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A B S T R A C T

This paper deals with integration of energy storage systems into electricity markets. We explain why the
energy storage systems increase flexibility of both power systems and energy markets and why such
flexibility is desirable, particularly when variable renewable energy sources are being used in existing
power systems. As opposed to the existing literature, our model includes a dual technology energy
storage system, acting in two different markets. We introduce a mathematical formulation for this model
applied to two Dutch electricity markets. Adopting optimal control approach with the goal to maximize
the yearly benefit, we show that the dual energy storage system can be profitable already when the same
buying/selling strategies are adopted for the working days and weekends. We show that the profitability
(slightly) increases with different buying/selling strategies for the weekdays and weekends. Finally, we
demonstrate how the yearly benefit varies with size and efficiency of the devices chosen and market
prices.
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1. Introduction

1.1. Motivation, background and literature review

The worldwide energy policy goals include further integration
of the renewable generation technologies into the energy markets.
For example, the European Union is striving to achieve 20% of
energy generated from renewable energy sources (RES) by 2020
and to reach a minimum of 27% of renewable generated energy by
2030, while reducing greenhouse gas emissions by at least 40% by
2030 compared to their level in 1990 [1]. Objectives for 2050 are
even more challenging, with a reduction of the carbon emissions
by 80–95% [2]. All around the world (e.g. in China [3], Japan [4],
New Zealand [5], United States of America [6,7] and Turkey [8]) the
power systems are being prepared for an increasing level of
deployment of renewable generation technologies.
* Corresponding author.
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In conjunction with RES, the integration of other recent
technologies, such as electric vehicles (EV), but also the unbun-
dling and modification in the regulation of the power sector,
influence the paradigm and structure of the power sector. As
electricity has to be dealt with when generated, either by being
consumed or stored, matching the levels of generation and load at
all times is fundamental. The fact that most RES are weather-
dependent will cause the generation output to vary more likely
with the climate conditions than with the market needs. The
increasing integration of electric vehicles also increases the
likelihood of high load variations during the day. The novel
technologies are expected to be applied to an extent which will
certainly amplify the effect of these variations.

The above mentioned technological and regulatory develop-
ments call for adjustment of planning and operation of the power
systems – they need to be more flexible. This flexibility can be
achieved through several technologies and techniques (e.g. energy
storage systems (ESSs’), cross-border interconnection capacity, RES
management, more flexibility from conventional generation,
active demand side management and vehicle-to-grid) and their
combinations [9]. Among these, ESS is seen as one of the long term
most feasible options to achieve that goal [10].
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ESSs can provide up to twice their rating (sum of charge and
discharge capacities) to balance the electricity grid. This is
accomplished by switching between the two modes of charging
and discharging, in either direction (from charging to discharging
or from discharging to charging). Therefore, ESSs help to balance
the electricity system when there is a generation surplus or a
deficit. ESSs can provide various services, most important of which
belong to one of the two major categories:

� power market arbitrage
� ancillary services and balancing

Power market arbitrage is an energy service provided via
charging an energy storage device when the electricity prices are
low and discharging it when the prices are high [11]. The price
variations are caused by daily, weekly or seasonal cycles. Lately,
also variations in renewable power generation, e.g. wind and solar
energy, are affecting the energy markets to a degree depending on
their level of market penetration and the flexibility of the
underlying conventional generation fleet. The most adequate
markets exercising arbitrage are day-ahead and intra-day markets
[12].

In unbundled markets, the system operators are not allowed to
own energy generation assets. Therefore, they need to procure
several ancillary services. Examples of these ancillary services are
balancing support and congestion management.

Other services can be supplied by ESSs [6,7,11], depending on
the characteristics of the specific energy storage technologies.
The problem of energy storage integration into existing
electricity markets was studied in [13–15]. The literature implies
that in most markets, with current price differences, arbitrage
provision is not sufficient to make energy storage profitable.
Hybrid energy storage systems using two energy storage devices
are present in the literature. However, these are associated with
electric vehicle power system or variable renewable energy
generation site integration into the grid [16]. Nonetheless, to the
best of our knowledge, no models including two electricity
markets and two ESS technologies operating in parallel have
been developed so far.

This paper focuses on a combination of energy market arbitrage
and provision of balancing support by the same dual energy
storage system. The model that we introduce in this paper differs
from the models analysed in the literature in two major aspects.
Firstly, we consider a system combining arbitrage and ancillary
services. With this combination we expect higher yearly benefits
than using arbitrage only. Secondly, the energy storage system that
we propose uses two energy storage technologies simultaneously.
The dual technology system was chosen in order to profit from
characteristics of both devices and market price variations. This
paper extends our research presented in [17].

In order to see how profitable the ESS could be, in this paper we
seek optimal strategy in terms of price thresholds for buying and
selling electricity at the Dutch day-ahead and balancing electricity
markets. Mathematically, we formulate the problem as an optimal
control problem with the goal to maximize the yearly benefit.
Firstly, we consider the situation when buying and selling
thresholds may vary between working days and weekends.
Secondly, we consider a situation when the working days and
weekend thresholds are the same. We use pattern search to find
the optimal strategy and motivate the choice of this method.

The remainder of this paper is composed as follows. Section 2
introduces electricity markets in The Netherlands. Section 3
explains the background of the model we put forward. The
problem dealt within this paper is defined mathematically in
Section 4. Implementation of the model and a solution method are
described in Section 5. Section 6 presents and discusses the results
of the case studies. Section 7 finalizes the paper with the
conclusions and directions for future research.

1.2. Notation

Tables 1 and 2 describe the main symbols used in this paper.

2. Electricity markets in The Netherlands

In The Netherlands most of the electricity is still traded in the
bilateral market, where the generation companies sell the
electricity directly to large consumers, traders and supply
companies. The remaining electricity generated is traded in one
of the two spot markets: the day-ahead and intra-day markets. For
balancing purposes also a dedicated market exists, managed by the
Dutch transmission system operator (TSO) TenneT. The day-ahead
and intra-day markets have distinct dimensions. For 2011, about
40 TWh of electricity were traded in the day-ahead market and less
than 1% of that value, 278 GWh, were traded in the intra-day
market [19]. The Netherlands has been identified as “the most
promising [electricity market] for mass storage” [18].

2.1. Day-ahead market

The Dutch day-ahead market is active every day prior to the day
of operation and closes at noon. This market has an hourly time
unit. Unless stated differently, in this paper we use price data from
2014. For this year, we calculated the mean price of energy per
MWh for the Dutch day-ahead market: 41.18 s/MWh. Fig. 1 depicts
the average prices for 2014 and both day-ahead and balancing
market. It is possible to observe the weekend variation in the day-
ahead market in the last two days, where prices tend to be lower
than during the weekdays.

2.2. Balancing market

Balancing markets are volatile, and are used to balance the
unattended mismatch between generation and load. In The
Netherlands, the balancing market, also called imbalance market,
works with a time unit of 15 min. This unit is also called program
time unit (PTU). This market is managed by TenneT, the national
transmission system operator (TSO). The TSO tries to avoid the
mismatch mentioned as much as possible by sharing balancing
responsibilities with balancing responsible parties (BRPs). Each
BRP aggregates a part of the consumers and generators in the
network. The BRPs submit their daily zero-sum consumption and
generation plans ex-ante. Each of these plans include their
expected net energy exchange with the other BRPs to the TSO.
Afterwards, in real time, the TSO verifies if there is any imbalance
in the system.

There are two types of BRPs, those specifically asked to provide
balancing capacity by active contributions (Balancing Service
Providers – BSPs) and those either using the imbalance settlement
system for their own imbalance or being active without being
selected [20]. By bidding on the imbalance market, each BRP gives
the TSO the right (but not the obligation) to buy balancing energy.

Load forecasting is not exact and energy generation forecasting
with increasing integration of variable renewable-based genera-
tion is harder to achieve. Thus, the balancing market is used to
solve these unexpected variations, by trading flexibility. Tradition-
ally, this was achieved by increasing or decreasing generation [21].
Recently, whenever available, also demand side response and
energy storage may be used [21], as long as the technologies used
can cope with the response time required by the system operator.

The Dutch imbalance market has 4 possible modes: down-
wards, upwards, upwards/downwards and no contribution, which



Table 1
Main symbols used in this paper, their meaning, and units (if applicable).

Symbol Description Unit

nX number of elements of any set X
J set of electricity markets and of energy storage devices, J = {1, 2}
j electricity market/storage device, element of set J
D set of days under analysis
d day, element of set D
Tj set of time steps for market j within a daya

tj element of Tj ; time step for market j within a day
Mj set of possible modes for market j, M1 = {0}, M2 = {�1, 0, 1, 2}
mj,d,tj mode of market j on day d and time step tj, element of set Mj

k(d) day type; indication of working days/weekends, k(d) 2 {1, 2}

hj;kðdÞ
B

relative buying threshold for market j
and day type k(d), hj;kðdÞ

B 2 ½0; 1�
hj;kðdÞ
S

relative selling threshold for market j
and day type k(d), hj;kðdÞ

S 2 ½0; 1�
u vector of buying and selling price thresholds (to be optimized)
Z(u) yearly benefit

when set of thresholds u is adopted s
u* vector of optimal buying and selling price thresholds

maximizing Z(u)

qj;d;tj ;m
j;d;tj

S

energy quantity sold in market j,
mode mj,d,tj, day d and time step tj MWh

qj;d;tj ;m
j;d;tj

B
energy quantity bought in market j,
mode mj,d,tj, day d and time step tj MWh

pj;d;tj ;m
j;d;tj

S

selling energy price in market j,
mode mj,d,tj, day d and time step tj s/MWh

pj;d;tj ;m
j;d;tj

B
buying energy price in market j,
day d, time step tj and mode mj,d,tj s/MWh

pj;d
B

minimum buying price for market j on day d s/MWh

pj;d
S

minimum selling price for market j on day d s/MWh

xj;d;tj ;m
j;d;tj state of charge of device j on day d, time step tj and mode mj,d,tj MWh

qj;d;tj ;m
j;d;tj

D
quantity of energy discharged by device j,
on day d, time step tj and mode mj,d,tj MWh

qj;d;tj ;m
j;d;tj

C

quantity of energy charged by device j,
on day d, time step tj and mode mj,d,tj MWh

hj
D discharging efficiency of device j, hj

D 2 ½0; 1�
hj
C charging efficiency of device j, hj

C 2 ½0; 1�
qjC; max

maximum amount of energy that

device j can charge in one time step MWh

qjD; max
maximum amount of energy that

device j can discharge in one time step MWh

xj min
minimum state of charge of device j MWh

xj max
maximum state of charge of device j MWh

a Typical values: 24 time units for an hourly market, 96 time units for market with quarters of hour as a basic time unit.
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we will denote by �1, 1, 2 and 0, respectively (see Table 3). These
modes are calculated by the TSO in the real time. In mode �1 there
is an excess of power in the system. This excess of power is also
called “long” and requires downward regulation. In mode 1 there is
a lack of power in the system. This lack of power is also called
“short” and requires upward regulation. In mode 2 there are
periods of both excess and lack of power in the system within the
time step of 15 min, while in mode 0 there is no imbalance.

Based on data from 2014, we calculated the average price of
energy per MWh for the Dutch balancing market: for upward
regulation (mode 1) it is 38.31 s/MWh and for downward
regulation (mode �1) it is 11.12 s/MWh. The prices in this market
vary during the week as shown in Fig. 1. Fig. 2 shows the frequency
of 2014 prices for both day-ahead and balancing markets (upward
and downward). The two figures suggest that the prices vary more
in the balancing market than in the day-ahead market.

As the yearly benefit of the dual energy storage system depends
on the price fluctuations in both markets, we have calculated the
historical price volatility of the prices, which is a measure of price
fluctuations observed over a given time period (e.g. hourly, daily,
weekly or yearly) [21,22], see also Appendix A for details of its
calculation. Fig. 3 shows the 2014 price volatility towards the
previous time slot of the same day (one hour in the day ahead
market and one PTU in the balancing market) for the three types of
prices of the two markets. Clearly, the balancing market is more
volatile than the day-ahead market

3. Model Background

In this section we introduce the background of our model. The
two energy storage technologies considered are a high energy
(bulk) and a high power technology, trading in the day-ahead and
balancing markets, respectively.

The model is built from the point of view of the owner of the
energy storage system, with the goal of maximizing the yearly
benefit. The day-ahead market is used to perform energy price
arbitrage and the balancing market is used to provide ancillary
service support.

Fig. 4 depicts the relationship between the considered markets
and the two types of energy storage devices. We have built two
partial models, each of them describing the behaviour of one of
these devices (see Section 5 for details).



Fig. 1. Average weekly prices for both day-ahead and balancing markets 2014.

Table 3
Balancing modes in The Netherlands, based on [20].

Balancing mode (m2,d,t2) �1 0 1 2

Condition Long No Short Both long
(Downward) Imbalance (Upward) and short

Table 2
Main symbols used in this paper, their meaning, and units (if applicable),
continuation of Table 1.

Symbol Description Unit

l2;d;t2 ;m2;d;t2 energy received by device 2, transferred from
device 1, on day d, time step t2 and mode m2,d,t2 MWh

g1;d;t1 ;m1;d;t1 energy reserved by device 1 to be transferred
to device 2 on day d, time step t1 and mode m1,d,t1 MWh

f1;d;t1 ;m1;d;t1 energy reserved on device 1 and not used to
supply device 2 on day d, time step t1 and mode m1,d,t1 MWh

sj;d
tj�tj�1

historical price volatility in market j for day d

and time difference tj� tj�1

v
j;d;tj
tj�tj�1

price return,

ratio between prices at time step tj and
at time step tj�1, for market j and day d

vj;d mean price return in market j, day d

cj minimum payback period
for the technology j under analysis years

rj power rating of device j kW
mj cost per unit of power of device j s/kW
ej energy rating of device j kW
jj cost per unit of energy of device j s/kWh
oj yearly fixed operation s

and maintenance costs for device j
kj variable operation and maintenance s/kWh

costs for device j
i internal rate of return %
Y total number of years years
y element of Y years

* Please check note z in Table 1.

2 However, this assumption does not change the main ideas behind the model
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For the sake of simplicity, in our model we assume both perfect
electricity price forecast and a price taker approach, based on two
assumptions:

� The storage size is not big enough to modify market prices [23].
� There is a perfect forecast window, more or less extended
according to the study [23].

These two assumptions are very standard when analysing
potential profitability of energy storage systems in a modelling
framework.
4. Model formulation

Our goal is to find the optimal charge and discharge relative
price boundaries, per device type and day, so that the yearly benefit
obtained is maximized. Mathematically speaking, the problem of
finding the optimal strategy for the energy storage system
operation, composed of the finite set J of storage devices, can be
formulated as an optimal control problem. For the sake of
simplicity, we assume that each device has a unique type and
that this type uniquely identifies the type of market it is used for.2

This paper considers J = {1, 2}, where j = 1 identifies both Dutch day-
ahead electricity market and bulk energy storage device, while j = 2
identifies both Dutch balancing electricity market and high power
energy storage device. For clarification on the meaning of the main
variables used in our model, please see Tables 1 and 2.

Mathematical formulation of the optimal control problem dealt
with in this paper reads as follows:

u� ¼ arg max
u2U

ZðuÞ; ð1Þ

where the yearly benefit Z(u) for the vector of relative price

thresholds u ¼ ðh1;1
B ; h1;1

S ; :::; h2;2
B ; h2;2S Þ is defined as

X
j2J

X
d2D

X
tj2Tj

X
mj;d;tj2Mj

ðqj;d;tj ;m
j;d;tj

S �pj;d;tj ;mj;d;tj

S � qj;d;tj ;m
j;d;tj

B �pj;d;tj ;mj;d;tj

B Þ; ð2Þ

with respect to Eqs. (3)–(26). Here U = ([0, 1])2�nK�nJ and hj;kðdÞB and

hj;kðdÞS belong to the set [0, 1] and are relative buying and selling
and can be easily relaxed.



Fig. 3. Volatility towards previous time slot (hour or PTU, depending on the market) for the 2014 day-ahead and balancing market prices.

Fig. 2. Price histogram for the day-ahead market prices and balancing market upward and downward prices for 2014. Each bin has a range size of 2 s.
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thresholds, respectively. The real price thresholds pj;d
B and pj;d

S ,
which are the maximal buying and minimal selling prices,
respectively, are calculated as follows:

pj;d
B ¼

P
tj2Tj

P
mj;d;tj2Mj p

j;d;tj ;m
j;d;tj

B

nmj;d;tj

Tj

�ð1 � hj;kðdÞ
B Þ; ð3Þ

pj;d
S ¼

P
tj2Tj

P
mj;d;tj2Mj p

j;d;tj ;m
j;d;tj

S

nmj;d;tj

Tj

�ð1 þ hj;kðdÞ
S Þ; ð4Þ

where kðdÞ ¼ 1; if modðd; 7Þ 2 f1; 2; 3; 4; 5g;
2; otherwise:

�

Market 1 is always in the same mode 0, i.e., M1 = 0, while M2 = {�1,
0,1, 2} (see Table 3 for overview of these modes). In mode m2,d,t2 = 2
only one action (buying or selling) is allowed for device 2. We
assume that in such a situation device 2 sells, because selling is
more advantageous for the energy storage owner, as shown in [17].
Due to the efficiency losses in charging and discharging, one has to
buy more electricity than it can be physically charged into a device
and, similarly, one has to discharge more electricity than the
amount of energy sold:

qj;d;tj ;m
j;d;tj

B ¼ qj;d;tj ;m
j;d;tj

C

hj
C

; qj;d;tj ;m
j;d;tj

S ¼ qj;d;tj ;m
j;d;tj

D �hj
D; ð5Þ

where hj
D 2 ½0; 1� and hj

C 2 ½0; 1� refer to the efficiencies of
discharging and charging, respectively, and are known a priori.



Þ;

Þ;

Þ;

Fig. 4. Illustration of the relationship between the considered energy markets and
energy storage devices. The arrows indicate the possible energy transfer directions.
The numbers 1 and 2 identify the two partial models.
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No device can simultaneously charge and discharge electricity
and the amount of electricity charged and discharged cannot
exceed its prespecified boundaries, i.e.,

qj;d;tj ;m
j;d;tj

C �qj;d;tj ;mj;d;tj

D ¼ 0; qj;d;tj ;m
j;d;tj

C 2 ½0; qjC; max �;
qj;d;tj ;m

j;d;tj

D 2 ½0; qjD; max �:
ð6Þ

As each market/device j can only be in one mode mj,d,tj on day d
and time step tj, we set quantities of electricity charged and
discharged and their buying and selling prices for all other but the
current mode, same day d and time step tj, to zero:

qj;d;tj ;bC ¼ 0 8b 2 Mj fmj;d;tjg; if qj;d;tj ;m
j;d;tj

C > 0;

Mode mj,d,tj and electricity prices for each market j, day d and time
step tj are exogenous and assumed to be known a priori.

Our model takes advantage of any lower prices in the day-ahead
market when compared with the balancing market, by transferring
energy from device 1 to device 2. As device 2 has a time step of
15 min, two complete cycles of charging and discharging may be
performed in one hour.

In order to avoid any inconsistency, since device 1 and device 2
are used in our model with different time steps, the energy
transferable from one device to another is reserved a priori. This
reservation is performed every hour, which is the time step of
device 1 and larger of the two time steps. Eq. (11) determines this
energy reserved in device 1 transferable to device 2. As device 1 is
much bigger than device 2, device 1 can provide a temporary
additional output to charge device 2 when needed:

g1;d;t1 ;m1;d;t1

¼

2�q2C; max
h1
D�h2

C

; if x1;d;t1�1;m1;d;t1�1 þ q1;d;t1 ;m
1;d;t1

C

�
2�q2C; max

h1
D�h2

C

þ x1 min ;

0; otherwise:

8>>>>>><
>>>>>>:

ð11Þ
The energy transfer will only happen when device 2 is not being
used in market 2 in the current time step t2, as stated in (12). Also,
device 2 can only receive energy if it is partially or fully discharged.

If so, device 2 will receive the energy from device 1 (l2;d;t2 ;m2;d;t2 ).
This amount will be the lower of two values: maximum quantity
q2C; max charged by device 2 or the energy

x1;d;t1 ;m
1;d;t1 �x1

min
h1
D�h2

C
that can be transferred to device 2 from

device 1. This transfer can occur in every 15 min. For each
t22 {4 t1�3, . . . , 4 t1},

l2;d;t2 ;m2;d;t2

¼

min ðq2C; max ; x2 max � x2;d;t2�1;m2;d;t2�1

if g1;d;t1;m1;d;t1 6¼ 0;
q2;d;t2 ;m

2;d;t2

C ¼ 0

and q2;d;t2;m
2;d;t2

D ¼ 0;
0; otherwise:

8>>>>>><
>>>>>>:

ð12Þ
The amount of energy reserved in device 1 not transferred to
device 2 is defined as For each t1 = 1, 2, . . .

f1;d;t1þ1;m1;d;t1þ1 ¼ g1;d;t1 ;m1;d;t1 �
P4

i¼1 l
2;d;ðt1�1Þ�4þi;m2;d;ðt1�1Þ�4þi

h1
D�h2

C

: ð13Þ

Here also the losses of discharging device 1 and charging device 2
are taken into consideration. The current state of charge of devices
1 and 2 depends on their state of charge in the previous time step:

x1;d;t1 ;m
1;d;t1 ¼ x1;d;t1�1;m1;d;t1�1 þ q1;d;t1 ;m

1;d;t1

C � q1;d;t1 ;m
1;d;t1

D

� g1;d;t1 ;m1;d;t1 þ f1;d;t1 ;m1;d;t1
;

ð14Þ

x2;d;t2 ;m
2;d;t2 ¼ x2;d;t2�1;m2;d;t2�1 þ q2;d;t2 ;m

2;d;t2

C

� q2;d;t2 ;m
2;d;t2

D þ l2;d;t2 ;m2;d;t2
:

ð15Þ

When it is not possible to charge or discharge quantities
q1C; max or q1D; max , the device will charge or

discharge as much as possible, given by x1 max �
x1;d;t1�1;m1;d;t1�1

and x1;d;t1�1;m1;d;t1�1 � x1 min , respectively.

As most energy storage devices cannot be fully discharged,

xj min represents the minimum useful state of charge,

the lowest charge level the storage device can be discharged to.

Quantity q1;m
1;d;t1 ;d;t1

D is defined as follows:

q1;d;t1 ;m
1;d;t1

D

¼
min ðq1D; max ; x1;d;t1�1;m1;d;t1�1 � x1 min

and p1;d;t1 ;m
1;d;t1

S � p1;d
S ;

0; otherwise:

8><
>:

ð16Þ
As device 1 starts discharged, Eq. (16) is only valid for t1� 2 or

when d � 2 . Likewise, q1;m
1;d;t1 ;d;t1

C is defined as follows:

q1;d;t1 ;m
1;d;t1

C

¼
min ðq1C; max ; x1 max � x1;d;t1�1; m1;d;t1�1

if p1;d;t1 ;m
1;d;t1

B � p1;d
B ;

0; otherwise:

8><
>:

ð17Þ
If device 2 cannot charge the maximum quantity of energy
charged q2C; max , as it would overrun the maximum

amount of charge x2 max , it will charge quantity

x2 max � x2;d;t2�1;m2;d;t2�1
. Similarly, when discharging, if
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device 2 cannot discharge the maximum quantity of energy
discharged q2D; max , as it would overrun the functional

minimum amount of charge x2 min , it will charge the

quantity x2;d;t2�1;m2;d;t2�1 � x2 min .

q2;d;t2 ;m
2;d;t2

D

¼
min ðq2D; max ; x2;d;t2�1;m2;d;t2�1 � x2 min Þ;

if m2;d;t2 2 f1; 2g;
p2;d;t2 ;m

2;d;t2

S � p2;d
S ;

0; otherwise:

8>>><
>>>:

ð18Þ

q2;d;t2 ;m
2;d;t2

C

¼
min ðq2C; max ; x2 max � x2;d;t2�1;m2;d;t2�1Þ;

if m2;d;t2 ¼ �1;
and p2;d;t2 ;m

2;d;t2

B � p2;d
B ;

0; otherwise:

8>>><
>>>:

ð19Þ
As device 2 starts discharged, Eq. (18) is only valid only for t2� 2 or
when d � 2 .

The maximum discharge capacity q1D;max of device 1 is lower or

equal to its maximum state of charge x1 max minus the

transferable energy to device 2
2�q2

C; max
h1
D�h2

C
:

q1D; max � x1 max

�
2�q2C; max

h1
D�h2

C

: ð20Þ

Other constraints:

qjC;max � xj max ; ð21Þ

q2D; max � x2 max ; ð22Þ

qj
D; min ¼ qj

C; min ¼ 0; ð23Þ

0 � xj min � xj max : ð24Þ

Initial conditions:

xj;1;0;m
j;1;0 ¼ 0; ð25Þ

f1;1;1;m1;1;1 ¼ 0: ð26Þ
In words, the problem (1), subject to (2)–(26), is to find the

selling and buying threshold prices per day in a week, for each
device type/market, so that the revenue of the entire storage
system device is maximized.

5. Implementation

In this section we describe the implementation of the model
and optimal price thresholds, given by (1)–(26). The technical and
economical data on the devices are taken from [11]. All case studies
defined by equations were implemented using Matlab1.

The problem (1)–(26) could not be solved by standard
optimization techniques, such as gradient-based optimization
methods, due to many local minima and even regions in the
domain of the yearly benefit function which correspond to the
same benefit value. After experimenting with heuristic solution
methods, such as particle swarm optimization (PSO), we have
adopted a pattern search (PS) algorithm included in the Matlab
optimization toolbox for solving the problem. The main advan-
tages of PS are its speed and the fact that it does not use gradient
approximation to maximize the profit function. Therefore, PS is
often used for maximizing complicated functions which are non-
smooth or even discontinuous and/or have many local minima. The
method was first proposed in the literature by [25] and is
extensively described in [26].

Algorithm for solving the problem (1)–(26) is depicted in Fig. 5.
For comparison purposes we also calculated the results when using
a single weekly set of price thresholds per device, using the
algorithm depicted in Fig. 6.

We assume that both devices can be fully discharged (xj,min = 0)

and start discharged (xj;1;0;m
j;1;0 ¼ 0). No self-discharge was

considered as the devices are working almost continuously. Ramp
rates were also not considered.

6. Results

6.1. Finding optimal price thresholds

We have calculated the solution to the problem (1)–(26) for
year 2014 using the pattern search introduced in Section 3. For
2014, the optimal u* contains price thresholds depicted in Fig. 7.

The generic bulk energy storage power rating is varied between
50 and 150 MW for a discharge duration of 5–10 h. The energy
rating varies between 500 and 1500 MWh. The power rating is the
maximum amount of energy that the device can charge or
discharge in one hour. Unless mentioned otherwise, the round trip
efficiency is 80%=0.80, and the charging and discharging efficien-
cies are equal to

ffiffiffiffiffiffiffi
0:8

p
(	0.8944 = 89.44%). The electricity market

data used to evaluate the profitability of this device is Dutch day-
ahead market data provided by the spot market APX-Endex.

For the high-power device, the power rating is varied between
20 and 60 MW. The nominal discharge duration is of 15 minutes. As
energy rating of the device is calculated as its power rating
multiplied by its time of discharge of that same device, the energy
rating will vary from 5 to 15 MWh. Therefore, this energy rating
interval [5, 15] MWh was selected as the base power rating of
device 2. The minimum bid size for the Dutch balancing market is 5
MW [20] per PTU of 15 minutes. The default charging and
discharging efficiencies of this device are both 95% (0.95), which
results in a round trip efficiency of around 90% (0.90). The
balancing market data is publicly available from the Dutch TSO
TenneT [28]. The dimensions and efficiency levels of both devices
are chosen according to technologies described in [11]. Fig. 7 shows
the solution to the problem (1)–(26) when two sets of thresholds
are applied. The size of the bulk and the high power devices in this
example are 50 MW, 500 MWh and 20 MW, 5 MWh, respectively.
There, different results can be observed for weekdays and
weekends. For the day-ahead market and bulk device, weekend
thresholds are usually lower. For the balancing market and high
power device, the difference is bigger. In this case, the yearly
benefit is the highest when the high power device is used to buy
less in the weekends and when it sells more during the working
days than in the weekends.

However, it was realized that the improvement towards a single
set of thresholds was limited (0.2 � 1.1%) and the computational
time was at least doubled. This is possibly due to the weekend
prices being usually lower than the ones of the working days and
that their volatility is lower than volatility of the prices for working



Fig. 6. Representation of the algorithm solving the problem (1)–(26) with the same weekend and working days price thresholds.

Fig. 5. Representation of the algorithm solving the problem (1)–(26).
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Fig. 7. Optimal relative thresholds. The value of the selling thresholds indicates how
much above the daily mean selling price the electricity will be sold, while the value
of the of the buying thresholds indicates how much below the daily mean buying
price the electricity will be bought. Device sizes are 50 MW, 500 MWh and 20 MW,
5 MWh, for the bulk and the high power device, respectively. The optimal working
day (written as “weekdays” in the caption) buying threshold for the high power
device is zero. The yearly benefit with this set of thresholds is 2.615 Ms.
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days. Therefore, less opportunities for the devices to be active in
the respective markets. These situations can also be observed in
Fig. 1 and in Fig. 3, particularly for the day-ahead market. Due to
this limited improvement of yearly benefit when having variable
selling and buying thresholds for working days and weekends, we
will use the single set of thresholds for the rest of the paper.

Using data from 2014, we have calculated the revenues when
varying the rating of both devices see Fig. 8. Here “50 � 1000 refers to
a device with a nominal power rating of 50 MW and a discharge
duration of 10 h. Increasing the size of the bulk device three times
(high power device of 5 MWh, bulk device of 150 MW and 10 h of
discharge time) and increasing the size of the high-power device
(high power device of 15 MWh, bulk device of 50 MW and 10 h of
discharge time) have almost the same impact on the yearly benefit,
when compared with the base situation (high power device of
5 MWh, bulk device of 50 MW and 10 h of discharge time). This is
an interesting observation for eventual practical applications, as
the costs for increasing the size of the two devices can be different.
Fig. 8. Yearly benefit when varyin
For comparison purposes, we have calculated the revenues
using only the bulk energy device. The result is shown in Fig. 9.
Clearly, the power rating has a higher impact on the yearly benefit
when compared to the impact of energy rating. The two left bars
correspond to the same energy rating (500 MWh) and two
different power ratings (50 MW and 100 MW, respectively).

Fig. 10 shows that the yearly benefit increase when moving
from the situation with a single device (Fig. 9) to the situation with
the dual energy storage system (Fig. 8). The highest increase of the
yearly benefit is for the bulk device with the lowest power and
energy rating (50 MW and 500 MWh). With this bulk device,
including a high power (HP) device of 5, 10, and 15 MWh leads to
the yearly benefit increase of 85%, 170%, and 256%, respectively.

Fig. 11 compares the yearly benefits when using only the bulk
device and the two devices, respectively, for several device sizes
and with price data from 2014. The four subfigures display
different yearly benefit distribution between the devices: For the
first case (bulk: 100 MW�10 h, HP: 5 MWh), the bulk device
operating on the day-ahead market (device and market 1) obtains
56.03% of the yearly benefit, while the high-power device
operating on the balancing market (device and market 2) obtains
43.97% of the yearly benefit. The yearly benefit of device 1 is lower
than in a stand-alone situation, due to energy transferred from
device 1 to device 2. The lower bar shows the yearly benefit when
only the bulk device operating in the day-ahead market is used.
The comparison of the two bars indicates that by combining
devices 1 and 2, the yearly benefit in the day-ahead market is
reduced by 20.05%, while the total yearly benefit increases by
42.69%. For the last case (bulk: 50 MW�10 h, HP: 15 MWh), a
reduction by 110.95% in the day-ahead market yearly benefit (a net
loss of 10.95%) and an increase of 255.96% in the total yearly benefit
can be observed. The results for the examples from Fig. 11 are
shown in Table 4.

Additionally, we have analysed the impact of round trip
efficiency of both devices on the results, see Fig. 12. The device
ratings are 50 MW and 500 MWh for the bulk device and 20 MW
and 5 MWh for the high-power device, respectively. The charging
and discharging efficiencies are assumed to be the same and equal
to the square root of the round trip energy efficiency. Fig. 12
illustrates that the efficiency of the bulk device has a greater
impact on the yearly benefit than the efficiency of the high power
device.
g the size of the two devices.



Fig. 9. Revenues using only the bulk device and data from 2014.

Fig. 10. Revenues increase (in %) from using only the bulk device to two devices.

3 Other approaches could be used such as the one presented by [29], where
energy storage device optimal sizing for arbitrage provision is evaluated.
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Furthermore, we have analysed the impact of using energy
prices from the years 2012 and 2013 on the model predictions and
compared them to those with the 2014 prices. Fig. 13 shows the
results for a bulk device of 50 MW and 500 MWh and a comparison
between the high power devices of 20 MW, 5 MWh and of 40 MW,
10 MWh. Round trip efficiencies are 70% and 90% for the bulk and
the high-power devices, respectively. The volatilities towards the
previous time slot for the 2012 and 2013 electricity prices are
shown in Appendix A. The yearly benefit for 2014 are below the
average yearly benefit of two years before.

6.2. Cost-benefit analysis for different energy storage devices

Here we focus on calculating of the payback period (PBP) for
using the ESS, depending on which particular ESS is used. The PBP
(c) is calculated by dividing the initial investment by the yearly net
revenues [30] as shown in Eq. (28). In order to increase the
accuracy of this study, we have used price data from years 2012,
2013 and 2014.3 The costs of the devices used to calculate the initial
investment are taken from [11]. The costs per unit of power (kW)
and unit of energy (kWh) of device j are denoted by mj and jj,
respectively. The power and energy ratings for a device j are
denoted by rj and ej, respectively. The Euro/Dollar conversion rate



Fig. 11. Yearly benefit distribution for the results mentioned in Table 4, when using dual and single ESS.

Table 4
Results for the examples shown in Fig. 11.

Bulk HP Bulk share HP share Bulk variation to Overall
size size (%) (%) standalone (%) increase (%)

100 MW�10 h 5 MWh 56.03% 43.97% �20.05% 42.69%
50 MW�10 h 5 MWh 33.87% 66.13% �37.26% 85.26%
50 MW�10 h 10 MWh 5.93% 94.07% �83.97% 170.45%
50 MW�10 h 15 MWh �3.08% 103.08% �110.95% 255.96%
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is 1/1.10, following the information provided in [27]. The yearly
benefit Z(u) is replaced by Z0(u) defined as4

P
j2J

P
d2D

P
tj2Tj

P
mj;d;tj2Mj ðqj;d;tj ;m

j;d;tj

S �ðpj;d;tj;mj;d;tj

S � kjÞ
�qj;d;tj ;m

j;d;tj

B �pj;d;tj;mj;d;tj

B Þ;
ð27Þ

which takes the variable the variable O&M costs kj per unit of
energy for device j into account.

The yearly net benefit is calculated by subtracting the yearly
operation and maintenance costs oj from the optimal yearly benefit
Z0(u*) . Furthermore, we compare the payback period c defined as

c ¼
P

j2Jðrj�mj þ ej�jjÞ
Z0ðu�Þ �P

j2J oj
: ð28Þ

for the years 2012–2014 with those of 2014 .
4 With a slight abuse of notation as u maximizing Z0(u) will differ from original u*

maximizing Z(u).
The internal rate of return i is used to calculate the profitability
of potential investments in the ESS and is calculated for a certain
prespecified number of years nY, so that equality

XnY

y¼0

Z0ðu�Þ �P
j2J o

j

ð1 þ iÞn �
X
j2J

ðrj�mj þ ej�jjÞ ¼ 0 ð29Þ

is satisfied. In the two case studies to follow, we will discuss i
calculated for N = 10, 15 and 20 years. We will also compare i
obtained with average of values for Z0(u*) and oj over years 2012–
2014 with those from 2014 only. As in these case studies we will
vary technologies used for the ESS, in Appendix B we discuss in
detail the technologies available.

6.2.1. Case study 1: Cost benefit analysis with D-CAES and Li-ion
battery technologies

For the first case study a traditional D-CAES of 50 MW and
500 MWh is used as the bulk device. A Li-ion battery (LI)
technology of 10 MWh was selected as the high power device.
The round trip efficiencies are 50% and 85% for the D-CAES and for
the LI, respectively, as reported in [11]. For D-CAES, the minimum
costs m1 and j1 are 3.64 �105s/MW and 1.82 � 103s/MWh,
respectively. For LI, m2 and j2 are 1.09 � 106s/MW and
5.45 �105s/MWh, respectively [11]. Operation and maintenance
costs are the average values presented in [31]. For LI the fixed O&M
costs are 6.9 s/KW-yr and the variable costs are 2.1 s/MWh. For the
D-CAES, the fixed O&M costs are 3.9 s/KW-yr and the variable
costs are 3.1 s/MWh.

Table 5 shows the results of the cost benefit analysis. The
internal rate of return i was calculated for average yearly benefit



Fig. 12. Impact on the results of efficiency of the devices. Size of the devices used for the bulk device: 50 MW and 500 MWh, for high power: 20 MW and 5 MWh.

Fig.13. Impact of prices in the revenues. Devices used: Bulk device characteristics are 50 MW, 500 MWh and 70% efficiency. High power efficiency used is 90%, and the ratings
used are 20 MW, 5 MWh and 40 MW, 10 MWh.
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over years 2012–2014 (see Fig. 14 for the yearly benefits and its
average) and for 20, 15 and 10 years. The payback period c was
calculated for the average yearly benefit from years 2012–2014 and
also when the lowest yearly benefit of these 3 years was considered
(year 2014). These results show that this system will take more
than 17 years to be paid back when considering average year
benefits over years 2012–2014. For this case study, i (IRR) in the
first 20 years will be slightly positive (1%). Using the values of 2014,
it will take almost 27 years for the devices to be paid and i will be
negative in all the situations analysed.
6.2.2. Case study 2: Cost benefit analysis with AACAES and flywheel
technologies

For the second case study a AACAES of 50 MW and 500 MWh is
used as bulk device, while a flywheel (FW) technology of 15 MWh
was selected as a high power device. The round trip efficiencies are
70% and 90% for the AACAES and for the FW, respectively [11]. For
AACAES, the costs considered are 40% higher than the costs of D-
CAES, following [31]. Therefore, the minimum costs m1 and j1 are
5.09 � 105s/MW and 2.55 �103s/MWh, respectively. For FW, m2

and j2 are 2.27 � 105s/MW and 9.1 �105s/MWh, respectively [11].



Fig. 14. Results for DCAES 50 MW, 500 MWh and 50% efficiency and LI 40 MW, 10 MWh and efficiency 85%.

Fig. 15. Results for AACAES 50 MW, 500 MWh and 70% efficiency and FW 60 MW, 15 MWh and efficiency 90%.
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Operation and maintenance costs are taken from [31]. For FW the
fixed O&M costs are 5.2 s/KW-yr and the variable costs are 2.0 s/
MWh. For AACAES, also the fixed O&M costs are increased by 40%
when compared to D-CAES, to 5.46 s/KW-yr. For the AACAES
variable costs, as no natural gas is consumed in this case, they are
considered the same as for PHES, 0.22 s/MWh.

Table 6 shows the results for the cost benefit analysis. The
calculations were performed as in Case study 1. For the assessment
of i average yearly benefit over years 2012–2014, depicted in
Table 5
Cost benefit results for case study 1.

Average 2012–2014 2014

c (yr) 17.30 26.63
i at 20 years (%) 1 �3
i at 15 years (%) �2 �6
i at 10 years (%) �9 �15
Fig. 15, was considered. Parameter i was calculated for N = 20, 15
and 10 years. Two payback periods were calculated with the
average yearly benefits over years 2012–2014 first and with only
2014 yearly benefits second. The results demonstrate that this
system will take 10 years to be paid back with the yearly benefit
averaged over years 2012–2014. With yearly benefits from year
2014, the system will be bayed back in almost 15 years. With the
average yearly benefit, i was positive with N = 10 years, achieving
7.72% around 20 years of usage. For the yearly benefit of 2014, i
Table 6
Cost benefit results for case study 2.

Average 2012–2014 2014

c 10.00 14.64
i at 20 years (%) 7.72 3
i at 15 years (%) 5.53 0.31
i at 10 years (%) 0.00 �6.39



Fig. 16. Net yearly benefits for both case studies.
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reaches positive values after 15 years of usage, achieving 3% after
20 years.

The net yearly benefit per kWh of energy sold for both case
studies and the three years under analysis are shown in Fig. 16. The
yearly benefit per KWh is higher in case study 1. However, the
amount of energy sold is higher in case study 2, as shown in Fig. 17.
Therefore, the normalized yearly benefit is higher for case study 2,
as can be seen from comparing Figs. 14 and 15.

6.3. Discussion

The results obtained in the last two case studies (around 10–27
years of payback time) indicate that systems similar to the ones
presented in this paper have, under certain conditions, potential to
be cost effective. By varying ratings for the devices used, we could
increase yearly benefits by up to 256%. We have shown how the
costs, size and efficiency of the devices impact the feasibility of ESS.

Further integration of variable RES is expected to increase
potential revenues from balancing provision. Additionally, with the
increasing deployment and maturity of energy storage technolo-
gies, their investment and maintenance costs are expected to
decrease, while their effective life span is expected to increase. This
fact, associated with the potential higher volatility of energy prices
due to variable RES integration, increases the potential for
profitability of systems as the one presented in this paper. Of
course, other factors, such as future energy policies, market
regulation, price variations and maintenance costs, should be
taken into account and optimization techniques are very useful for
assessing the potential profit of the ESS. An example of a different,
but complementary approach, is presented in [29] where the size
of a single device energy storage system is optimized for the needs
of different European markets, comparing two distinct technolo-
gies.

The results presented in the case studies, such as the payback
period or the internal rate of return may explain why although the
Fig. 17. Amounts of energy sold in both case studies.
ESS can be financially feasible and viable, it has not yet been
deployed. The high risk associated with new technologies and
business models is another likely reason. Furthermore, the power
system stakeholders are seen as risk-averse, partially due to the
need for presenting high levels of reliability, which strengthens the
impact of high risk. Finally, there may be other reasons behind the
non-deployment of these systems and technologies, which should
be carefully evaluated. These seem to be of neither technological
nor financial nature.

7. Conclusions

In this paper we presented a novel model of a dual energy
storage system using two different storage technologies, trading
simultaneously in two energy markets. We have adopted pattern
search to find optimal strategies to operate this system. We have
analysed the impact of using a dual energy storage device system
and of different buying and selling strategies for weekdays and
weekends. We have shown that it is possible to increase the
revenues by up to 256% compared to using a single energy storage
device. We have observed that, for the price data used, no
significant improvement was obtained by using different buying
and selling strategies for weekdays and weekends. This might
change with different price data, though. We have studied impact
of size, efficiencies and market price variation on the ESS yearly
benefits. Finally, using two case studies we have demonstrated
that, depending on the level of the costs and efficiency of the
devices used to build this system, this type of systems can be
already cost effective.

In the framework of an increasing amount of intermittent
electricity generation, the price fluctuations in the market are
expected to increase, which will then support the increase of the
yearly benefits and reduce the payback period of the energy
storage systems. Therefore, with the increasing need for electricity
network flexibility, the potential of systems like the one presented
in this paper is high. Nonetheless, that will depend on many
aspects influenced by future decisions and market behaviours,
which we cannot take into consideration at this stage.

In our future work, we intend to analyse the impact of imperfect
price prediction on the economic benefit obtained and more
advanced buying/selling strategies for ESS.
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Appendix A. Volatility of the Dutch day-ahead and balancing
market for years 2012 and 2013

To calculate the historical price volatility towards the previous

time slot (sj;d;mj;d;tj

tj�tj�1
) for market j and day d we used Eq. (30).

Historical price volatility is the standard deviation of price return

vj;d;tjtj�tj�1
calculated by Eq. (31). In these equations, pj,d,tj is the spot

price at time tj, pj,d,tj�1 the spot price at time tj�1, nTj
is the number

of time periods of the market (24 h or 96 PTUs) and vj;d is the mean

of the price quotients vj;d;tjtj�tj�1
in market j at day d. We have applied

Eq. (30) to the Dutch day-ahead market prices and to both upward
and downward prices of the balancing market. For the balancing
market, PTU is used instead of the hour which is used in the



Fig. 18. Market volatility towards previous time slot (hour or PTU, depending on the market) for the 2012 day-ahead and balancing market prices.

Fig. 19. Market volatility towards previous time slot (hour or PTU, depending on the market) for the 2013 day-ahead and balancing market prices.
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day-ahead market.

sj;d
tj�tj�1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
tj2Tj

vj;d;tjtj�tj�1
� vj;d

� �2

nTj
� 1

vuuut ð30Þ

vj;d;tj ;m
j;d;tj

tj�tj�1
¼ pj;d;tj

pj;d;tj�1
ð31Þ
In Figs. 18 and 19 are presented the volatility towards the
previous time slot (hour or ptu) of the Dutch day-ahead and
balancing market for the years 2012 and 2013, respectively.

Appendix B. Possible technologies that can be used for energy
storage

We have analysed the possible technologies that can be used as
bulk and high power technologies, respectively.



Fig. 20. Location of underground salt reservoirs in Europe. Courtesy of KBB technologies.
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For bulk technologies, the available options are: pumped-hydro
energy storage (PHES), diabatic compressed air energy storage (D-
CAES) and adiabatic advanced compressed air energy storage
(AACAES). The PHES is widely used and is the most mature bulk
technology. However, this technology is dependent on geological
conditions and availability of possible sites. The geological
conditions in The Netherlandsare not optimal to build traditional
PHES systems, especially due to the flat landscape. The CAES
technologies are appropriate bulk technologies for The
Netherlands, as these technologies can be built using either the
existing underground salt deposits in the centre and north of the
country or the depleted gas reservoirs in the north of the country.
Fig. 20 shows the location of underground salt reservoirs in Europe.
A substantial area of The Netherlands lies above a region where
these salt reservoirs are located. These reservoirs can be used to
build underground caves which in turn will be part of a
compressed air energy storage system (CAES).

The first D-CAES system was installed in 1978 in Germany [11].
This technology uses natural gas to both charge and discharge the
underground reservoirs. Although AACAES is currently a theoreti-
cal technology, the test results are very promising. Instead of gas-
based compressors, it can use electric compressors. Furthermore,
the resulting heat of the air compression which occurs when the
device charges is stored and used to heat the expanding air when
the device discharges. These AACAES developments increase the
efficiency of this technology and reduce operation costs when
compared with D-CAES [18]. All bulk technologies have a very long
durability of 20–100 years. This includes CAES; the first equipment
installed is still functional after 37 years [11].

For the high power energy storage several technologies can be
considered [11]. Among those, one may highlight lead-acid,
lithium-ion, nickel–cadmium, sodium–sulphur, zebra (NaNiCl2)
batteries, and flywheels. An appropriate technology should lead to
a very fast response time (in order of few seconds) to any mode
switch between charging, idle and discharging. Moreover, such
technology should have a modular capacity allowing a realistic
implementation of the power and energy size specifications of the
device. In the long term, another important aspect is the cycling
durability, as the high power device will be working very
frequently. Lead-acid batteries are a mature technology with
low initial costs. Lithium-ion batteries present good durability and
efficiency. Nickel–cadmium batteries present good durability and
robustness to deep discharges. Sodium–sulphur batteries present
the advantages of low maintenance and below average initial costs.
Zebra (NaNiCl2) batteries present good robustness to self discharge.
Flywheels have the advantage of a theoretical unlimited amount of
charge and discharge cycles.

References

[1] European Commission, “COM (2013) 169 final – Green Paper – A 2030
framework for climate and energy policies”, Brussels, Belgium, (2013) .

[2] European Commission, “COM (2011) 112 final - A roadmap for moving to a
competitive low carbon economy in 2050”, Brussels, Belgium, (2011) .

[3] Z. Ming, Z. Kun, L. Daoxin, Overall review of pumped-hydro energy storage in
China: status quo, operation mechanism and policy barriers, Renew. Sustain.
Energy Rev. 17 (2013, January) 35–43.

[4] M. Esteban, J. Portugal-Pereira, Post-disaster resilience of a 100% renewable
energy system in Japan, Energy 68 (2014, April) 756–764.

[5] I.G. Mason, S.C. Page, A.G. Williamson, Security of supply, energy spillage
control and peaking options within a 100% renewable electricity system for
New Zealand, Energy Policy 60 (2013, September) 324–333.

[6] J. Eyer, G. Corey, “Energy Storage for the Electricity Grid: Benefits and Market
Potential Assessment Guide”, Sandia report 2010-0815, Sandia National
Laboratories, Livermore and Albuquerque, USA, 2010.

[7] EPRI, “Electricity Energy Storage Technology Options – A White Paper Primer
on Applications, Costs and Benefits”, report, EPRI, Palo Alto, USA, 2010.

[8] B. Dursun, B. Alboyaci, The contribution of wind-hydro pumped storage
systems in meeting Turkey's electric energy demand, Renew. Sustain. Energy
Rev. 14 (7) (2010, September) 1979–1988.

[9] G. Papaefthymiou, K. Grave, K. Dragoon, “Flexibility options in electricity
systems”, Ecofys report, European Copper Institute, Berlin, Germany, 2014.

http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0005
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0005
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0010
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0010
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0015
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0015
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0015
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0020
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0020
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0025
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0025
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0025
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0030
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0030
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0030
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0035
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0035
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0040
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0040
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0040
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0045
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0045


242 H.L. Ferreira et al. / Journal of Energy Storage 12 (2017) 226–242
[10] Grid Tech European Project webpage, http://www.gridtech.eu/, (accessed
12.07.15).

[11] H.L. Ferreira, R. Garde, G. Fulli, W. Kling, J.P. Lopes, Characterisation of electrical
energy storage technologies, Energy 53 (2013, May) 288–298.

[12] F. Borggrefe, K. Neuhoff, “Balancing and intraday market design: options for
wind integration”, Smart Power Market Project report, Climate Policy
Initiative, DIW Berlin, Berlin, Germany, 2011.

[13] D. Connolly, H. Lund, P. Finn, B.V. Mathiesen, M. Leahy, Practical operation
strategies for pumped hydroelectric energy storage (PHES) utilising electricity
price arbitrage, Energy Policy 39 (7) (2011, May) 4189–4196.

[14] G.N. Bathurst, G. Strbac, Value of combining energy storage and wind in short-
term energy and balancing markets, Electr. Power Syst. Res. 67 (1) (2003,
October) 1–8.

[15] A. Zucker, T. Hinchliffe, A. Spisto, Assessing Storage Value in Electricity Markets
- A literature review”, JRC scientific and policy reports, Petten, The
Netherlands, (2013) .

[16] R. Hemmati, H. Saboori, Emergence of hybrid energy storage systems in
renewable energy and transport applications – a review, Renew. Sustain.
Energy Rev. 65 (2016, November) 11–23.

[17] H. Lopes Ferreira, M. Gibescu, K. Sta�nková, W.L. Kling, J. Peças, Lopes, Dual
technology energy storage system applied to two complementary energy
markets,12th International Conference on the European Energy Market,19–22
May 2015, Lisbon, Portugal, 2015, pp. 1–5.

[18] C. Bullough, C. Gatzen, C. Jakiel, M. Koller, A. Nowi, S. Zunft, Advanced
adiabatic compressed air energy storage for the integration of wind energy,
European Wind Energy Conference 2004, 22–25 November, London, UK,
2004.
[19] Commodities-now.com webpage, http://www.commodities-now.com/-
reports/general/9619-apx-endex-2011-review.html, (accessed 08.02.15).

[20] J. Frunt, Analysis of balancing requirements in future sustainable and reliable
power systems (PhD dissertation), Technische Universiteit Eindhoven,
Eindhoven, 2011.

[21] I. Lampropoulos, J. Frunt, S. Pagliuca, W.W. De Boer, W.L. Kling, Evaluation and
assessment on balancing resource, Proc. 2011 8th Int. Conf. the European
Energy Market (2011).

[22] I. Simonsen, Volatility of power markets, Phys. A: Stat. Mech. Appl. 355 (1)
(2005, September) 10–20.

[23] C.K. Ekman, S.H. Jensen, Prospects for large scale electricity storage in
Denmark, Energy Convers. Manag. 51 (6) (2010, June) 1140–1147.

[25] R. Hooke, T.A. Jeeves, “Direct search” solution of numerical and statistical
problems, J. Assoc. Comput. Mach. (ACM) 8 (2) (1961, April) 212–229.

[26] W.C. Davidon, Variable metric method for minimization, SIAM J. Optim. 1 (1)
(1991) 1–17.

[27] European Central Bank webpage, https://www.ecb.europa.eu/stats/-
exchange/eurofxref/html/index.en.html, (accessed 15.07.15).

[28] TenneT data export website, http://energieinfo.tennet.org/-dataexport/
exporteerdatacountry.asp, (last accessed 16.05.16).

[29] D. Zafirakis, K.J. Chalvatzis, G. Baiocchi, G. Daskalakis, The value of arbitrage for
energy storage: Evidence from European electricity markets, Appl. Energy 184
(c) (2017) 971–986.

[30] http://www.accountingtools.com/payback-period-formula, (last accessed
14.09.16).

[31] B. Zakeri, S. Syri, Electrical energy storage systems: a comparative life cycle
cost analysis, Renew. Sustain. Energy Rev. 42 (2015, February) 569–596.

http://www.gridtech.eu/
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0055
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0055
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0060
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0060
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0060
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0065
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0065
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0065
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0070
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0070
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0070
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0075
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0075
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0075
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0080
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0080
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0080
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0085
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0085
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0085
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0085
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0090
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0090
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0090
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0090
http://www.commodities-now.com/-reports/general/9619-apx-endex-2011-review.html
http://www.commodities-now.com/-reports/general/9619-apx-endex-2011-review.html
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0100
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0100
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0100
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0105
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0105
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0105
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0110
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0110
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0115
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0115
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0120
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0120
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0125
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0125
https://www.ecb.europa.eu/stats/-exchange/eurofxref/html/index.en.html
https://www.ecb.europa.eu/stats/-exchange/eurofxref/html/index.en.html
http://energieinfo.tennet.org/-dataexport/exporteerdatacountry.asp
http://energieinfo.tennet.org/-dataexport/exporteerdatacountry.asp
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0140
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0140
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0140
http://www.accountingtools.com/payback-period-formula
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0150
http://refhub.elsevier.com/S2352-152X(17)30142-1/sbref0150

	Dual technology energy storage system applied to two complementary electricity markets using a weekly differentiated approach
	1 Introduction
	1.1 Motivation, background and literature review
	1.2 Notation

	2 Electricity markets in The Netherlands
	2.1 Day-ahead market
	2.2 Balancing market

	3 Model Background
	4 Model formulation
	5 Implementation
	6 Results
	6.1 Finding optimal price thresholds
	6.2 Cost-benefit analysis for different energy storage devices
	6.2.1 Case study 1: Cost benefit analysis with D-CAES and Li-ion battery technologies
	6.2.2 Case study 2: Cost benefit analysis with AACAES and flywheel technologies

	6.3 Discussion

	7 Conclusions
	Acknowledgements
	Appendix A Volatility of the Dutch day-ahead and balancing market for years 2012 and 2013
	Appendix B Possible technologies that can be used for energy storage
	References


