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First of all, we would like to thank the editor and the reviewers for their valuable,
detailed thought-provoking comments. In the next lines, we try to address very closely
all the suggestions, corrections and recommendations provided by each reviewer,
aiming at answering them, hopefully in the most satisfactory way.

The authors

ANSWERS TO REVIEWERS

REVIEWER 1 (R1)

R1.1) “(...) which input vectors should be in the training data set should be at least
addressed in the introduction (also know as instance or prototype selection).”

Answer R1.1: DONE! We dedicated an entire new paragrah to this issue in the revised
version. The 3rd paragraph of the introductory section addresses instance/prototype
selection and discuss the similarities and differences with reject option. As a
consequence, several new references have been included accordingly. Thank you very
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much for the recommendation because it certainly enriched the content of the paper
considerably.

R1.2) “Section 6 should include an independent subsection for each dataset analysed.
Plot for synthetic 2-dimensional function could be included as well.”.

Answer R1.2: DONE! We have included a subsection to describe the datasets and a
plot for the syntheticI dataset.

R1.3) “I think it would be interesting to add to the tables the time required to obtain
each classification in order to see which method is faster (sometimes is not only about
to get the best result but to get a solution on time).”

Answer R1.3:  This is a very pertinent point that we would like to address with care,
since it maybe was not clearly expressed on the manuscript. Our proposal of “Robust
Classification with Reject Option Using the Self-Organizing Map” has the goal to
suggest a new method for improved performance and recognition reliability with SOMs,
and not on improving the training or running (testing) times of SOMs reject option
algorithms. Truth must be said that training times of reject option algorithms will be
significantly higher independently of their standard approaches (either with MLP, SOM
or LVQ). For instance, for the ROSOM-1C it will take slightly longer times due to the
extra parameter (wR) that has to be tuned during the cross-validation part. Not to say,
that ROSOM-2C takes even more time given the twice number of classifiers that it has
to train: It requires to train two classifiers for a binary problem, and 2*K classifiers
(when using a One-Versus-All approach) for a multiclass (K-class) problem.

Having said that, it should now be clear that no matter the improvements made on the
algorithms, the training times of reject option algorithms will be inexorably higher than
their standard approaches. Regarding the running times, the rationale is analogous.
For the SOM1C the running time is the same as the standard approach since neuron
labelling is conducted during the training phase. A testing instance is labelled
accordingly since the quantity P(Ck | wj, x) express the probability of an instance that
falls within the Voronoi cell of neuron j to belong to class Ck. The running time of
ROSOM-2C will be higher than the baseline for obvious reasons.

In conclusion, training or running times of SOMs reject option algorithms leading to
major efforts in improving and proposing robust classifiers for reliable recognition tasks.

R1.4) “In order to improve tables, bold font could be used to identify easily the best
results. Furthermore, the dataset could be added as a first row and then the caption
could be used to provide more information about the data displayed in the table.”

Answer R1.4:  DONE! We have highlighted the best results in boldface in both Tables
1 and 2. In Table 2, for each value of the reject rate r, we highlighted the performances
of the two best results since they are statistically equivalent. Note, however, a full
analysis of the results must be conducted with the help of Figure 4. We have included
this information in the captions of Tables 2a and 2b.

REVIEWER 2 (R2)

R2.1) “Post-labelling is still the main method to turn SOM into a classifier. Labelling
methods and further kernelising techniques can help improve the performance by
significant margins - see: Lau, Yin and Hubbard, "Kernel self-organising maps for
classification", Neurocomputing, 69(16-18), pp.2033-2040 (2006).”

Answer R2.1: We agree with the reviewer. Inthis regard, we now include this reference
in the paper and also included in the 4th paragraph of the 2nd page of the Introduction
the following sentence:

 “Teuvo Kohonen, the proponent of the SOM himself, developed the first application of
the SOM as a supervised pattern classifier in his neural phonetic typewriter [36], but
several strategies for this purpose have been devised since then, with the post-training
labelling of SOM prototypes being the most common one. Furthermore, kernelising
techniques can be used to  improve the performance of the SOM as a classifier
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considerably (see [40], for example).

R2.2) “Standard SOM does not approximate probability densities. This could be the
reason why the proposed methods do not seem to perform as well as expected (as the
toolbox was used).”

Answer R2.2: We agree with the reviewer that the SOM does not approximate
probability densities accurately, but it does approximate at some degree. SOM-based
density estimation can be carried out with satisfactory degree of accuracy through the
use of  Gaussian mixture modelling.  In fact, we have done that for the ROSOM-1C. In
the revised version we discussed this approach in the 2nd paragraph of Subsection
5.1.1 and cited suitable methods for doing that using the SOM, such as  the SOMN
(self-organizing mixture network, [68]) and the SO-RKDE (self-organizing reduced
kernel density estimation, [1]). In the simulations, we decided to use the SO-RKDE for
its simplicity, but we could have equally used the SOMN.

In what concern the performances of the proposed ROSOM-C1 and ROSOM-C2
classifiers, we do not agree that they did not perform as well as expected. On the
contrary, during the development of the research reported in the paper, we had no
expectations at all. We decided to build SOM-based classifiers and endow them with
reject option class because our group had previous successful experiences with the
SOM in real-world applications, both in industrial environments and  technology-
oriented companies. Given this previous experiences with the SOM, this neural
network came to be a natural choice to be evaluated as a classfier with reject option
mechanisms. At the end, we got very surprised that the proposed SOM-based
classifiers achieved results that could rivalize with those produced by standard
supervised classifiers, including LVQ-, MLP- and SVM-based classifiers (see the
answer to the next comment of this reviewer). For us, this was a remarkable result to
be shared with others.

R2.3) “Comparison should also include standard SOM with various post-labelling
methods, as well as SVM if possible, to benchmark the performance of the proposed
methods.”

Answer R2.3: Indeed, we carried out experiments with several neuron labelling
methods (at least, the ones evaluated in reference [43]) and choose two of them. We
did not find basically statistically significant difference among the several neuron
labelling methods, but we agree with the reviewer that this issue could be evaluated
more deeply. We decided not to include all these experiments in the paper to not
overload it with not relevant results. At the end, the post-labelling method was chosen
because it is probably the most common method. The self-supervised method was
chosen because historically it was used by Kohonen himself in reference [36].
In what concern the comparison with SVM-based classifiers, we included a complete
set of new experiments with an SVM classifier endowed with an embedded reject
option strategy as proposed by Fumera and Roli in reference [21]. The obtained results
are discussed in Section 6 and compared with those achieved by the proposed SOM-
based classifiers.
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Abstract Reject option is a technique used to improve classifier’s reliability in decision
support systems. It consists in withholding the automatic classification of an item, if the
decision is considered not sufficiently reliable. The rejected item is then handled by a dif-
ferent classifier or by a human expert. The vast majority of the works on this issue has
been concerned with the developement of reject option mechanisms to be used by super-
vised learning architectures (e.g., MLP, LVQ or SVM). In this paper, however, we aim at
proposing alternatives to this view which are based on the Self-Organizing Map (SOM),
originally an unsupervised learning scheme, but that has also been successfully used in the
design of prototype-based classifiers. The basic hypothesis we defend is that it is possible to
design SOM-based classifiers endowed with reject option mechanisms whose performances
are comparable to or better than those achieved by standard supervised classifiers. For this
purpose, we carried out a comprehensively evaluation of the proposed SOM-based classi-
fiers on two synthetic and three real-world data sets. The obtained results suggest that the
proposed SOM-based classifiers consistently outperform standard supervised classifiers.
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2 Ricardo Sousa? et al.

Keywords Self-Organizing Maps, Reject Option, Robust Classification, Prototype-based
Classifiers, Neuron Labeling

1 Introduction

The field of machine learning has been evolving at a very fast pace, being mostly motivated
and pushed forward by increasingly challenging real world applications. For instance, in
credit scoring modeling, models are developed to determine how likely applicants are to
default with their repayments. Previous repayment history is used to determine whether a
customer should be classified into a ‘good’ or a ‘bad’ category [58]. Prediction of insurance
companies’ insolvency has arisen as an important problem in the field of financial research,
due to the necessity of protecting the general public whilst minimizing the costs associated to
this problem [58]. In medicine, the last decades have witnessed the development of advanced
diagnostic systems as alternative, complementary or a first opinion in many applications [3].

Notwithstanding, real world problems still pose challenges which may not be solvable
satisfactorily by the existing learning methodologies used by automatic decision support
systems [22,27,29], leading to many incorrect predictions. This is particularly true for con-
ventional learning systems (e.g. neural networks), in which the number of possible outputs is
equal to the number of class labels. For instance, in a binary classification task, the possible
outputs are encoded as good (normal) or bad (abnormal) categories. However, there are situ-
ations in which the decision should be postponed, giving the support system the opportunity
to identify critical items for posterior revision, instead of trying to automatically classify
every and each item. In such cases, the system automates only those decisions which can
be reliably predicted, letting the critical ones for a human expert to analyze. Therefore, the
development of binary classifiers with a third output class, usually called the reject class,
is attractive. This approach is known as classification with reject option [11, 16, 31] or soft
decision making [33]. Roughly speaking, reject option comprises a set of techniques aim-
ing at improving the classification reliability in decision support systems, being originally
formalized in the context of statistical pattern recognition in [11], under the minimum risk
theory. Basically, it consists in withholding the automatic classification of an item, if the
decision is considered not sufficiently reliable. Rejected patterns can then be handled by a
different classifier, or manually by a human. Implementation of reject option strategies re-
quires finding a trade-off between the achievable reduction of the cost due to classification
errors, and the cost of handling rejections (which are application-dependent).

Reject option can be seen as an alternative to data subset selection strategies widely
known as instance selection, prototype selection or yet, in a broader framework, active
learning [19, 24, 28, 30, 45]. Roughly speaking, instance/prototype selection mechanisms
aim at selecting a suitable subset of input patterns that are included in the training set of
the classifier. By suitable subset we mean the smallest set of representative training patterns
that eventually lead to the design of accurate classifiers. Thus, the ultimate goal of an in-
stance selection mechanism besides reducing data storage costs is to increase the accuracy
of the classifier by making it more insensitive to noisy/redundant/ambiguous patterns. Sim-
ilar goal is pursued by reject option mechanisms, but the way they are implemented differs
considerably. While instance selection mechanisms are commonly applied before training
the classifier, rejection option thresholds are usually computed after training the classifier1.

1 There are reject option strategies which are executed during the training of the classifier. These are
known as embedded reject option mechanisms. See Section 2 for more detail.
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Robust Classification with Reject Option Using the Self-Organizing Map 3

It is worth mentioning, however, that rejection option strategies has been recently used for
the purpose of instance selection [55]. This can be done by eliminating from the those train-
ing instances which are rejected by the classifier.

Despite its potential advantage, the problem of classification with a reject option has
been tackled only occasionally in machine learning literature, using supervised learning
methods, such as the MLP, LVQ and SVM classifiers.

Historically, modifications of supervised neural network classifiers in order to include
reject option date back to the first half of the 1990s. The works of Vasconcelos et al. [64,65]
and Cordella et al. [13] pioneered in proposing reject option strategies specifically for the
MLP network. More or less at the same time, Cordella et al. [12] developed a reject option
strategy to be used by the LVQ network. Later, De Stefano et al. [15] generalized the works
in [12, 13] by introducing a general framework for endowing supervised neural classifiers
with reject option mechanisms. They successfully tested their approach in MLP, LVQ and
RBF classifiers. In recent years, contributions focusing in a specific neural learning method,
such as the LVQ [57] and the MLP [23], can still be found, but several works have aimed at
the development of reject option mechanisms for SVM-like kernel classifiers [2,6,21,54,69].

In parallel, comparative studies involving several classification paradigms and different
rejection option strategies have been carried out by many authors. For example, Fumera et
al. [20] performed computer experiments for text categorization with three kinds of clas-
sifiers commonly used in the literature (i.e. k-NN, MLP and SVM). They concluded that
the reject option can indeed significantly improve the performance of a text categorisation
system, at the expense of a reasonably small rate of rejected decisions for each category.
Tortorella [59] presented an optimal reject rule for binary classifiers based on the Receiver
Operating Characteristic (ROC) curve. The rule is optimal since it maximizes a classifica-
tion utility function, defined on the basis of classification and error costs particular for the
application at hand. Santos-Pereira and Pires [50] established a connection between Tor-
torella’s approach, which is based on ROC curves, and a generalization of Chow’s optimal
rejection rule. Finally, Lotte et al. [41] evaluated pattern rejection strategies for self-paced
Brain-Computer Interfaces. Best results were achieved using the reject option and nonlinear
classifiers, such as a Gaussian SVM, a fuzzy inference system or an RBF network.

A common feature of all the aforementioned works on reject option is that they have
been implemented using supervised classifiers. As a feasible alternative, we advocate the
use of classifiers built from the Self-Organizing Map (SOM) [37]. The SOM is originally
an unsupervised learning algorithm, but it has been successfully applied to supervised pat-
tern classification tasks (see [40, 43, 53, 56, 60] and references therein). Teuvo Kohonen,
the proponent of the SOM himself, developed the first application of the SOM as a super-
vised pattern classifier in his neural phonetic typewriter [36], but several strategies for this
purpose have been devised since then, with the post-training labelling of SOM prototypes
being probably the most common one. Furthermore, kernelising techniques can be used to
improve the performance of the SOM as a classifier considerably (see [40], for example).

It is worth mentioning that SOM-based classifiers belong to the class of prototype-based
classifiers, to which also belong LVQ [5, 51] and ARTMAP classifiers [9]. Such classifiers
possess two desirable properties which are hard to find in standard MLP and SVM clas-
sifiers. Firstly, due to the local nature of prototype-based classifiers, interpretation of the
decisions in terms of local explanatory rules associated to each prototype is facilitated. Sec-
ondly, prototype-based classifiers are easily endowed with adaptive strategies for adding
and deleting prototypes to fit the current data distribution, a valuable property specially in
evolving, nonstationary environments.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
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Despite LVQ-based classifiers with reject option being available since a while [12, 57],
the same is not true for SOM-based classifiers. Would SOM-based classifiers with reject
option perform better than the LVQ-based counterpart? Further, in a broader perspective,
would SOM-based classifiers with reject option perform better than its supervised counter-
parts?

Bearing these thought-provoking questions in mind, in this paper we develop two novel
strategies to design SOM-based classifiers with reject option, and compare their perfor-
mances with those of the MLP, LVQ and SVM classifiers also endowed with reject op-
tion mechanisms. For this purpose, we promote a comprehensively evaluation of all these
classifiers on two synthetic and three real-world data sets. It is worth emphasizing that the
strategies proposed in this work are robust with respect to their capacity of controling the
confidence to label a new input vector as belonging to a certain class.

The remainder of this paper is organized as follows. Fundamental concepts regarding
the reject option are described in Section 2, followed by a brief overview of the SOM in
Section 3. In Section 5 our proposals are delineated to incorporate reject option in SOMs
and a thoroughly experimentation is described in Section 6. Finally, in Section 7 conclusions
are drawn.

2 Basics of Classification with Reject Option

As mentioned before, in possession of a “complex” dataset (e.g. from a medical diagno-
sis problem), every classifier is bound to misclassify some data samples. Depending on the
costs of the errors, misclassification can lead to very poor classifier’s performance. There-
fore, techniques where the classifier can abstain from providing a decision by delegating
it to a human expert (or to another classifier) is very appealing. In the following, we limit
the discussion of reject option strategies to the binary classification problem. For that, we
assume that the problem (and hence, the data) involves only two classes, say {C−1,C+1},
but the classifier must be able to output a third one, the reject class {C−1,CReject,C+1}).

Assuming that the input information is represented by an n-dimensional real vector x =
[x1 x2 · · · xn]

T ∈Rn, the design of classifiers with reject option can be systematized in three
different approaches for the binary problem:

1. Method 1: It involves the design of a single, standard binary classifier. If the classi-
fier provides some approximation to the a posteriori class probabilities, P(Ck|x), k =
1,2, ...,K, then a pattern is rejected if the largest value among the K posterior probabili-
ties is lower than a given threshold, say β (0≤ β≤ 1) [21,54]. More formally, according
to Chow [11] one holds a decision if

max
k

[P(Ck|x)]< β, (1)

or, equivalently,
max

k
[P(x|Ck)P(Ck)]< β, (2)

where P(Ck) is the a priori probability distribution of the k-th class and P(x|Ck) is the
conditional probability density for the pattern x given the k-th class. If the classifier does
not provide probabilistic outputs, then a rejection threshold targeted to the particular
classifier’s output should be used [33]. In this case, reject the classification of x if

max
k
{ok}< β, (3)
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Robust Classification with Reject Option Using the Self-Organizing Map 5

where ok is the k-th output of the classifier, k = 1,2...,K. For the binary classification
problem, we have K = 2.
For this method, the classifier is trained as usual (i.e. without referring to an explicit
rejection class); but rather, the rejection region is determined after the training phase,
heuristically or based on the optimization of some post-training criterion that weighs
the trade-off between the costs of misclassification and rejection.

2. Method 2: The design of two, independent, classifiers. A first classifier is trained to
output C−1 only when the probability of C−1 is high and a second classifier trained to
output C+1 only when the probability of C+1 is high. When both classifiers agree on
the decision, the corresponding class is outputted. Otherwise, in case of disagreement,
the reject class is the chosen one. The intuitive idea behind this approach is that if both
classifiers have high levels of confidence in their decisions then the aggregated decision
should be correct in case of agreement. In case of disagreement, the aggregated decision
is prone to be unreliable and hence rejection would be preferable [54].

3. Method 3: The design of a single classifier with embedded reject option; that is, the
classifier is trained following optimality criteria that automatically take into account the
costs of misclassification and rejection in their loss functions, leading to the design of
algorithms specifically built for this kind of problem [6, 21, 54].

Later in this paper, we will introduce two SOM-based (and similarly two LVQ-based)
strategies that instantiate the classification with reject option paradigms described above as
Methods 1 and 2.

3 The Self-Organizing Map

The Self-Organizing Map (SOM) [34, 37] is one of the most popular neural network archi-
tectures. It belongs to the category of unsupervised competitive learning algorithms and it is
usually designed to build an ordered representation of spatial proximity among vectors of an
unlabeled data set. The SOM has been widely applied to pattern recognition and classifica-
tion tasks, such as clustering, vector quantization, data compression and data visualization.
In these applications, the weight vectors are called prototypes or centroids of clusters of
input vectors, being obtained usually through a process of learning.

The neurons in the SOM are put together in an output layer, A, in one-, two- or even
three-dimensional arrays. Each neuron j ∈ A, j = 1,2, . . . ,q, has a weight vector w j ∈ Rd

with the same dimension of the input vector x∈Rd . The network weights are trained accord-
ing to a competitive-cooperative learning scheme in which the weight vectors of a winning
neuron (also called, the best-matching unit - BMU) and its neighbors in the output array are
updated after the presentation of an input vector. Roughly speaking, the functioning of this
type of learning algorithm is based on the concept of winning neuron, defined as the neuron
whose weight vector is the closest to the current input vector.

Using Euclidean distance, the simplest strategy to find the winning neuron, i(n), is given
by:

i(n) = argmin
∀ j
‖x(n)−w j(n)‖ (4)

where x(n)∈Rd denotes the current input vector, w j(n)∈Rd is the weight vector of neuron
j, and n denotes the current iteration. Accordingly, the weight vectors are adjusted by the
following iterative equation:

w j(n+1) = w j(n)+η(n)h( j, i;n)[x(n)−w j(n)], (5)
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Fig. 1: Example of a SOM as a compact, topology-preserving, representation of a synthetic dataset (left
figure). A mapping (φ) is learned in order to reflect the input data distribution (center figure). The distribution
of the weight vectors of the SOM in the input space, where neighboring prototypes in the output grid are
shown connected in the input space (right figure).

where h( j, i;n) is a Gaussian function which control the degree of change imposed to the
weight vectors of those neurons in the neighborhood of the winning neuron:

h( j, i;n) = exp
(
−
‖r j(n)− ri(n)‖2

σ2(n)

)
(6)

where σ(n) defines the radius of the neighborhood function, r j(n) and ri(n) are, respectively,
the coordinates of neurons j and i in the array. The learning rate, 0 < η(n) < 1, should
decrease gradually with time to guarantee convergence of the weight vectors to stable states.
In this paper, we use η(n) = η0 (ηT/η0)

(n/T ), where η0 and ηT are the initial and final
values of η(n), respectively. The variable σ(n) should also decrease with time similarly to
the learning rate η(n).

The SOM has several features which make it a valuable tool in data mining applica-
tions [46]. For instance, the use of a neighborhood function imposes an order to the weight
vectors, so that, at the end of the training phase, input vectors that are close in the input
space are mapped onto the same winning neuron or onto winning neurons that are close in
the output array. This is the so-called topology-preserving property of the SOM, which has
been particularly useful for data visualization purposes [17].

Once the SOM converges, the set of ordered weight vectors summarizes important sta-
tistical characteristics of the input (see Fig. 1). The SOM should reflect variations in the
statistics of the input distribution [47]: regions in the input space X from which a sample
x are drawn with a high probability of occurrence are mapped onto larger domains of the
output space A, and therefore with better resolution than regions in X from which sample
vectors are drawn with a low probability of occurrence. For the interested reader, further
information about the SOM and applications can be found in [63] and [67].

3.1 SOM for Supervised Classification

In order to use the SOM for supervised classification, modifications are necessary in its
original learning algorithm. There are many ways to do that (see [40, 43] and references
therein), but in the present paper we will resort to two well-known strategies.
Strategy 1 - The first strategy involves a post-training neuron labeling. It consists firstly
in training the SOM in the usual unsupervised way until convergence of the weights. Once
training is finished, one has to present the whole training data once again to the SOM in
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Robust Classification with Reject Option Using the Self-Organizing Map 7

order to find the winning neuron for each pattern vector. A given neuron can be selected the
winner for pattern vectors belonging to different classes. However, among all the patterns
a given neuron was selected the winner, the number of exemplars of a given class usually
is higher that the number of exemplars of other classes. Hence, a class label is assigned to
a neuron on a majority voting basis, i.e. a neuron receives the label of the class with the
highest number of exemplars.

Two undesirable situations may occur: (i) ambiguity or (ii) dead neurons. Ambiguity
occur when the frequency of the class labels of the patterns mapped to a given neuron are
equivalent. Dead neurons are those never selected as winners for any of the input patterns. In
these cases, the neuron could be pruned (i.e. disregarded) from the map, or even be tagged
with a “rejection class” label.

For the case in which these neurons receive the “rejection class” label, whenever any of
them is selected as winner for a new incoming pattern, this pattern is then rejected. Despite
its simplicity, this approach does not give the user the freedom of searching for an acceptable
degree of rejection for a given problem by means of the specification of the rejection cost
ωr, an approach introduced by Chow [11]. The rejection cost impacts directly on the ratio
between the total number of rejected patterns and the number of misclassified patterns. A
classifier with high ωr tends to reject just a few patterns (in other words, it is costly to reject
a pattern); thus increasing its misclassification rate. A classifier with low ωr tends to reject
a high number of patterns, thus decreasing its misclassification rate2.

In this paper, we extend Strategy 1 in order to allow the SOM network to handle pattern
classification problems with reject option. For this purpose, we follow a more systematic
and principled approach based on Chow’s concept of rejection cost [11], instead of simply
tagging ambiguous or dead neurons with “rejection class” labels.

Strategy 2 - The second strategy, usually called the self-supervised SOM training scheme,
is the one used by Kohonen for the neural phonetic typewriter [36]. According to this strat-
egy, the SOM is made supervised by adding class information to each input pattern vector.
Specifically, the input vectors x(n) are now formed of two parts, xp(n) and xl(n), where
xp(n) is the pattern vector itself, while xl(n) is the corresponding class label of xp(n). Dur-
ing training, these vectors are concatenated to build augmented vectors x(n)= [xp(n) xl(n)]T

which are used as inputs to the SOM. The corresponding augmented weight vectors, w j(n)=
[wp

j (n) wl
j(n)]

T , are adjusted as in the usual SOM training procedure.

Usually, the label vector xl(n) is represented as a unit-length binary vector; that is, only
one of its components is set to “1”, while the others are set to “0”. The index of the “1”
position indicates the class of the pattern vector xp(n). For example, if three classes are
available, then three label vectors are possible: one for the first class ([1 0 0]), one for the
second class ([0 1 0]) and one for the third class ([0 0 1]).

For the classification of an unknown pattern x(n), the xl(n) part is not considered, i.e.
only its xp part is compared with the corresponding part of the weight vectors. However,
the class label of the unknown pattern vector is decided on the basis of the wl

i(n) part of
the winning weight vector wi(n). The index of the component of wl

i(n) with largest value
defines the class label of the unknown pattern vector xp.

2 At the limit, a classifier with a very low ωr would classify only the so-called “easy patterns”.
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8 Ricardo Sousa? et al.

4 The Learning Vector Quantization (LVQ)

Introduced by Kohonen [35, 39], LVQ comprises a class of competitive learning algorithms
for nearest prototype classification (NPC) [45, 52, 61]. In NPC, the discriminant functions
are parametrized using a set of prototype vectors for each class, and classification is based
on the distance between a data point and the class to which its closest prototype belongs to.
Often an Euclidean distance measure is used, but other measures including divergences can
be equally used [66]. Being a popular approach to pattern classification, several versions
of LVQ algorithms are available in the literature. For recent advances on LVQ theory, the
interested reader is referred to [5, 51].

In LVQ classifiers, a set of q prototype vectors, {w1,w2, . . . ,wq}, w j ∈Rp, are initialized
with data vectors randomly sampled from different classes and inherit their labels. Given
an input pattern x(n) ∈ Rp at the n-th learning iteration, competition between neurons is
implemented using Equation (4) in order to find the winning neuron j∗ at time step n. Then,
the weight vector associated with the winning neuron j∗(n) is updated as follows

w j∗(n+1) = w j∗(n)+ s(n)η(n)[x(n)−w j∗(n)], (7)

where η(n) is the learning rate. We set s(n) = 1, if the label of the winning neuron j∗(n) is
the same as the one of the input pattern; otherwise, we set s(n) =−1.

Once the training phase is finished, the LVQ network follows the nearest neighbor rule
for pattern classification purposes, i.e. the class label for any new input pattern is the label
associated with its nearest weight vector found by Equation (4).

5 Incorporating Reject Option into the SOM: Two Proposals

Before proceeding with the description of the two proposals, it is worth exposing the main
reasons that led to the choice of the SOM for supervised classification with rejection op-
tion instead of other prototype-based classifiers. Firstly, it has been verified that the use of
a neighborhood function makes the SOM less sensitive to weight initialization [38] and ac-
celerates its convergence [14] when compared with other prototype-based classifiers, such
as the LVQ. Once trained, one can also take advantage of the SOM’s density matching and
topology-preserving properties to extract rules from a trained SOM network [42] in order to
permit further analysis of the results towards better decision making.

In particular, the density matching and topology-preserving properties will be used by
both proposals to be described in order to estimate P(x|Ck) (or P(Ck|x)) using the distribu-
tion of SOM’s weight vectors. An optimal threshold value has to be determined in order to
re-tag some of the weight vectors with the rejection class label. In this paper we will also
discuss briefly techniques to obtaining suitable estimates of the likelihood function P(x|Ck)
or the posterior probability P(x|Ck).

The first proposal will be referred to as the ROSOM-1C methodology, since it requires
only one SOM network, trained in the usual unsupervised way. The second proposal con-
sists in training two SOMs, one is trained to become specialized on the class of negative
examples, say, class C−1, while the other is trained to become specialized on the class of
positive examples, say, class C+1. The decision to reject a given pattern will be determined
based on the combination of results provided by the outputs of each map. This approach will
be referred as the ROSOM-2C methodology along the remainder of the paper.

As a final remark, it is worth mentioning that the design methodologies of the ROSOM-
1C and ROSOM-2C classifiers are general enough in the sense that they can be used to
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Robust Classification with Reject Option Using the Self-Organizing Map 9

develop pattern classifiers with reject option using, in principle, any topology-preserving
prototype-based neural networks, such as the Growing Neural Gas (GNG) [18] and the Pa-
rameterless SOM (PLSOM) [4] algorithms.

5.1 SOM with Reject Option Using One Classifier

Initially, the ROSOM-1C requires post-training neuron labeling via Strategy 1, as described
in Subsection 3.1. Additional steps are included in order to change the labels of some neu-
rons to rejection class. The main idea behind the proposal of the ROSOM-1C approach
relies exactly on developing formal techniques to assign the rejection class label to a given
neuron. In greater detail, the design of the ROSOM-1C requires the following steps.

STEP 1 - For a given data set, a number of training realizations are carried out using a single
SOM network in order to find the best number of neurons and suitable map dimensions. For
this purpose, the conventional unsupervised SOM training is adopted.

STEP 2 - Present the training data once again and label the prototypes w j, j = 1, ...,q,
according to the mode of the class labels of the patterns mapped to them. No weight adjust-
ments are carried out at this step.

STEP 3 - Based on the SOM’s ability to approximate the input data density, we approximate
P(x|Ck) with P(w j|Ck,x), for j = 1, ...,q and k = 1, ...,K. In Subsection 5.1.1, we describe
two techniques to compute P(w j|Ck,x) based on standard statistical techniques, namely,
Parzen Windows and Gaussian Mixture Models.

STEP 4: Finding an optimum value for the rejection threshold β requires the minimization
of the empirical risk as proposed in [11]:

R̂ = ωrR+E (8)

where R and E are, respectively, the ratio of rejected and misclassified patterns (computed
using validation data), while ωr is the rejection cost (whose value must be specified in ad-
vance by the user). It is worth recalling that a low (high) ωr leads to the induction of a
classifier that rejects many (few) patterns, thus increasing (decreasing) its recognition rate.

The searching procedure is described as follows.

STEP 4.1 - For a given rejection cost ωr, vary β from an initial value βi to a final value β f

in fixed increments ∆β. Typical values are: βi = 0.55, β f = 1.00 and ∆β = 0.05.

STEP 4.2 - Then, for each value of β, do

(i) Compute R(β) = number of rejected patterns
total number of patterns

(ii) Compute E(β) = number of misclassified patterns
total number of patterns

(iii) Compute R̂(β) as in Equation (8).

STEP 4.3 - Select the optimum rejection threshold (βo) according to the following rule:

βo = argmin
β

{R̂(β)}. (9)
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10 Ricardo Sousa? et al.

STEP 5: Re-label the prototypes using the following rule:

IF max
k
{P(Ck)P(wi|Ck,x)}< β (10)

THEN change class(wi) to Rejection Class,

ELSE keep class(wi) as determined in STEP 2.

Once the prototypes have been re-labeled, the following decision rule is used for classi-
fying new incoming patterns:

IF wi is the winning prototype for pattern x(n),
THEN reject x(n) if class(wi) = Rejection Class, (11)

ELSE class(x(n))← class(wi).

5.1.1 On the Estimation of P(w j|Ck,x)

The first approach to be used to compute SOM-based estimates of P(w j|Ck) is through the
Parzen windows nonparametric method. The estimation is usually performed by some kernel
function, usually a Gaussian, averaged by the number of points belonging to a given class:

P(w j|Ck,x) =
1

Nk

Nk

∑
i=1

1

hd(2π)
d
2 |Ck|

1
2

exp

(
−

Q(x(k)i ,w j)

2h2

)
(12)

with Q(x(k)i ,w j) = (x(k)i −w j)
T C−1

k (x(k)i −w j), where h is the width of the Gaussian window,
x(k)i is the i-th pattern of the k-th class, Ck is the covariance matrix estimated from the training
instances of the k-th class (i.e. Ck), Nk the number of elements of the k-th class and d is the
dimension of x(k)

i and w j.
Another approach to estimate P(w j|Ck,x) based on the distribution of SOM prototypes is

via Gaussian mixture modelling (GMM) principles [1,32,48,52,62,68]. It is well known that
the SOM itself provides only a rough approximation of the data density. Better approxima-
tions can be obtained using, for example, the self-organizing mixture network (SOMN) [68]
or the self-organizing reduced kernel density estimation (SO-RKDE) method [1]. The basic
idea behind the SO-RKDE model consists in using the SOM prototypes as kernel centers.
Priors and conditional densities for unit j are estimated using the data samples from the
Voronoi cell of unit i and also from its neighboring cells. The neighborhood function is used
to get a weighted contribution of data from the neighboring units. In the simulations, a Gaus-
sian neighborhood kernel was used. Probabilistic interpretation for the outputs of the SOM
units can then be generated by a Gaussian mixture model based on the SO-RKDE method.
In this paper, we use the SO-RKDE model implemented in the SOM toolbox3.

5.1.2 Neuron Re-Labeling Based on Gini Index

For the application of the decision rule in (10), one has to store all the values of the poste-
rior probabilities estimates P(Ck|w j,x) ∝ P(Ck)P(w j|Ck,x) for each neuron j. The quantity
P(Ck|w j,x) express the probability of an instance that has fallen within the Voronoi cell of
neuron j to belong to class Ck. By means of concepts borrowed from information theory, it

3 Available for download at http://www.cis.hut.fi/somtoolbox/.
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Robust Classification with Reject Option Using the Self-Organizing Map 11

Fig. 2: On the left-hand figure it is shown a trained ROSOM-1C classifier using the Gini coefficient approach
for a synthetic dataset. The right-hand figure depicts a class prediction results for a given testing data, where
the red and green colors denote the decision classes and beige the reject decisions.

is possible to merge all the probabilities P(Ck|w j,x), k = 1, ...,K, associated with a given
neuron, into a single quantity to be called cell impurity.

Roughly, the impurity of neuron (or cell) j is a measure of the entropy of the class labels
of the patterns mapped to this neuron. If the entropy is high, the distribution of class labels
is more or less uniform (i.e. no class label dominates over the others). If the entropy is low,
one class label clearly dominates over the others. In order to quantify the inequality of class
labels distribution within a neuron, one can resort to the Gini coefficient [25, 26]. In the
present context, this measurement is given by

G j = 1−
K

∑
k=1

P2(Ck|w j,x), j = 1, ...,q (13)

where P(Ck|w j,x) can be, for simplicity, computed as the frequency of instances within the
Voronoi cell belonging to the class Ck. Ideally, the desirable situation is to have always low
values for the Gini coefficient, indicating predominance of a certain class label within neuron
j. Neurons located at the borders of decision regions usually have high Gini coefficients,
indicating higher entropy in the frequency of class labels within those neurons and, hence,
a lower confidence in labeling them with a specific class label.

Using the Gini coefficient measure, the decision rule in (10) is now written as the fol-
lowing decision rule:

IF Gi > β (14)

THEN reject x(n),
ELSE class(x(n)) = class(wi).

where i is the index of the winning neuron for the current input pattern x(n).

w j(n+1) = w j(n)+
{

η(n)h(i, j;n)[x(n)−w j(n)]ωr, if class(x(n)) = C+1

η(n)h(i, j;n)[x(n)−w j(n)](1−ωr), if class(x(n)) = C−1.
(15)

w j(n+1) = w j(n)+
{

η(n)h(i, j;n)[x(n)−w j(n)](1−ωr), if class(x(n)) = C+1

η(n)h(i, j;n)[x(n)−w j(n)]ωr, if class(x(n)) = C−1.
(16)

Fig. 2 shows the results of a ROSOM-1C classifier for synthetic dataset (see Section 6)
using the Gini coefficient approach. Each neuron has been initially trained and labeled,
respectively, according to Steps 1 and 2 of the design procedure. Once the optimum rejection
threshold has been determined, decision for rejection are made based on (14).
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(a) (b) (c)

Fig. 3: Figures on the left (a) and center (b) present the trained SOM-1 and SOM-2 networks, respectively; (c)
if both agree on the outcome a decision is emitted (green or red). Otherwise, instances are rejected (beige).

5.2 SOM with Reject Option Using Two Classifiers

In comparison to the ROSOM-1C, the individual SOM networks that comprise the ROSOM-
2C have an extra feature: the ability to control the preference for patterns of a given class by
the inclusion of cost parameter ωr into the learning rules of the individual networks. In other
words, one individual network is trained to become specialized, say, on class C−1, while the
other is trained to become specialized on class C+1.

By allowing one of the networks to have preference for (i.e. to be biased toward) the
patterns of class C+1, while the other has preference for the patterns of class C−1, makes
the decision rule of ROSOM-2C more reliable. More reliable in the sense that a pattern is
classified only when the outputs of both network coincides, otherwise the pattern is rejected.

The design of the ROSOM-2C requires the following steps.

STEP 1 - Choose a rejection cost ωr.

STEP 2 - Train two SOM networks following the self-supervised SOM training scheme
describe in Subsection 3.1.

STEP 2.1 - Train the first SOM network, henceforth named SOM-1 classifier, to become
specialized on the class C−1. For that, we replace the standard SOM learning rule
with Equation (15).

STEP 2.2 - Train the second SOM network, henceforth named SOM-2 classifier, to become
specialized on the class C+1. For that, we replace the standard SOM learning rule
with Equation (16).

STEPS 3, 4 and 5 - The same as the ones described for the ROSOM-1C classifier. The Gini
coefficient approach can also be used to re-label the prototypes of the ROSOM-2C classifier.

Once the ROSOM-2C is trained, a new incoming pattern x(n) can be classified or re-
jected by the application of the following procedure:

– Find the winning prototype wi1 for x(n) in SOM-1.
– Find the winning prototype wi2 for x(n) in SOM-2

IF class(wi1) = class(wi2),

THEN class(x(n))← class(wi1), (17)

ELSE reject x(n).
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Robust Classification with Reject Option Using the Self-Organizing Map 13

According to the ROSOM-2C decision rule in (17), three situations may occur:

Situation 1 - When the labels of the prototypes wi1 and wi2 match and are equal to one of
the class labels (i.e. C+1 or C−1), the pattern is classified with confidence as belonging to that
class.

Situation 2 - When the labels of the prototypes wi1 and wi2 match and are equal to ‘Rejection
Class’, the pattern is rejected with confidence.

Situation 3 - When the labels of the prototypes wi1 and wi2 do not match (i.e. in case of
doubt), the pattern is also rejected.

From the exposed, it is useful to think of the ROSOM-2C as a committee of two special-
ized classifiers, one biased toward class C+1, the other biased toward class C−1. When the
two classifiers agree in their decisions it means that the pattern can be classified with con-
fidence, including the possibility of being rejected with higher confidence when the outputs
of the two individual classifiers agree in rejecting the pattern. When they disagree in their
decision, a more conservative approach is to also reject the new incoming pattern.

Fig. 3 illustrates the decision regions found produced by a ROSOM-2C classifier for
a synthetic dataset (details are given in Section 6). In Fig. 3 (left) the individual network
is trained to have preference for patterns of the class ‘red’, while in Fig. 3 (center) the
individual network is trained to have preference for patterns of the class ‘green’4.

A final remark is necessary here. Extension of the ROSOM-2C approach to multiclass
problems is straightforward. For this, one should adopt a One-Against-One strategy, which
is commonly used to extend SVM binary classifiers to multiclass problem. In this case the
algorithm would be the following: For K classes, construct K(K−1)/2 ROSOM-2C classi-
fiers. Each classifier discriminates between two classes. A new incoming pattern is assigned
using each classifier in turn and a majority vote taken. In case of ambiguity of the majority
vote, with no clear decision for some patterns, the pattern is rejected.

5.3 LVQ with Reject Option Using One and Two Classifiers

Similarly to SOM-like strategies for classification with reject option, one can build LVQ-like
classifiers with reject option based on either Method 1 or Method 2. In order to do that it is
only necessary to follow those steps which were presented in Subsection (5.1) or (5.2) but
training LVQ classifiers as described in Section (4) instead of SOM network. The resulting
LVQ-based classifiers thus designed will be referred to as ROLVQ-1C and ROLVQ-2C,
respectively.

6 Computer Simulations and Discussion

In tis section we report the results of a comprehensive performance comparison among the
proposed ROSOM-1C and ROSOM-2C classifiers and their supervised counterparts, which
are based on the MLP, LVQ and SVM classifiers. The performance of the classification
methods were assessed over five datasets which are described in the next subsections. The
first two were synthetically generated; the remainder datasets includes real-world data.

4 Note that there are more prototypes over patterns of the class ‘red’ in Fig. 3 (left) than in Fig. 3 (center)
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Fig. 4: Plot with samples from the two classes of the syntheticI dataset.

6.1 Synthetic Datasets

As in [8], for the first synthetic dataset (syntheticI), we began by generating 400 points
x = [x1 x2]

T in the unit square [0,1]× [0,1]⊂R2 following a uniform distribution. Then, we
assigned to each example x a class y ∈ {−1,+1} corresponding to

y =


t, t 6= 0
+1, t = 0∧ ε2 < α

−1, t = 0∧ ε2 > α

,

where t =minr∈{−1,0,+1} {r : br−1 < α+ ε1 < br}, α= 10(x1−0.5)(x2−0.5), ε1∼N(0,0.1252),
ε2 ∼ Uniform(b−1,b0) and (b−2,b−1,b0,b1) = (−∞;−0.5;0.25;+∞). This distribution cre-
ates two uniformly distributed plateaus and a transition zone of linearly decreasing proba-
bility, delimited by hyperbolic boundaries (see Fig. 4).

A second synthetic dataset of 400 points—syntheticII—was generated from two

Gaussian in R2: y−1 ∼ N
([
−2
−2

]
,

[
9 0
0 9

])
+ ε and y+1 ∼ N

([
+2
+2

]
,

[
25 0
0 25

])
+ ε cor-

responding to classes {−1,+1} respectively, where ε follows a uniform distribution in
[0.025,0.25].

6.2 Real-World Datasets

The first real-world dataset is a subset of letter problem, publicly available on the UCI
machine learning repository, which is composed of 20,000 instances with 16 features de-
scribing the 26 capital letters. Each instance is mainly defined by statistical moments and
edge counts. In our experiments we used a subset of the whole dataset comprehending only
the discrimination of the letter A versus the letter H.

The second real-world data set represents the discrimination of normal subjects from
those with a pathology on the vertebral column. This database, also publicly available on
the UCI machine learning repository, contains information about 310 patients obtained from
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sagittal panoramic radiographies of the vertebral column described by 6 different biome-
chanical features. 100 patients were volunteers without any pathology (normal patients).
The remaining data is from patients eventually operated due to disc hernia (60 patients) or
spondylolisthesis (150 patients), comprising of 210 abnormal patients. For this study, we
merge the groups of subjects with disk hernia and spondylolisthesis into a single pathology
class. See [49] for more detail on this data set.

The last real dataset, encompassing 1144 observations, expresses the aesthetic evalua-
tion of Breast Cancer Conservative Treatment [7, 44]. For each patient submitted to BCCT,
30 measurements were recorded, capturing visible skin alterations or changes in breast vol-
ume or shape. In this work we used only 4 measures as identified in [44] as the most relevant
ones. The aesthetic outcome of the treatment for each and every patient was classified in one
of the four categories: Excellent�Good�Fair�Poor. For the experimental work with binary
models, the multiclass problem was transformed into a binary one, by aggregating Excellent
and Good in one class, and the Fair and Poor cases in another class.

Experimental results are provided for all the ANN-based models previously discussed
and the embedded rejection option approach for SVMs introduced by Fumera and Roli [21].
All classifiers were evaluated on synthetic and real-world datasets. We thank G. Fumera for
providing the source code (in C/C++) of his method. Note that Fumera and Roli’s method
is for SVMs only and the provided implementation works only with linear kernels. We used
the SOM toolbox for implementing the ROSOM-1C and ROSOM-2C classifiers and the
MatlabTMNeural Networks toolbox for MLP-based classifiers. For fair performance com-
parison, we have instantiated the same rejection option strategies used for the SOM-based
classifiers into the MLP-based classifiers, giving rise to the MLP-1C and MLP-2C classi-
fiers. Since we have trained the MLP-based classifiers to estimate the posterior probabilities,
decisions for the MLP-1C are obtained simply through the application of the rule in 1. For
the MLP-2C, each individual network penalizes differently the misclassifications according
to the same costs as presented for the ROSOM-2C classifier.

For the SOM-based classifiers a two-dimensional map was used in the experiments with
a hexagonal neighborhood structure and a Gaussian neighborhood function. For determining
the best parameterization, we conducted a 5-fold cross validation in order to find the best
number of neurons and the initial radius size for the neighborhood function. Our search
considered a squared map spanning 5× 5 to 25× 25 neurons. The learning phase stopped
after 200 epochs.

For the MLP-based classifiers, an exhaustive search over the number of hidden neurons,
ranging from 5 to 20 neurons, was carried out for a single hidden layer network, with a
single output neuron, and logistic sigmoid as activation function for all neurons. We defined
a maximum number of 15 epochs as the stopping criterion in order to avoid overfitting [10].
The resilient back-propagation (RPROP) training algorithm was used.

It is important to point out that, in the absence of further insights about the problem at
our disposal (other than the data itself), we cannot select only one value for ωr, since its
selection is intrinsically application-dependent. Thus, we started by running the classifiers
spanning three values for ωr in Equation (8): 0.04, 0.24 and 0.445. As mentioned the ωr

value is directly related to how many patterns an expert is willing to reject. For high values
of ωr each pattern will have high rejection costs and, in consequence, we will eventually
have a low number of rejected patterns. To assess the stability of the proposed approaches
the experiments were repeated 50 times by averaging the results. Moreover, since in Fumera
method only linear kernels were implemented, we extended the data sets with second order

5 Values of ωr higher than 0.5 are equivalent to random guesses.
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syntheticI (training set size = 60%)
ωr = 0.44 ωr = 0.24 ωr = 0.04

Method name Rej. Perf. Rej. Perf. Rej. Perf.
(ROSOM-1C) Parzen 0.13 0.90 0.28 0.96 0.49 0.99
(ROSOM-1C) Gini 0.08 0.87 0.25 0.94 0.47 0.98
(ROSOM-1C) GMM 0.06 0.83 0.15 0.85 0.99 1.00
(ROLVQ-1C) Parzen 0.33 0.87 0.36 0.88 0.52 0.94
(MLP-1C) 0.29 0.91 0.40 0.96 0.56 0.99
(SVM) Fumera-Roli 0.22 0.61 0.67 0.86 0.95 0.99

(a) Performance for syntheticI dataset with 60% of training data using the
ROSOM-1C (and corresponding variants), ROLVQ-1C, MLP-1C and SVM
classifiers. Items in bold correspond to the best global results according to
A-R curve (see Fig. 5a).

syntheticI (training set size = 80%)
ωr = 0.44 ωr = 0.24 ωr = 0.04

Method name Rej. Perf. Rej. Perf. Rej. Perf.
(ROSOM-1C) Parzen 0.11 0.91 0.27 0.96 0.48 0.99
(ROSOM-1C) Gini 0.07 0.87 0.28 0.94 0.51 0.98
(ROSOM-1C) GMM 0.07 0.83 0.18 0.87 0.95 1.00
(MLP-1C) 0.26 0.92 0.39 0.96 0.57 0.99
(SVM) Fumera-Roli 0.31 0.67 0.67 0.86 0.92 0.97

(b) Performance for syntheticI dataset with 80% of training data using
the ROSOM-1C (and corresponding variants), MLP-1C and SVM classifiers.
Items in bold correspond to the best global results according to A-R curve (see
Fig. 5c).

Table 1: Performances achieved for syntheticI dataset using the ROSOM-1C, ROLVQ-1C, MLP-1C and
SVM classifiers. We recommend the analysis of these tables with the assistance of Fig. 5.

terms xix j when evaluating this method. In this extended space, the optimal solutions for the
synthetic data sets are indeed linear.

Table 1 and Table 2 illustrate the implications of an incorrect choice of the ωr value.
As an example, in Table 2 for the MLP-2C classifier (the same argument applies for the
ROSOM-2C) we can have three times more patterns rejected with subtle improvements on
the performance when selecting ωr = 0.24 instead of ωr = 0.44.

By analyzing Table 1 we observe that the performances the the proposed ROSOM-
1C/Parzen are much better than those achieved by the MLP-1C, for all values of ωr. In
Table Table 2 the results follow the same pattern, with the proposed ROSOM-2C/Parzen
and ROSOM-2C/Gini performing much better than the MLP-2C classifier, for ωr = 0.24
and 0.04. Only when the cost of rejecting a pattern is high (i.e. for ωr = 0.44), the perfor-
mance of the MLP-2C class becomes equivalent that of the ROSOM-2C/GMM.

What follows next is a set of figures that allows a better understanding of the perfor-
mances through the Accuracy-Reject (A-R) curve, whose major advantage resides on the
straightforward interpretation of the results over the rejection costs presented by the A-R
curve. In Fig. 5 to Fig. 9 we present the experimental results for each of the aforementioned
data sets. In each plot the results of the proposed approaches compared to the MLP-, LVQ-
and SVM-based counterparts are presented. Each point break in the curves corresponds to a
given ωr value: 0.04, 0.24 and 0.44.

By analyzing the performance on an A-R curve one can easily read the performance
achieved by a given method and how much it was rejected for a given ωr: the highest the
curve, the better the performance is. For example, for the A-R curves shown in Fig. 5a, the
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syntheticI (training set size = 60%)
ωr = 0.44 ωr = 0.24 ωr = 0.04

Method name Rej. Perf. Rej. Perf. Rej. Perf.
(ROSOM-2C) Parzen 0.07 0.88 0.12 0.90 0.30 0.96
(ROSOM-2C) Gini 0.04 0.88 0.13 0.91 0.32 0.96
(ROSOM-2C) GMM 0.07 0.89 0.17 0.92 0.44 0.97
(ROLVQ-2C) Parzen 0.01 0.78 0.06 0.79 0.12 0.81
(MLP-2C) 0.09 0.90 0.30 0.96 0.66 0.99
(SVM) Fumera-Roli 0.22 0.61 0.67 0.86 0.95 0.99

(a) Performance for syntheticI dataset with 60% of training data using the
ROSOM-2C, ROLVQ-2C, MLP-2C and SVM classifiers. The two results in
boldface for each ωr are the best ones and they are statistically equivalent.
The ROLVQ-2C and the Fumera-Roli SVM attained very poor results. For a
better analysis of the results consider Fig. 5b.

syntheticI (training set size = 80%)
ωr = 0.44 ωr = 0.24 ωr = 0.04

Rej. Perf. Rej. Perf. Rej. Perf.
(ROSOM-2C) Parzen 0.08 0.89 0.13 0.91 0.33 0.97
(ROSOM-2C) Gini 0.04 0.88 0.13 0.91 0.32 0.96
(ROSOM-2C) GMM 0.07 0.88 0.15 0.91 0.43 0.98
(MLP-2C) 0.10 0.91 0.30 0.95 0.64 1.00
(SVM) Fumera-Roli 0.31 0.67 0.67 0.86 0.92 0.97

(b) Performance for syntheticI dataset with 80% of training data using the
ROSOM-2C, MLP-2C and SVM classifiers. The two results in boldface for
each ωr are the best ones and they are statistically equivalent. For a better
analysis of the results consider Fig. 5d.

Table 2: Performances achieved for syntheticI dataset using the ROSOM-2C, ROLVQ-2C, MLP-2C and
SVM classifiers.

ROSOM-1C using the Parzen and Gini coefficient approaches achieved the best overall re-
sults. Note that for a reject rate of 0.2 (red vertical line) these classifiers achieved accuracies
higher than 0.90; in other words, by rejecting 20% of the patterns, the accuracies of these
classifiers go higher than 90% for the SyntheticI dataset, both performing much better
than the MLP-1C classifier. In Fig. 5b, we can see that the performances of all ROSOM-2C
variants and the MLP-2C were equivalent.

We also carry out some simulations to evaluate the performances of LVQ-based classi-
fiers with reject option. For the sake of fairness, we used the same strategies devised for the
SOM-based classifiers. Thus, the resulting classifiers were named ROLVQ-1C (for Method
1) and ROLVQ-2C (for Method 2). Fig. 5a and Fig. 5b for the LVQ variants with reject op-
tion show that they underperform the SOM-based counterparts on the synthetic dataset. The
reasons for this behaviour are multi-fold. First, the parameterization for the LVQ is consid-
erable higher than the SOMs where an incorrect setting could lead to sub-optimal results.
Even if we set them carefully, other fine-tuning steps may be required for a better fitting of
the data. Our proposals changed significantly the behaviour of the classical SOMs, where, in
certain extent, class information was incorporated in the algorithms as described in Section
5. LVQs, on the other hand, were devised to account with data labelling and thus it was not
needed to delve further algorithmic schemes to incorporate the reject option on the LVQs
besides the a posteriori labelling as conducted with the SOMs.

Note, that we do not argue that LVQ are generally inferior to SOMs counterparts. Further
tuning and experimentation could lead to more competitive results. However, this falls off
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(a) (b)

(c) (d)

Fig. 5: The A-R curves for the SyntheticI dataset using 60% and 80% of training data.

(a) (b)

Fig. 6: The A-R curves for the SyntheticII dataset using 60% of training data.

of the scope of this work and may be considered in future works. Summing up, based on the
aforementioned rationale and obtained results we did not considered the LVQ variants with
reject option in the remainder of the experiments.

For the SyntheticII dataset, the A-R curves in Fig. 6a reveal that the ROSOM-1C/Parzen
and the MLP-1C performed equivalently, followed closely by the ROSOM-1C/Gini. The A-
R curves in Fig. 6b show that the best performance was achieved by the MLP-2C, while all
the ROSOM-2C variants achieved equivalent performance.

For the Letter AH dataset, the A-R curves in Fig. 7a reveal that the best performance
was achieved by the ROSOM-1C/Gini, followed closely by the MLP-1C. Both classifiers
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(a) (b)

Fig. 7: The A-R curves for the Letter AH dataset using 80% of training data.

(a) (b)

Fig. 8: The A-R curves for the Vertebral Column dataset using 80% of training data.

(a) (b)

Fig. 9: The A-R curves for the BCCT dataset using 80% of training data.

achieve very high accuracy rates, rejecting less than 5% of the patterns. The A-R curves in
Fig. 7b show that all the ROSOM-2C variants performed better than the MLP-2C.

For the Vertebral Column dataset, the A-R curves in Fig. 8a indicate that the ROSOM-
1C/Gini achieved the best overall performance. The A-R curves in Fig. 8b show that all the
ROSOM-2C variants performed better than the MLP-2C.

Finally, for the BCCT dataset, the A-R curves in Fig. 9a reveal that the best performance
was achieved by the ROSOM-1C/Parzen. For a small range of reject rate values (around
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0.3) the performances of the ROSOM-1C/Parzen and the ROSOM-1C/Gini overlap. The
A-R curves in Fig. 9b show that all ROSOM-2C variants and the MLP-2C performed equiv-
alently.

It is worth mentioning that to verify that the performances of the SOM-based and MLP-
based classifiers are equivalent is not a bad thing for the SOM-based classifiers. On the
contrary, it is an issue worth emphasizing. Let us recall that the SOM is being adapted to
work as a supervised classifier, since it is originally an unsupervised learning algorithm. But
even so, the proposed SOM-based approaches achieved very competitive results in compar-
ison with the MLP-based counterparts.

For all datasets the ROSOM-1C/GMM achieved in average the worst results. How-
ever, the ROSOM-2C/GMM achieved competitive results in comparison with the other ap-
proaches based on two classifiers. Such behavior can be partly explained by the fact that the
proposed modified learning rules in (15) and (16) provide additional improvement over the
raw estimates of the posterior probabilities in the performances of the ROSOM-2C classifier.

As a general conclusion, although neither the Parzen windows nor the Gini coefficient
approaches outperformed one another over all datasets, Parzen and Gini attained better per-
formances than the MLP-based counterparts. For instance, on the vertebral column dataset—
see Fig. 8a—, one can achieve a performance of more than 85% rejecting less than 20% for
both the ROSOM-1C and ROSOM-2C approaches.

7 Conclusions

Reject option comprises a set of techniques aiming at improving the classification reliabil-
ity in decision support systems. However, the problem of classification with a reject option
has been tackled only occasionally in machine learning literature, in most cases using su-
pervised learning methods, such as the SVM, LVQ and MLP classifiers. In this paper we
presented two SOM-based pattern classifiers that incorporate the rejection option class and
compared their performances with MLP-, SVM-, and LVQ-based counterparts. To the best
of our knowledge, this is the first time such approach is developed for the SOM or similar
neural networks.

The first proposal, called ROSOM-1C, requires a single SOM trained in the usual un-
supervised way. The second proposed classifier, called ROSOM-2C, requires two SOMs
which are trained in the self-supervised learning scheme. Both proposals require either the
estimation of the likelihood function P(x|Ck) or the posterior probability P(Ck|x)) using the
distribution of SOM’s weight vectors. An optimal threshold value has to be determined in
order to re-tag some of the weight vectors with the rejection class label.

Estimates of the likelihood function P(x|Ck) were approximated by estimates of P(w j|Ck,x),
which can be obtained via Parzen Window or via Gaussian mixture models. When the pro-
posed classifiers use the Gini coefficient approach, estimates of the posterior probability
P(Ck|x) were approximated by estimates of P(Ck|w j,x), which can be computed by the
frequency of instances within the Voronoi cell of neuron j belonging to class Ck.

For the ROSOM-2C, in particular, the SOM learning rules were modified by the intro-
duction of the rejection cost as a weight. The goal is to train one of the SOMs to become
specialized on the class C−1, while the other is trained to become specialized on the class
C+1. The decision to accept or reject a given pattern is determined based on the combination
of results provided by the outputs of each map.

We carried out a comprehensively evaluation of the performances of the proposed SOM-
based classifiers on two synthetic and three real-world data sets. The simulations have indi-
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cated that the proposed approaches achieved results that are equivalent to or even better than
those obtained by the standard supervised classifiers. In other words, the proposed SOM-
based classifiers with reject option are competitive in terms of performance with standard
supervised classifiers. The simulations also show that the proposed classifiers are very robust
in terms of confidence in decision making process, since the proposed SOM-based classi-
fiers can achieve very high accuracies (i.e. higher than 95%), rejecting fewer patterns than
the standard supervised classifiers (see e.g Tables 1 and 2).

Currently, we are evaluating the proposed approaches for the classification of dynamic
data, such as time series, and also developing a SOM-based classifier with reject option for
nonstationary scenarios.
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53. Sim, S.F., Sági-Kiss, V.: Multiple self-organising maps (mSOMs) for simultaneous classification and

prediction: Illustrated by spoilage in apples using volatile organic profiles. Chemometrics and Intelligent
Laboratory Systems 109(1), 57–64 (2011)

54. Sousa, R., Mora, B., Cardoso, J.S.: An ordinal data method for the classification with reject option. In:
Proceedings of the International Conference on Machine Learning and Applications (ICMLA’09), pp.
746–750 (2009)

55. Sousa, R., Rocha Neto, A.R., Barreto, G.A., Cardoso, J.S., Coimbra, M.T.: Reject option paradigm for
the reduction of support vectors. In: Proceedings of the 22th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN’2014), pp. 1–6 (2014)

56. Souza Júnior, A.H., Barreto, G.A., Varela, A.T.: A speech recognition system for embedded applications
using the SOM and TS-SOM networks. In: J.I. Mwasiagi (ed.) Self-Organizing Maps - Applications and
Novel Algorithm Design, pp. 97–108. InTech Open (2011)

57. Suutala, J., Pirttikangas, S., Riekki, J., R’́oning, J.: Reject-optional LVQ-based two-level classifier to
improve reliability in footstep identification. In: Pervasive Computing, pp. 182–187. Springer (2004)

58. Thomas, L.C., Edelman, D.B., Crook, J.N.: Credit Scoring and Its Applications, 1st edn. SIAM (2002)
59. Tortorella, F.: A ROC-based reject rule for dichotomizers. Pattern Recognition Letters 26(2), 167–180

(2005)
60. Turky, A.M., Ahmad, M.S.: The use of SOM for fingerprint classification. In: IEEE International Con-

ference on Information Retrieval & Knowledge Management (CAMP’2010), pp. 287–290 (2010)
61. Umer, M.F., Khiyal, M.S.H.: Classification of textual documents using learning vector quantization.

Information Technology Journal 6, 154–159 (2007)
62. Utsugi, A.: Density estimation by mixture models with smoothing priors. Neural Computation 10, 2115–

2135 (1998)
63. van Hulle, M.: Self-organizing maps. In: G. Rozenberg, T. Baeck, J. Kok (eds.) Handbook of Natural

Computing: Theory, Experiments, and Applications, pp. 1–45. Springer-Verlag (2010)
64. Vasconcelos, G.C., Fairhurst, M.C., Bisset, D.L.: Enhanced reliability of multilayer perceptron networks

through controlled pattern rejection. Electronics Letters 29(3), 261–263 (1993)
65. Vasconcelos, G.C., Fairhurst, M.C., Bisset, D.L.: Investigating feedforward neural networks with respect

to the rejection of spurious patterns. Pattern Recognition Letters 16(2), 207–212 (1995)
66. Villmann, T., Haase, S.: Divergence-based vector quantization. Neural Computation 23(5), 1343–1392

(2011)
67. Yin, H.: The self-organizing maps: Background, theories, extensions and applications. In: J. Fulcher,

L.C. Jain (eds.) Computational Intelligence: A Compendium, Studies in Computational Intelligence,
vol. 115, pp. 715–762. Springer-Verlag (2008)

68. Yin, H., Allinson, N.M.: Self-organizing mixture networks for probability density estimation. IEEE
Transactions on Neural Networks 12(2), 405–411 (2001)

69. Zidelmal, Z., Amirou, A., Belouchrani, A.: Heartbeat classification using support vector machines
(SVMs) with an embedded reject option. International Journal of Pattern Recognition and Artificial
Intelligence 26(1), 1250,001–1–1250,001–17 (2012)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


