Feeding Problem (ALPFP) is a complex 

combinatorial optimization problem concerned with the delivery of the 

required parts to the assembly workstations in the right quantities at the right 

time. Solving the ALPFP includes simultaneously solving two sub-problems, 

namely tour scheduling and tow-train loading. In this paper, we first define the 

problem and formulate it as a multi-objective mixed integer linear 

programming model. Then, we carry out a complexity analysis, proving the 

ALPFP to be NP-complete. A modified Particle Swarm Optimization (MPSO) 

algorithm incorporating mutation as part of the position updating scheme is 

subsequently proposed. The MPSO is capable of finding very good solutions 

with small time requirements. Computational results are reported, 

demonstrating the efficiency and effectiveness of the proposed MPSO. 

Keywords: Part feeding problem, Assembly line, Tour scheduling, Tow-train 

loading, Particle swarm optimization. 

 

1. Introduction 

Manufactures must be able to efficiently deal with the large number of parts required 

to manufacture the large number of different products that their clients demand. 

Since most of these products have a common base that is then customized to satisfy 

customer needs and preferences, the so-called mixed-model assembly line is 

appropriate and frequently used. Relevant examples are provided by the automobile 

industry, where customers can choose from a wide range of individual options (e.g., 

sunroof, leather trim) resulting in a very large number of car models (see, e.g., Pil and 

Holweg, 2004).  



Once parts have been received from suppliers, they must be delivered to the 

assembly line, either directly or after being temporarily stored. In the case of 

temporary storage, parts can either be stored at the central receiving store or in a 

decentralized logistics area, which has become known, at least in the automobile 

industry, as the Just-In-Time (JIT) supermarket (Battini et al., 2010). Decentralized 

storage allows for additional flexibility in part supply and reduces inventory costs 

(Battini et al., 2013). The parts are usually delivered to the assembly line from the 

supermarket through round trips by tow-trains. 

Amongst the many problems related to part delivery in a supermarket 

concept, our focus is on the problem of deciding which parts, if any, should be 

delivered to the workstations on each tow-train tour and in what quantities. Several 

tours are scheduled to take place during a working day, and on each one a tow-train 

may serve several workstations. Each tour starts at the supermarket, where the tow-

train is loaded and then goes around the shop floor, usually along a predefined route, 

delivering bins to their corresponding workstation. In general, this may involve three 

sub-problems, namely: routing, scheduling, and loading (Boysen et al., 2015). In the 

specific problem we address here, the tow-train route and the available tours are 

predefined, and thus we are only addressing the scheduling and loading sub-

problems. Two decisions need to be made: more specifically we need to decide 

which of the available tours are taken and which parts, and in what amounts, are 

loaded on them.  This problem was termed the Assembly Line Part Feeding Problem 

(ALPFP) in the literature (Fathi et al., 2014a). The objectives of ALPFP are defined 

as minimizing the number of tours taken, due to the costs associated with each tour, 

and minimizing part inventories at the workstations, because of limited space. The 

constraints considered are the tow-train capacity, the storage capacity at the 



workstations, and the part demand of each workstation. Here we address an extended 

version of ALPFP that we prove to be NP-complete, for which a Modified Particle 

Swarm Optimization (MPSO) algorithm is proposed. 

The main contributions of this work are threefold. Firstly, an extension to 

ALPFP is presented based on experience acquired at a car manufacturing company. 

Secondly, we prove this new problem to be NP-complete. Finally, a meta-heuristic 

algorithm that is capable of finding good solutions is developed.  

The remainder of the paper is organized as follows. Section 2 provides a 

literature review of related problems and previous solution methods. In Section 3, the 

problem is defined, a mathematical programming formulation is provided, and the 

problem is proven to be NP-complete. Section 4 discusses the solution procedure. In 

Section 5, we report on the computational experiments carried out and provide 

evidence of the method’s efficiency and effectiveness. Finally, some conclusions are 

drawn and future research directions are pointed out in Section 6. 

2. Literature review  

Part logistics comprises a wide variety of decision problems. Since its main purpose 

is to ensure that assembly lines never stop due to an insufficient amount of parts, it 

involves both strategic and operational problems. For a recent and comprehensive 

discussion on part logistics problems and on the proposed methodologies, see the 

work by Boysen et al. (2015).  

The work presented here addresses an ALPFP problem that is an 

extension of the one originally proposed by Fathi et al. (2014a). The original 

problem was solved using a simulated annealing algorithm and the results 

compared favourably to those obtained by CPLEX. A first extension to this 

problem was studied in Fathi et al. (2014b) by also considering a constraint on 



tour delivery time. A memetic ant colony-based heuristic algorithm (MACO) 

was proposed and the solutions obtained were compared with those of CPLEX.  

These are the only works on this specific problem. Nevertheless, similar 

part delivery problems have been addressed before. Rao et al. (2013) addressed a 

part supply scheduling problem in which each tour visits only one workstation. 

Thus, for each tour the decisions to be made are which workstation to visit, the 

part quantity to be loaded and the tour depart time, such that travelling and 

inventory holding costs were minimized. Limits were imposed on tour capacity 

and on inventory at the workstations. The authors developed a backward-

backtracking approach, a hybrid genetic algorithm, and a simulated annealing 

algorithm that take advantage of problem-specific properties. 

Satoglu and Sahin (2013) tried to design an efficient JIT milk-run part 

supply system through simultaneously solving the routing and scheduling 

problems. The authors assumed that all the workstations were supplied via a 

single depot through a cyclic service. The problem was formulated as a non-

linear mixed-integer programming (MIP) model, minimizing the total parts 

handled and the inventory costs, for which a heuristic called Route Construction 

Algorithm (RCA) was proposed.  

Kilic and Durmusoglu (2013) also addressed the routing and scheduling 

problems. The authors tried to minimize work-in-process and transportation costs 

by designing efficient routes and finding the best time period. A linear MIP 

model was presented and it was assumed that part delivery was preformed 

through cyclic deliveries. A two-part heuristic method was proposed: the first 

part constructs routes and assigns workstations to them, while the second part 



attempts to minimize the number of tours by increasing the time between 

consecutive routes. 

Emde et al. (2012) investigated the tow-train loading problem, which 

aimed to find the parts to be loaded on each tour, while avoiding material 

shortages given the limited capacity of the tow-trains. Tours and tour routes were 

given. Their objective was to minimize inventory near the line, which was 

translated into two objective functions, namely: minimize the total inventory at 

the workstations and minimize the maximum amount of inventory at a single 

workstation at any time. 

Emde and Boysen (2012) addressed a part supply problem by sequentially 

solving two sub-problems: a partition problem, where workstations were divided 

among tow-trains, and a tour problem, where they determined the number of 

tours and respective starting times. Optimal solutions were obtained for each of 

these problems by using dynamic programming. The authors also studied the 

influence of cyclic and non-cyclic schedules on inventory. Their findings showed 

that non-cyclic schedules provided additional flexibility and allowed for a 

considerable reduction in inventories.  

Golz et al. (2012) presented a case study in which they determined how to 

deliver parts to workstations in order to be able to meet a given assembly 

sequence. The approach decomposed the problem into two stages. In the first 

stage, transportation orders were derived from the assembly sequence and the bill 

of materials. In the second stage, a part supply problem had to be solved in order 

to decide which parts were to be delivered on each tour, taking into account 

capacity restrictions (tour and inventory at the workstations), part needs, and tour 

scheduling constraints. 



Vaidyanathan et al. (1999) addressed the problem of planning vehicle 

routes to deliver parts in a JIT production plant. The problem was modelled by 

adding a non-linear capacity constraint to the standard vehicle routing problem, 

such that vehicle idle times and inventories at customer locations were 

minimized. The authors proposed a heuristic procedure comprising two phases. 

In the first phase, a nearest neighboured algorithm was used to find capacity-

feasible routes, while the second phase improved these routes by using a 3-opt 

heuristic. 

The literature review shows that the assembly line part feeding problem 

(ALPFP) is a very relevant problem in industry, particularly in the automobile 

industry, and it has been increasingly gaining attention from academics. Most of 

the works reported are based on a specific real world problem. As a result, the 

problems addressed, although similar, include different constraints and/or 

objectives. In order to better compare the current problem and the works 

reviewed here, in Table 1 we provide a summary of the problem features and 

solution methods proposed. 

It should be noted that our work includes a new constraint on the 

maximum weight that can be loaded on the tow-train. This constraint, despite its 

importance due to the difference in tow-train type (e.g. light, heavy), the power 

of the towing vehicle, and safety policies, has not been considered before. We 

address this problem version by proposing a novel particle swarm optimization 

algorithm.  

 

[Insert Table 1 Here] 
 



3. Problem description and model formulation  

In the ALPFP addressed in this work there are N possible tow-train tours out of 

which we must choose the ones that will be used. A tow-train tour starts at the 

single supermarket, where it is loaded with full bins, then goes around the shop 

floor, passing every workstation using the predetermined path to deliver the bins 

to the respective workstations and collect empty bins, and ends back at the 

supermarket. Thus, for each tour taken we must also determine how many bins of 

each part type will be loaded. Tour limits exist regarding the number and weight 

of the loaded bins and replenishment time. As parts are delivered using full bins 

only, bins are used for one part type at a time, and bins are collected only if 

empty; inventory at the workstations may include full and partially empty bins. 

Since the space available at the workstations is scarce, there is a limit on the 

inventory at the workstations. 

Our objectives are to minimize the number of tours taken (primary 

objective) and to minimize the sum of the part inventories at the workstations 

(secondary objective). These objectives, which are dealt with using a 

lexicographic ordering, reflect the need to reduce the costs incurred with the 

tours and to reduce storage at the workstations, which is in line with JIT 

philosophy. Part needs are known and must be met while respecting tour, tow-

train1, and storage space capacities. 

The next sections present the mathematical programming model and the 

proof of the problem complexity.  

                                                
1	Tow-train capacity is transformed into tour capacity by adding the capacity of all available tow-
trains. Thus, here and hereafter, when referring to capacity limits, tour and tow-train will be used 
interchangeably. 



3.1 Model formulation 

The model presented here is a modified and extend version of the model proposed by 

Fathi et al. (2014b). The notation used in the formulation of the ALPFP is 

summarized below, and it is followed by the model and an explanation.  

Sets: 

I: set of parts; 

T: set of tours; 

Indices: 

i: part index, i IÎ ; 

t: tour index, t TÎ ; 

Parameters: 

M : number of parts, =M I ; 

N : number of tours, N T= ; 

TB : tour bin capacity (in bins); 

TW : tour weight capacity (in kilograms); 

TT : tour replenishment time limit (in seconds); 

iSC : storage capacity at the workstation requiring part i (in bins); 

itw : weight of a bin filled with part i (in kilograms) in tour t; 

rt : bin replenishment time, loading and unloading (in seconds per bin); 

itd : demand for part i in tour t (in bin fractions); 

i0IL :  initial inventory for part i at the beginning of the first tour. 

Decision variables: 

itb : bins of part i delivered in tour t; 
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itIL : inventory at the workstation processing part i after delivery of tour t. 
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The objective function, given by equation (1), includes two objectives and thus 

the problem is formulated as a multi-objective mixed linear programming model. 

This type of models may be studied from different viewpoints, discussion on 

them is provided in the comprehensive survey by Coello Coello (1999). In this 

work, we use lexicographic ordering, in which the minimization of the number of 

tours taken is the primary (most important) objective and the minimization of the 

total inventory at the workstation is the secondary objective. To solve it, we first 

obtain solutions satisfying the problem constraints that optimize the primary 



objective. Then, the optimization of the secondary objective is constrained to the 

optimal solution space of the first objective, which is done by adding a 

constraint. (In our problem this constraint limits the available tours to the ones 

chosen while optimizing the first objective.) Thus, the secondary objective will 

be optimized in a meaningful manner if its value varies within this solution 

space. 

Equation (2) represents the balance constraints, which in this case impose that 

part demands be satisfied. Equation (3) ensures not only that bins are only delivered 

through tours taken but also that tour capacity both in terms of number of bins and 

replenishment time are satisfied. Note that j  represents the largest possible number 

of bins that simultaneously ensures tour bin capacity and tour replenishment time 

capacity, and it is given in equation (9). Equations (4) and (5) enforce storage 

capacity at the workstations and tour weight capacity, respectively. Finally, equations 

(6) to (8) state the nonnegative, integer, and binary nature of the decision variables. 
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3.2 Complexity proof  

In this section, we show that even finding a feasible solution for the ALPFP is 

strongly NP-complete via a transformation from the 3-partition problem, which is 

well known to be strongly NP-complete (Garey and Johnson, 1979). 

3.2.1 3-partition problem 

In the 3-partition problem we are given a set Z = { }1,2,...,3q  of 3q positive integers 



am (m=1,…,3q) and a positive integer G such that  G/4<am<G/2 and 
3

1

q
mm
a qG

=
=å . 

The problem is to determine whether a partition of set Z into q subsets 

{ }1 2, ,..., qH H H , each containing exactly 3 elements from Z, exists such that 

, 1,...,
u mm H a G u q

Î
= " =å .

 

3.2.2 Transformation from the 3-partition problem into ALPFP 

Consider 3q bins of different parts, each with a specific weight , 1,...,3m mw a m q= " =

. These bins, which have a total weight of qG, must be delivered to the appropriate 

workstations through the use of N = q tours. Each tour has a weight capacity limit of 

TW= G. Moreover, let the total demand of each part at the final period be 

, 1, 1,...,3m Nd m q= " = , and zero in all other periods. Further, assume that there are no 

limits on the number of bins that can be delivered on each tour j  and no limits on 

the storage capacity at the workstation mSC . The question we ask is whether a 

feasible solution for the ALPFP without part shortages can be found. 

First, a feasible solution for an instance of a 3-partition can be directly 

transformed into a feasible solution to the above stated ALPFP instance. Let each 

subset uH be assigned to a single tour. This means that q tours are used to deliver the 

required parts. Since the sum of the integers in each subset, i.e., tour amounts to G , 

the tour weight limit is satisfied. Therefore a feasible solution to the ALPFP has been 

obtained. 

In addition, we can also prove that each feasible solution to the ALPFP is also 

a YES for the 3-partition problem. This will be shown by proving that every single 

tour must have exactly 3 bins. On the one hand, any tour containing more than 3 bins 

leads to tour overload (excessive weight), since bins weights must satisfy / 4ma G> . 



On the other hand, if a tour aT with fewer than three bins exists, there has to be 

another tour eT with more than three bins, which would inevitably cause weight 

overload on tour eT . Thus, any feasible solution for ALPFP must contain exactly 

three bins per tour. In addition, if there exists a tour that does not fully use tour 

capacity in terms of weight, even if with three bins, overload will occur on another 

tour, because its weight would exceed the limit. 

It directly follows that a feasible solution to the ALPFP exists if and only if 

the answer to the corresponding instance of the 3-partition problem is YES. This 

proves the NP-completeness, in the strong sense, of finding a feasible solution to the 

ALPFP. 

4. The proposed PSO algorithm 

We propose to find solutions to the ALPFP by resorting to Particle Swarm 

Optimization. Given the NP-completeness of the problem, only heuristic approaches 

are capable of finding good solutions in a reasonable amount of time, at least for 

large problem instances. 

Particle swarm optimization (PSO) is a population-based stochastic 

optimization technique developed by Kennedy and Eberhart (1995), who were 

inspired by social group behaviour of bird flocking or fish schooling. The system is 

initialized with a population of random solutions, termed particles, and searches for 

an optimum solution by updating the particles’ position and velocity according to 

their own experience and the experience of their neighbours. PSO usually has no 

evolution operators such as crossover and mutation, but this is one of the features we 

introduce in the MPSO proposed here since we use mutation operators when 

updating the position vector. 



In the following subsections, we provide details about the modified version of 

a discrete PSO proposed here to address the ALPFP. In particular, we discuss how 

particles are represented and how they move around the search-space, i.e. how the 

position and velocity vectors are represented and updated. Then, we show how 

feasible solutions to the ALPFP are obtained and evaluated.  

4.1 Solution approach 

We propose a new approach based on a modified PSO algorithm, MPSO. The MPSO 

main features are: (i) it uses an indirect representation base on permutations of a set 

of priority rules and a 2-phase hierarchical constructive procedure that uses the 

aforementioned rules to obtain feasible solutions to the ALPFP; (ii) particles’ 

positions are updated by using two mutation operators, namely insert and swap. 

Solution quality is evaluated, as usual, through the use of a fitness function, which is 

obtained by combining the two defined objective functions. 

The role of the MPSO is to evolve the encoded parameters which are the 

input to the solution constructor. This is achieved by updating the velocity vector and 

the position vector (the latter by using mutation operators). 

For each particle, the following phases are applied: 

1. Solution construction 1: The first phase finds a feasible solution (the tours to be 

taken and the bins loaded on each tour), optimizing the primary objective, i.e. 

minimizing the number of tours taken. 

2. Solution construction 2: The second phase seeks a better feasible solution 

regarding the secondary objective, i.e. the minimization of the total inventory, within 

the optimal solution space of the primary objective. Thus, the secondary objective 

will only be optimized in a meaningful manner if its value varies within this solution 



space. 

3. Fitness evaluation. This phase computes the combined value of the defined 

objective functions, as given in equation (12). 

4.2 Particle position and velocity 

One of the key issues in designing a successful PSO algorithm is the representation 

step, which aims to find an appropriate mapping between the problem solution and 

the PSO particle. A solution is represented as a vector of natural numbers in the 

range [1, ]m , each representing a priority rule of which there are m . These rules are 

to be used in the solution construction procedure to select a part number to assign to 

each tow train on each tour and are provided in Table 2. The length of the vector 2n  

is the double of the maximum number of bins that may be assigned at any step. The 

value of 𝑛 is found by computing the difference between the total demand in bins 

and the number of bins that must be delivered on the first tour (although it may 

include others), as in equation (10). The first n  values are used in the first part of the 

hierarchical construction procedure, while the last n  values are used in the second 

part. 
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The novelty of our position representation allows the best priority rule permutation to 

be obtained rather than the best particle positions. Since the permutations are used to 

construct solutions, each solution is associated with a single permutation of priority 

rules. Thus, finding a good solution corresponds to finding a good permutation of 



priority rules.2  

Velocity also plays a significant role in guiding the particles in adjusting their 

distance and moving towards better positions (solutions). In our algorithm, the 

velocity of each particle is a vector that has the same length as the position vector, 

with real numbers in the range ,  é ùë û- max maxV V . 

 

[Insert Table 2 Here] 
 

4.3 Particle updating 

Particles adjust their positions and velocities according to a “Psychosocial 

compromise’’ between what an individual is comfortable with and what society 

reckons. The particle position is probabilistically updated by a neighbourhood-based 

mutation, which uses the velocity to find out which heuristic the mutation is applied 

to. In our case, a vector element with higher velocity means that the heuristic 

associated with it (identified by the corresponding element of the position vector) 

may not be placed in a good position within the sequence of heuristics. Thus, the 

permutation should be changed by removing it from the current position.  This can be 

done in two ways: removing the priority rule, which is then replaced by a new one, 

or swapping this priority rule with some other. A specific element has a nonzero 

probability of not being changed; however if it is, then a mutation operator is 

applied. 

The velocity vector is updated as in equation (11), where 1C  and 2C  are 

positive constants representing cognitive and social learning coefficients, 

                                                
2 Hereafter, we will use priority rules or heuristic interchangeably. 
	



respectively, and pkV  and pkX  are the velocity and position of particle p  at iteration 

k . 

 

( ) ( )1 1 1 , 2 2pk k pk best p pk best pkV W V C R P X C R G X+ = ´ + ´ ´ - + ´ ´ - .        (11) 

 

,best pP  represents the best position that the thp  particle has visited since the first 

time step, i.e., the permutation of priority rules corresponding to the best parts 

delivery solution ever found by particle p , and bestG  represents the best position 

that any particle has visited from the beginning of the algorithm. At each iteration, 

these values, when bettered, are updated. 1R and 2R  are two random numbers 

uniformly drawn from [0,1]  and kW  is the inertia weight factor for iteration k , 

which is used to achieve a good balance between exploitation and exploration. 

Larger values lead to exploration of the search space, thus preventing local optimum 

entrapment, while smaller values result in exploitation, thus intensifying the search 

around the current solution, taking advantage of the iterative process that has led us 

there. Usually, W values decrease throughout the search process, and we compute 

them as 1k kW Wq+ = ´ . 

The updated position vector is obtained by considering each selected element 

of the vector for mutation. The swap and insert mutation operators are applied to a 

proportion of elements given by 1d  and 2d , respectively, where 1 2 1+ <d d . 

Therefore, some of the position vector elements remain unchanged. Both mutation 

operators update the position vector elements by using information from the personal 

best position vector ( bestP ) with probabilitya , and from the algorithm best position 



vector ( bestG ) with probability 1-a , where 1<a . A detailed description of how the 

position is updated is provided in Appendix 1. 

4.4 Fitness 

As mentioned above, we have defined two objectives for the ALPFP. Therefore, 

once feasible solutions have been obtained, they must be evaluated, not only to find 

out how good each solution is, but also to direct the search towards better solutions, 

i.e., guide the particles towards good positions. In order to do so, we have defined a 

fitness function that combines the two objective functions through the Minimum 

Deviation Method (Özcan and Toklu, 2009), as given in equation (12). 
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1 1 2 2
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where min
1f and min

2f are the best values found so far for the first and second 

objectives; max
1f and max

2f  are the worst values and 1f  and 2f  are the current 

values. 1b  and 2b  are coefficients associated with the first and second objectives, 

and they are used to establish the relative importance of the defined objectives. In 

this work, based on a real case study conducted at the Volkswagen (VW) assembly 

plant in Navarra (Spain), a very strong priority is given to the first objective 

(minimize the number of tours), thus β1 ˃˃ β2. 

4.5 Hierarchical construction procedure 

We adopt a hierarchical strategy to find feasible solutions. First, we find the 

sequence of bins to be delivered. This is done while aiming to use the smallest 

number of tours, which is the primary objective (tour-oriented procedure). This 



problem, however, might have several possible such solutions. If that is the case, 

then we are interested in finding one that finds the sequence that minimizes the sum 

of the inventory at the workstations, which is the secondary objective (part-oriented 

procedure).  

Tour-oriented procedure: starting from the first tour, parts and part bins are 

selected and assigned to the tour until one of the tour limits (B-number of bins, W-

weight, or A-time) or the capacity at the workstations is reached. Then the procedure 

is repeated by considering the next tour, say tour t, if and only if the parts inventory 

at the workstations is not enough to satisfy the part needs in tour t, for at least one 

part. Otherwise, the current tour will not be performed, i.e. it will be removed, and 

the assigning process is resumed by considering the first tour L ( 1L t³ + ) for which 

at least one part demand cannot be satisfied from the inventory at the workstations. 

This iterative process is continued until all required bins have been assigned to tours. 

Bins are assigned to each tour to satisfy demand (direct assignment) and to fully load 

the tour, if there is additional capacity available (indirect assignment). The choice of 

which bins to assign to each tour for indirect assignment is made by using one of 

several possible heuristic rules. The rule used is determined by the value of the 

current element of the position vector. The main output of this phase is the tours 

taken, whose number is minimized. A detailed description is provided in Figure 1.  

 

[Insert Figure 1 Here] 

 

Part-oriented procedure: a part number is selected at the time. For the part under 

consideration we assign bins, in a JIT fashion, to each of the tours selected in the first 

part. That is, bins are loaded on tours in the smallest possible amount that satisfies 



demand and as close as possible to when it is needed. This way, the total inventory at 

the workstations is minimized. However, such a procedure may possibly result in an 

unfeasible solution since the last tour before each removed tour (or the last tour taken 

if none has been removed) may have one or more of its limits exceeded (otherwise 

demand would not be satisfied). Thus, a backward recursive procedure is used to 

check tour feasibility and to restore it whenever any of the tour limits are exceed. 

This done by shifting bins backward until a feasible solution is obtained. Parts to be 

moved backward are chosen according to the priority rules indicated by the second 

part of the position vector. A detailed description is provided in Figure 2. 

 

 [Insert Figure 2 Here] 

 

A detailed example illustrating the hierarchical constructing procedure is provided in 

Appendix 2. 

5. Computational experiments 

To assess the performance of the proposed MPSO, we randomly generated 12 

problem instances with varying characteristics, which can be downloaded from 

http://www.tecnun.es/documents/10229/42909/PSO_Instances.xlsx/e098d878-8758-

46fb-a920-1e1d6d45331a. Three problem sizes have been considered: small (fewer 

than 50 parts), medium (between 50 and 100 parts), and large (more than 100 parts). 

For each of these instances, four different values for the number of available tours N 

have been considered. In addition, we have also solved a case study from VW-

Navarra. Therefore, in total we solved 49 problem instances. The case study was also 

used to help to define values and value ranges for the parameters of the problems we 



generated. 

The part demands, weights, initial inventory, and storage capacity at the 

workstations are random numbers uniformly distributed as follows: itd in [5, 100]; 

iw  in [5, 20]; 0iIL  in 0, iSCé ùë û ; iSC  in [ il , 10], where il is twice the average tour 

delivery for part i using all available tours (N). Based on the case study, we assume 

that no more than 100 bins can be loaded on each tow-train, since tow-trains cannot 

have more than two wagons and each wagon cannot take more than 50 bins. For the 

same reason, we also assume that replenishment time is 25 seconds per bin and the 

planning horizon is 86400 seconds (one day). 

For comparison purposes, we have also solved the problems using both the 

heuristics proposed (cf. Table 2) and CPLEX 12.4. The MPSO and the heuristics 

were coded in MATLAB 2010b. All solution methodologies were run on a personal 

computer with a 3.3 GHz Intel Core i3 CPU and 8 GB of RAM. Moreover, CPLEX 

was run with a time limit (3600 seconds). 

The parameters required by the MPSO were set after we conducted an 

analysis of their influence on the performance of the methodology. In order to do 

this, we used recommended values from the literature as a starting point and then 

resorted to the Taguchi method (Taguchi et al., 2005) to reduce the number of 

combinations and provide maximum coverage with a minimum number of test cases. 

Two main criteria were used to select the final parameter values: maximizing signal 

to noise ratio and minimizing the mean response (minimization problem). The 

number of iterations (swarms) was set to 50 and the number of particles to half of the 

number of parts considered ([ 2]M + ). The other parameters were set as follows: 

max [ 2]V M += , 0.9=W , 0.98=q , 1 2 0.1d = d = , 0.5a = , 1 2C C 0.5= = . 



Table 3 reports the computational results for the MPSO, the CPLEX and the 

heuristic (best solution obtained from among the 10 priority rules). For each problem 

instance we give a summary of its characteristics (M–number of parts; N–number of 

available tours; TB–tour bin capacity; TW–tour weight capacity; TT–tour time 

capacity) and solution performance ( *T –number of used tours; AIL–average part 

inventory; MAD–smooth coefficient across tours; CPU(s)–CUP time in seconds). 

The AIL and the MAD, which allows for comparison of workload variation 

across tours (Rachamadugu and Talbot, 1991), are computed as in equations (13) and 

(14), respectively. 
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[Insert Table 3 Here]  

 

Table 3 shows both the quality of the solutions obtained (T*, AIL, MAD) and the 

computational efficiency (CPU (s)). The MPSO obtained a better solution with 

regard to the primary objective (number of tours) than the CLPEX for four problem 

instances and for seven problem instances if compared with the best solution 

provided by the 10 heuristics. Even when compared with the best solution found by 

any of the alternative methods (CPLEX and heuristics) the MPSO always found as 

good a solution or better (marked with “*”). In terms of the secondary objective 



(AIL), the solutions can only be compared when the number of tours found is the 

same. The CPLEX was able to find better values for seven problem instances 

(marked in bold). With regard to MAD, the proposed MPSO found the same result as 

CPLEX or better in most of the cases (6 better, 3 worse and 40 the same). 

The heuristic solutions always imply a substantially larger average inventory, 

even when the number of tours is larger. Therefore, one would expect these solutions 

to have a smoother workload. However, this is not the case since for several problem 

instances the solutions provided by the heuristics imply a larger MAD, in addition to 

requiring a larger number of tours and a larger average inventory. 

In terms of computational time, the results show that CPLEX was not able to 

obtain an optimal solution for over 50% of the problem instances considered (25 out 

of 49), due to the computational time limit set (3600 seconds). Regarding the MPSO, 

it was able to find very good solutions (always as good as or better than the 

alternative methods) within a very short computational time (averaging 12.39 

seconds per instance). It is also worth noting that the CPU time for the best reported 

results achieved by the priority heuristics for all instances was less than 1 second. 

Finally, we would like to point out that the solution obtained for the real case 

analysed in this study is currently being used in VW-Navarra. 

6. Conclusions 

In this paper, a real world ALPFP problem was addressed. The problem was an 

extension of Fathi et al. (2014b), which is based on the problem faced by VW-

Navarra. The ALPFP consists of two sub-problems, namely tour scheduling and tow-

train loading problems. We developed a mixed integer linear programming model 

and proved the problem to be NP-complete. Therefore, we proposed a modified PSO 

algorithm that is capable of finding very good solutions with small computational 



requirements. The quality of the solutions found was evaluated by considering the 

number of tours required to supply the workstations as a primary objective and the 

total inventory at the workstations as a secondary objective. The efficiency and 

effectiveness of the MPSO was demonstrated by solving a set of 48 randomly 

generated problem instances and a real one provided by VW-Navarra. All problem 

instances were also solved by CPLEX and by a set of 10 heuristics that are also 

proposed here. When compared with CPLEX, the MPSO, in addition to being much 

faster, found solutions which are equally good or better (for two problem instances) 

for the primary objective. Regarding the secondary objective, CPLEX was able to 

find a better solution for seven problem instances. Moreover, the best solution 

provided by the 10 heuristics considered was never better than those of the MPSO, 

regardless of the objective considered. Despite that, the proposed heuristics have the 

advantage of being extremely fast; the computational time required was always under 

1 second. 

Future work may include additional problem features and thus generalizing 

the problem addressed. Amongst the interesting and realistic features we have 

identified the following: non-identical bins, since a wide diversity of parts is 

common; non-identical tow-trains, due to the possibility of using one or more 

wagons and to the existence of different wagons; and delivering the same part to 

different workstations, although some parts are only used in a specific workstation 

while others, perhaps due to a more supporting role, may be needed in several 

workstations. In the problem addressed we consider that tour routes and possible 

schedules were given. However, we may also consider including such decisions, 

simultaneously addressing the routing problem, since regarding routes the when 

(departure time) and how (specific route) is dependent on where the parts are 



delivered and how many part bins are delivered. Furthermore, routes, which may 

have to be identical or be allowed to vary from tour to tour may be constrained, or 

optimized, in terms of the number of workstations visited and the distance travelled 

on each tour, the number of wagons used, and the tour frequency, amongst other 

constraints. 
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Appendix 1. 

To better understand the position updated process a detailed description is provided 

in Figure A1.1. 

 

[Insert Figure A1.1 Here] 
 

Appendix 2. An Example 

Let us consider an example that includes 5 part references, and a total demand of 24 

bins. Table A1 provides the details on part demands (total and per tour) and weight, 

initial inventory, and capacity at each workstation. The tour capacity limits are 8 bins 

and 19 kilograms. Bin replenishment time is 25 seconds per bin and the total delivery 



time per tour cannot exceed 175 seconds. The maximum number of tours is 5. 

 

[Insert Table A2.1 Here] 
 

As explained before, the solution construction procedure makes use of the particle 

position to select the next part, whenever a choice exists. In this case, since the total 

demand is 24 and in the first tour we must deliver at least 5 bins, the dimension of 

the position vector is 38 ( )2 (24 5)´ - . The first part (elements 1 to 19) is used in the 

tour-oriented procedure, while the second part (elements 20 to 38) is used in the part-

oriented procedure. 

Solution construction Phase 1 (tour scheduling) 

Given the initial inventory IL0=(0,0.5,1,0,0), assign to the first tour the per tour part 

demands deducted of the initial inventory. Let this be represented by b1=(1,1,0,2,1). 

Thus, B1=5 bins are assigned with a total weight of W1=17kg and take A1=125s to be 

delivered. Since none of the tour limits is reached, more bins can be delivered on this 

tour. Due to the weight restriction, the parts that have the possibility of being 

selected are parts 1 and 2. The selection is then made by using the heuristic 

determined by the first element of the position vector. Assume the first part of the 

position vector to be X=(1, 7, 5, 2, 8, 2, 1, 3, 5, 4, 7, 6, 1, 9, 5, 2, 9, 5, 2). Thus, in 

this case we use heuristic 1, which corresponds to selecting the part having the 

maximum demand, i.e., part 2. Thus, the load of tour 1 becomes b1=(1,2,0,2,1). Since 

the weight limit has been reached, the tour is complete. Given the tour demand we 

are left with the inventory at the workstations  IL1=(0,1.3,0.4,0.8,0.2), which means 

that at the workstations we have S1=(0,2,1,1,1) bins. 



A second tour is then started. Given the per tour demand and the current 

inventory IL1=(0,1.3,0.4,0.8,0.2), tour 2 has to deliver at least one bin of parts 1, 3, 4, 

and 5, i.e., b2=(1,0,1,1,1). Thus, this tour comprises B2=4 bins weighing W2=14kg 

and it takes A2=100s to deliver them. Since at the workstations there are 

S2=(1,2,2,2,2) bins, more bins can be delivered on this tour. The parts available for 

selection are 1, 2, and 4, since workstation capacity for parts 3 and 5 has been 

reached. The second element of the position vector is 7, thus part 4 is selected since 

it is the one with the largest weight. The tour load is now b2=(1,0,1,2,1) and the 

corresponding inventory is IL2=(1,1.3,1.4,2.8,1.2). Since the tour total weight has 

been reached, the tour is complete. 

Given the inventory left from the previous tour IL2=(0,0.1,0.8,1.6,0.4), the 

third tour is started with b3=(1,2,0,0,1) and thus S3=(1,3,1,2,2). Since there is still 

available capacity within tour 3 and not all workstations have the inventory at 

capacity, we repeat the procedure explained above until the final tour is reached, in 

this case with b3=(3,2,1,0,1), S3=(3,3,2,2,2), B3=7, W3=17kg., and A3=175s. 

A fourth tour is started. Given the inventory IL3= (2,0.9,1.2,0.4,0.6) all 

undelivered demand can be fit on this tour without violating any limits. The solution 

obtained, see Table A2, is one that optimizes the primary objective, i.e. minimum 

number of tours taken. 

 

[Insert Table A2.2 Here] 
 

Solution construction Phase 2 (tour loading) 

As explained previously, in this phase (which has 2 steps) we look for a solution that 

minimizes the total inventory at the workstations (secondary objective), without 



increasing the number of tours taken found in the previous phase (primary objective). 

In order to do so, we postpone parts delivery to the latest possible tour amongst the 

ones found in the previous phase. Thus, to each tour, except the last, and for each 

part we assign the minimum possible number of bins that ensures demand 

satisfaction. Then, the remaining demand will be assigned to the last tour. 

Given the initial inventory IL0=(0,0.5,1,0,0), in tour 1 we assign 1 bin of parts 

1, 2, and 5 (given the initial inventory their need is 1 or fewer) and 2 bins for part 4 

(since its initial inventory is zero and the demand is larger than 1 and smaller than 2). 

No bin is assigned for part 3 as the initial inventory covers its demand. Thus, 

b1=(1,1,0,2,1), the inventory is IL1=(0,0.3,0.4,0.8,0.2) and the number of bins is 

S1=(0,1,1,1,1). Tour 2 is loaded with b2=(1,1,1,1,1), since this is the smallest amount 

needed to satisfy tour demand. Thus, the inventory and number of bins left are 

IL2=(0,0.1,0.8,0.6,0.4) and S2=(0,1,1,1,1), respectively. Similarly, tour 3 is loaded 

with b3=(1,2,0,1,1), providing IL3=(0,0.9,0.2,0.4,0.6) and S3=(0,1,1,1,1). Finally, we 

assign the remaining bins to the last tour (tour 4), in this case b4=(2,2,1,2,1).  

The last tour is loaded with 8 bins weighing 25kg and it takes 200s to deliver 

them. This solution is clearly not feasible since on tour 4 both the weight and time 

limits are exceeded. The second step of the tour loading procedure is then initiated 

and it pushes back some bins in order to reach feasibility. As noted previously, parts 

are chosen according to the heuristic rule provided by the second part of the 

particles’ position vector, which is assumed to be X’=(7, 8, 1, 1, 3, 7, 6, 10, 1, 2, 5, 4, 

1, 8, 9, 6, 7, 6, 3).  

The possible candidates for transfer from tour 4 to tour 3 are parts 1, 3, and 4 

(parts 2 and 5 cannot be transferred to tour 3, since otherwise workstation capacity 

would be exceeded). To choose which part to transfer, we use the heuristic associated 



with the first element of the second part of the position vector. In this case, its value 

is 7 and thus the part associated with “maximum weight” is chosen (part 4). One bin 

of part 4 is transferred from tour 4 to tour 3. Tour 4 is still unfeasible, since the 

weight of all parts is above 19kg. However, no more bins can be transferred to tour 3 

as the tour capacity in terms of weight has been reached. Therefore, the next bin(s) 

should be transferred to tour 2. Due to workstation capacity and weight restrictions 

only part 1 can be transferred to tour 2. Since all tours are now feasible, the 

procedure terminates. The initial and final solutions found in this phase (first and 

second step) are shown in Table A3. 

 

[Insert Table A2.3 Here] 
 

According to Tables A2 and A3, the average inventory in the first and second phases 

of the algorithm are AIL1=0.66 and AIL2=0.58, respectively. These calculated AIL 

values demonstrate the effectiveness of the second phase of the algorithm in 

improving the solution regarding the average inventory value. 

 


