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Abstract The development and use of computerized decision-support systems in
the domain of breast cancer has the potential to facilitate the early detection of dis-
ease as well as spare healthy women unnecessary interventions. Despite encouraging
trends, there is much room for improvement in the capabilities of such systems to
further alleviate the burden of breast cancer. One of the main challenges that current
systems face is integrating and translating multi-scale variables like patient risk fac-
tors and imaging features into complex management recommendations that would
supplement and/or generalize similar activities provided by subspecialty-trained clin-
icians currently. In this chapter, we discuss the main types of knowledge—object-
attribute, spatial, temporal and hierarchical—present in the domain of breast image
analysis and their formal representation using two popular techniques from artificial
intelligence—Bayesian networks and first-order logic. In particular, we demonstrate
(i) the explicit representation of uncertain relationships between low-level image fea-
tures and high-level image findings (e.g., mass, microcalcifications) by probability
distributions in Bayesian networks, and (ii) the expressive power of logic to generally
represent the dynamic number of objects in the domain. By concrete examples with
patient data we show the practical application of both formalisms and their potential
for use in decision-support systems.

4.1 Introduction

According to the American Cancer Society (ACS), breast cancer is the second lead-
ing cause of cancer death in women, exceeded only by lung cancer. The chance that
breast cancer will be responsible for a woman’s death is about 3%. Death rates from
breast cancer have been declining since about 1990, with larger decreases in women
younger than 50. These decreases are believed to be the result of earlier detection
through screening and increased awareness, aswell as improved treatment, changes in
clinical procedures, for example, genetic testing, and innovation in technologies like
digital mammography and tomosynthesis [7, 11]. The increased use of computerized
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Fig. 4.1 Knowledge representation for decision-support in breast cancer diagnosis.

decision support systems that candetect breast cancer basedonbreast images or on the
patient’s history and clinical information, has the potential to contribute to improved
outcomes [3, 5]. The severe consequences of breast cancer for many patients’ health
and life, and for their familieswell-being are still present andmuch room for improve-
ment in the management of the disease is needed.

In this respect, a number of major challenges for clinical practicioners can be
outlined, such as processing of huge amounts of data (e.g., interpretation of medical
images) in short time, uncertainty in establishing a diagnosis or a treatment due to
the variety of breast cancer pathologies. Another important problem is the lack of
standardization and organization of what information to collect, which may be con-
fusing and create delay in the diagnosis of diseases. This mostly concerns recording
results in free text dictations, use of different terms for the same concepts and use of
different metrics for the same values. Fortunately, and unique as compared to other
medical fields, breast imaging has its own lexicon created by the American College
of Radiology, the Breast Imaging Reporting and Data System (BI-RADS) [1], to
facilitate the organization and standardization of information gathered. While this
lexicon provides a good basis, it is not sufficient to support fully the management
process of breast cancer.

Computer-based systems mitigate these problems by (1) efficiently organizing
patient information, (2) preventing and eliminating errors and data inconsistencies;
(3) extracting reliable statistics and non-trivial knowledge from the data, and (4) sup-
porting clinical decision. Figure4.1 presents a general scheme for such computerized
support for the detection and diagnosis of breast cancer, where the knowledge about
the parallel interpretation of two breast image views is represented once and in a
consistent manner by means of a Bayesian network (probabilistic graphical model),
and it is embedded into a computer-aided system for multiple use by a clinician.
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In this work we assume that the data was entered correctly, is consistent, and is
stored in some structured format. Our goal is to represent the “knowledge” attached
to those data, which implies encoding not only primitive data (objects, attributes and
their values), but also their relationships (causal, uncertain) that can convey useful
information about the patient health conditions. In order to have knowledge with a
good quality it is important to choose a good representation. In this chapter we will
focus on logical and probabilistic knowledge representations.

4.2 The Domain of Breast Cancer

Breast cancer is a type of cancer originating from breast tissue, most commonly from
the inner lining of milk ducts (ductal carcinomas) or the lobules (lobular carcinomas)
that supply the ducts with milk. Any lump, abnormality, or alteration in the breast
tissue’s integrity that may represent a breast cancer can be designated as a finding.

Figure4.2 depicts the main tasks related to the identification and management of
a finding, and the common methods used to perform them. The first task is called
detection, which includes the identification of a finding as a physical object and
its characterization (e.g., size, shape, density, and location). This is mostly done by
a physical examination (e.g., palpation either by a woman herself or by a doctor)
or by means of breast cancer (usually imaging) screening. The latter is performed
regularly in asymptomatic women above certain age (usually between 40–50) to
detect cancer at early stages and it is currently basedonmammographic examinations.
Such examination involves anX-ray of each breast—amammogram—which is taken
while carefully compressing the breast. On a mammogram, small changes in the
breast tissue can be detected, which may indicate cancer that is too small to be felt.
Mammograms are usually taken in two views: (1)mediolateral oblique (MLO), taken
under 45◦ angle and showing part of the pectoral muscles, and (2) craniocaudal (CC),
taken head to toe. Two main types of mammographic findings are distinguished:
microcalcifications and masses. Microcalcifications are tiny deposits of calcium and
are associated with extra cell activity in breast tissue. Microcalcifications that are
scattered throughout the mammary gland are usually a non-cancerous sign, while
their occurence in clusters might indicate early stage breast cancer. According to
the BI-RADS definition, “a mass is a space occupying lesion seen in two different
projections.” When visible in only one projection, it is referred as a mammographic
“asymmetry”. However, asymmetry may be a mass, perhaps obscured by overlying
glandular tissue on the other view, and if it is characterised by enough suspicious
features then it may indicate breast cancer.

Based on the detection results of a finding, the physician may or may not request
additional exams, for example, fine needle aspiration (FNA) or core needle biopsy
(CNB) in order to perform the second task—diagnosis. It concerns the identification
of a finding either as benign (non-cancerous) or as malignant (cancerous). In benign
tumors, thecellswill not invadesurrounding tissuesor spread todistantorgans. Inmost
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Fig. 4.2 Tasks (T#) and common methods involved in the management of breast cancer.

cases, a benign tumor can be removed. In a malignant tumor, the cells have the poten-
tial to behave aggressively, invading adjacent tissue and spreading to distant organs.

If the diagnosis is amalignant finding, the next task is to recommend and perform a
treatment such as chemo-/radiotherapy or an excision surgery. Finally, the physician
can study the effects of the treatment, and perform a prognostic analysis for cancer
recurrence and chances for survival of the patient, by using, for example, genetic
information or the patient’s history.

Therefore, in this domain, we can count on information about the patient (demo-
graphics, personal history, family history, social information, and environmental
exposures), about mammography images and reports, descriptors of abnormalities
associated with a mamography, pathology information (details of histological analy-
sis such as kind of breast cancer or cells associated with calcifications), and details
about surgeries (kind of biopsy procedure, kind of needle, number of specimens
collected etc.).

4.3 Knowledge Representation for Breast Cancer Diagnosis

4.3.1 Motivation

The information concerning the breast cancer diagnosis can come from various
sources, e.g., image modalities, laboratory tests, and different medical experts, e.g.,
radiologists, surgeons, pathologists. As a result, we end up with heterogeneous type
of information about the same patient that need to be represented and processed in
a relational form as opposite to the traditional propositional approach that uses a
single table to collect all information about a patient. One of the forms of represent-
ing relational data is to store it in relational databases. These databases allow only
for querying the primitive (basic) data itself, and do not support queries about more
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Fig. 4.3 Human-defined knowledge and its representation by FOL and a BN.

complex relationships such as “What is the relation between a malignant diagnosis
and a combination of some patient attributes”, “What is the disease evolution along
the time andwhat is the prognosis of a given patient?”, or even “What is the pattern of
a discordant biopsy (the one that gave a result that is not agreeable by all physicians
in a medical conference)?” From a clinical point of view, giving answers to these
questions means to save patients from the inconvenience of undergoing invasive pro-
cedures and save other patients of being sent home without an adequate treatment,
while reducing costs to patients and to hospitals.

To be able to answer such questions, more advanced approaches need to be used
to represent relational knowledge. In this chapter we will focus on first order logic
and graphical probabilistic models. To illustrate the basic knowledge representation
principles of thesemethods, Fig. 4.3 presents an example in the domain of breast can-
cer. In the left-hand side, we have a first order logic (FOL) definition for an upgraded
biopsy (an upgraded biopsy is the one that gave a negative result for malignancy, but
proved to be malignant after recommended surgery). In the right-hand side we have a
graphical probabilistic representation in the form of a Bayesian network (BN). Both
representations make use of the attributes A related to an object Biopsy to build
a relation among attributes. The first-order logic relates atypical ductal hyperpla-
sia (ADH), microcalcifications (amorphous and fine-linear), and biopsy procedure
to infer cases when the biopsy is an upgrade. The same information is represented
in the Bayesian network, but in another format and uses additional probabilistic
information.

To design a knowledge representation system, we need to identify the types of
knowledge that exists in the domain of interest—the diagnosis of breast cancer. We
distinguish between two categories of knowledge: (i) knowledge about primitive data,
which are objects and attributes and (ii) knowledge about relationships between the
primitive data.
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4.3.2 Object-Attribute Knowledge

Table4.1 presents examples of physical objects O relevant for our domain of interest,
their attributes (features) A with the respective range of values dom(A).
We distinguish between two main types of attribute domains:

(i) discrete referring to a finite and countable set of values. It can be defined by
categories or integers, e.g., the domain of age can be defined as the categorical
set of “young”, “middle-aged”, “old” or as the integer set {1, . . . , 120}. Typical
examples for discrete variables within the medical domain are risk factors such
as gender ∈ {male, f emale}, history of a disease ∈ {no, yes}, and smoking
(cigarettes per day) ∈ {0, 1 − 5, 6 − 20,> 20}.

(ii) continuous referring to an infinite set of values between two points. Thus the
domain is real-valued and values follow a distribution, e.g., Gaussian or Gamma.
Typical examples of continuous attributes are the image features extracted by
a computer-aided system or the size of a finding. From a knowledge represen-
tation point of view, continuous attributes are often discretized, i.e., their range
is divided into a finite set of values that may or may not have a semantical
meaning, but allow for an easier interpretation for human experts. For exam-
ple, the size of a finding can be discretized into {<1cm, 1–3cm, >3cm} or
{small, medium, large}. A recent work on discretization of mammographic
features has shown the advantages of this data pre-processingmethod for improv-
ing the detection performance of a CAD system [8].

More than one value can be assigned to some of the variables in breast cancer.
For example, both values “fine” and “linear” can be assigned to the calcifications
variable, or more than one pathology may be associated with a tumour. In that case,
physicians may use a precedence list that indicates orders like Fine > Linear > . . .

Table 4.1 Examples of objects, attributes, and their values in the domain of breast cancer

Object O Attribute A ∈ dom(A)

Patient age ∈ {“young”, “middle-aged”, “old”}

gender ∈ {“male”,“female”}

Exam time ∈ {“prior”, “current”}

type ∈ {“physical”, “screening”}

Image quality ∈ {“low”, “medium”, “high”}

modality ∈ {“MRI”, “mammography”, “CT”}

breast-view ∈ {“MLO”, “CC”}

Finding location-in-breast (quadrant) ∈ {“upper-outer”, “upper-inner”, …}

location (side) ∈ {“left”, “right”}

Mass shape ∈ {“oval”, “round”, “irregular”}

margin ∈ {“circumscribed”, “indistinct”, “spiculated”}
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or ALH < LCIS < ADH < DCIS. This information can be used to give preferences
to certain attribute values ranking their relevance.

Coding medical object-attribute knowledge is straightforward once there is an
established convention for naming variables and terms, such as the BI-RADS lexicon
for mammographic features and findings. For example, the shape (attribute) of a
mass (object) using first-order logic (FOL) can be represented by the two-valued
predicate massShape(F, V alue), where F is a variable referring to a mass object
and V alue is a variable referring to one of the attribute values (see Table4.1). In
terms of probabilistic graphical models, such as Bayesian networks (BNs), the same
knowledge is to be represented by a node called “massShape” whose domain will
contain the three exclusive values describing shape.

Another way of coding the same attribute “massShape” is to use a boolean rep-
resentation where a new attribute is created for each possible value of the original
“massShape”. Therefore, if “massShape” could assume values “oval,” “round,” or
“irregular,” the new representation would be done through three new variables, say,
“massShapeOval,” “massShapeRound,” and “massShapeIrregular”with boolean val-
ues (for example, value 1 indicating presence and value 0 indicating absence). This
kind of representation can be very useful when one attribute can assume several
possible values or if the data is to be used for classification, as some classifiers work
better with binary feature vectors. It is also helpful to improve the quality of data
as each possible value of the variable will be properly discriminated. For example,
assume the variable we have is “massShape.” If this variable is left blank for any
reason, we can not conclude anything about “oval,” “round,” or “irregular.” On the
other hand, if we represent this same variable by three new variables, chances are
that at least one of them will not be left blank.

4.3.3 Relational Knowledge

Relational representations can be conceptualised as a binding between a relation
symbol and a set of ordered tuples of elements. For example, the relation-symbol
larger is bound to the set of ordered pairs: {(5, 2), (3, 1)...}. The symbol represents
the “intension” of a relation and specifies which relation is intended; for example,
elements are ordered by size. The ordered tuples represent the “extension” of a rela-
tion. They can include knowledge learned by experience, and can provide statistical
knowledge of the world [4].

4.3.3.1 Causality

While object-attribute relationships are relatively straightforward to represent given
a standardized naming, the relationships between the objects in the domain of inter-
est may be more complex to formally express. One type of relationship concerns
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Fig. 4.4 Example of causal dependencies

causal dependencies. A typical example of such dependencies in a medical domain,
including the breast cancer diagnosis, is presented in Fig. 4.4:

The concept on the left-hand side of each arc represents the cause whereas the
concept on the right-hand side is the effect. While these causal arcs reflect the direc-
tion of influence, they do not necessarily express a deterministic dependence. In
other words, the presence of a risk factor (elderly woman) increases the chance that
a disease (breast cancer) may occur, but it does not imply that it will occur for sure.
The same holds for the presence of a disease and its appearance on an image—
breast cancer may or may not appear as a mammographic mass, for example. Clearly
such relationships are inherent with uncertainty and they can be represented by
probabilistic approaches such as Bayesian networks, where the network structure
reflects exactly the direction of causality, and the probability distributions represent
its strength. Certain causal relationships such as “Disease” −→ “Laboratory tests”
may bemore probable and even in some cases deterministic, as in the example shown
in Fig. 4.4, which can be expressed by the FOL rules.

Another type of relational knowledge that is more challenging to represent, espe-
cially in image interpretation, concerns aggregations such as the “part-whole” rela-
tions. A common assumption in this case is that given evidence about parts, the goal
is to hypothesise and try to draw conclusions about the whole. In particular, evidence
for certain characteristics in one or more parts increases the likelihood that the same
characteristics are present in the whole. This type of relationship is illustrated in
Fig. 4.5 where various levels of object image analysis are given, namely an image is
“part-of” an exam, and the exam is “part-of” a patient case. Detecting cancer on the
image will imply that the respective exam and patient case are also assigned a label
of “cancerous”. The problem of this type of reasoning is, however, that the errors
in the low(part)-level image analysis will be propagated to the higher(whole)-level
analysis. An alternative is to represent and reason about additional knowledge such
as spatial, temporal, and hierarchical relationships to better analyse the part-whole
dependencies.

4.3.3.2 Spatial Knowledge

Another key knowledge used in breast cancer diagnosis onmedical images are spatial
relationships that indicate the context dependency to the objects locations. There are
two general forms of spatial knowledge: (i) absolute position of the objects on the
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Fig. 4.5 Various levels of object image analysis by computer-aided detection systems.

image, usually in XY-coordinate system for 2D images, and (ii) relative positions of
the objects to each other.

The first type of spatial knowledge in image interpretation for breast cancer diag-
nosis is relatively straightforward to represent. Let us consider a finding detected by
a CAD system or a human reader in the MLO view of the left breast. The location of
this finding will be represented by a node for each coordinate, e.g., “LocX-MLO” in
BNs, and by a binary predicate, e.g., locX_M L O(F, V alue) in FOL with F refer-
ring to the finding and V alue to the X-location value. Depending on the available
data, the range of values that location can take will be (i) continuous: obtained from
the automated processing of the MLO image or (ii) discrete: based on a manual
annotation (e.g., breast quadrant) or discretization of the continuous values.

The relation of objects in terms of space requires a more complex, and not nec-
essary unique, representation. In mammographic analysis, it is well-known that two
regions of interest (or findings) on MLO and CC views of the same breast that are
approximately at the same distance from the nipple and exhibit similar features (e.g.,
mass shape is the same) are very likely to refer to one finding. In FOL, this knowledge
concerning the findings F1 and F2 can be expressed as follows:



56 M. Velikova et al.

Fig. 4.6 A BN representing
the linking between two
findings on the MLO and CC
views of the same breast.
The grey circles represent
the observed features of the
findings on both views.

same_ f inding(F1, F2) ←−M L OV iew(F1) ∧ CCV iew(F2)∧
nipple_distance(F1, D1) ∧ nipple_distance(F2, D2)∧
(
abs(D1 − D2) < ε

)∧
side(F1, le f t) ∧ side(F2, le f t)∧
quadrant (F1, upper_outer) ∧ quadrant (F2, upper_outer)∧
massShape(F1, oval) ∧ massShape(F2, oval).

The problem with the representation above is that it is deterministic and it does not
reflect a likelihood that F1 and F2 are the same finding. To do so, we can use a BN
with probabilistic information as shown in Fig. 4.6.

The lowest network level captures the observed features Oi of an image finding
on each breast view, modeled as effects of the unobserved finding features X j (white
circles). The top level node corresponds to finding F with values “no”, “benign,”
and “malignant”. The conditional probability tables P(Oi |X j ) and P(X j |F) can be
obtained based on expert knowledge or statistics derived from image data. These can
be expressed as qualitative or quantitative constraints as shown in Table4.2.

Table 4.2 Probabilistic qualitative constraints and quantities

Probabilistic qualitative constraints

P(MassShape =′ oval ′|Finding =′ benign′) >

P(MassShape =′ oval ′|Finding =′ malignant ′) >

P(MassShape =′ oval ′|Finding =′ no′)
P(nipple_distance =′ 0 − 2cm′|Finding =′ benign′) >

P(nipple_distance =′ 0 − 2cm′|Finding =′ malignant ′)
Probabilities

P(MassShape =′ oval ′|Finding =′ benign′) = 0.73

P(nipple_distance =′ 0 − 2cm′|Finding =′ malignant ′) = 0.24
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4.3.3.3 Temporal Knowledge

Temporal knowledge implies a dependence to time and may lead to different infer-
ences in different temporal contexts. In medical domain, including breast cancer
diagnosis, modelling and reasoning about such knowledge is of particular impor-
tance due to a progressive nature of a disease. In breast screening programs, for
example, it is typical that images of the same breast are taken over regular intervals
of time.Detecting interesting changes amounts to recognising corresponding objects,
if present, in these images.

We used the examples of mammographic patient data from Table4.3 to illustrate
knowledge representation principles of temporal knowledge using graphical models
and logic. Table4.3 contains observational data such as the column “Calc F/L” report-
ing if a radiologist saw fine or linear calcifications in the mammogram image, and the
column “Location” reporting the quadrant in the breast image related to the finding.

Table4.3 includes two interesting relations for patient P1, who has three mammo-
graphic exams. The first and the second exams seem to reveal the same finding, given
the common location in the breast, and observed at different periods of time (5/02 and
5/04).Thisfinding refers to a tumor that appears on themammogramas amass that has
grown in size in the second examination and as newly observedmicrocalcifications—
clearly signs formalignancy. At the same time, another tumorwas found in patient P1
during the examination made in 5/04, which appears to be benign.

In terms of probabilistic graphical models, a common representation method of
temporal knowledge are dynamic Bayesian networks—temporal models where the
same variables of interest, describing both the state of the system, observables, con-
ditions, and actions that may change the state at different points of time [6]. A usual
assumption underlying these models is that: (i) the future state is conditionally inde-
pendent of the past state given the present state (first-orderMarkov property), and (ii)
the probabilistic temporal relations between adjacent states do not change over time
(time invariance or stationarity condition). This way, a dynamic Bayesian network
becomes a compact process representation that can be employed in forecasting.

Figure4.7 presents a dynamic Bayesian network in the context of patient data
shown in Table4.3. We have two time slices representing, for example, mammo-
graphic exams taken over two years. Within each slice static causal relationships are
represented by solid arcs whereas the temporal relationship between both slices
is represented by the dashed line. The former expresses, for example, that the

Table 4.3 Examples with mammographic patient data

Patient Month/Year Finding Calc F/L Mass size Location Diagnosis

P1 5/02 1 No 0.03 RU4 Benign

P1 5/04 2 Yes 0.05 RU4 Malignant

P1 5/04 3 No 0.04 LL3 Benign

P2 6/00 4 No 0.02 RL2 Benign
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Fig. 4.7 A structure of a dynamic Bayesian network representing the relations in Table4.3. The
dashed arc represents a temporal relationship between two time slices whereas the solid arcs repre-
sent static relationships within a time slice.

presence of Finding is a causal factor for the presence of calcifications or a
mass as well as for a location characteristic. Furthermore, Mass has a probabilis-
tic influence on the distribution of the size attribute, which can be expressed, for
example, as P(Size|Mass = yes) = N (0.03, 0.001), with N denoting a normal
distribution with a respective mean and standard deviation. A temporal relation-
ship in the network expresses the fact that a finding detected in a previous time
slice t − 1 increases the probability for a finding in the current time slice t , which
is expressed by the conditional probability distribution P(Findingt |Findingt−1),
e.g., P(Findingt = benign|Findingt−1 = benign) = 0.42, and P(Findingt =
malignant |Findingt−1 = benign) = 0.25.

The relations in Table4.3 can also be easily represented in logic as shown below,
where names such as “previous_finding,” “mammo,” and “date” are regular first order
logic predicates and P , F1, F2 are logical variables.

previous_ f inding(F1, F2) ←−mammo(P, F1) ∧ mammo(P, F2)∧
date(F1, D1) ∧ date(F2, D2)∧
(D1 < D2 ∨ D2 < D1)

This rule relates two findings F1 and F2 for the same patient P , separated in
time (date of F1 is before or after the date of F2). It can be further used to simulate
temporal reasoning in the context of other rules such as:

is_malignant (A) ←−mass(A, present) ∧ previous_ f inding(A, B)∧
(
massSi ze(A) < massSi ze(B)

) ∧ calc(B, present)∧
previous_ f inding(A, C) ∧ calcFineLinear(C, yes)
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In this rule, we have explicit relations among different rows of Table4.3 with the
use of the predicate previous_finding which relates finding A with finding B, each
one having its own properties. This rule also relates finding A with a third finding C
(not shown in Table4.3), which has calcification fine-linear.

4.3.3.4 Hierarchies and Concept Aggregation

Up to now we discussed ways for representing mostly low-level image interpreta-
tion information, which concerns findings, manual annotations, and their features.
Although this forms the basic step for automated decision-support in breast cancer
diagnosis, the ultimate goal is that computerized systems should be able to analyze
data and provide feedback at a patient level. In particular, as physicians are capable of
simultaneous interpretation of various contexts (e.g., spatial and temporal), multiple
types of findings (e.g., masses, calcifications, distortions) andmodalities (e.g., X-ray,
MRI, ultrasound), the systems should represent and reason with various sources and
levels of information and knowledge. A useful representation scheme for system-
atic structuring of such variety of complex relationships and facilitating physician’s
reasoning is a concept hierarchy, where knowledge and information sources are inte-
grated both horizontally and vertically. Such a hierarchical structure in the domain
of breast cancer image diagnosis is presented in Fig. 4.8.

The horizontal integration refers to combining various sources at the same level
of processing, where each source supports part of an entire task. A typical example
in the context of breast cancer image diagnosis is a parallel interpretation of multiple
mammographic signs, such as microcalcifications MC AL and masses M ASS, to
provide a complete picturewhether or not breast cancer BC (i.e., amalignant finding)

Fig. 4.8 A hierarchical structure of concepts used in breast cancer diagnosis. The left structure
presents the semantical concepts as used by physicians whereas the right structure presents the
top-down layers in image analysis.
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Table 4.4 Aggregated concepts in establishing the risk for breast cancer with a respective example
for a representation in FOL

Concepts Example representation in FOL

Proximity high Risk(F) ←− calci f ications(F, yes) ∧ location(F, X)∧
location_calci f ications(F, Y ) ∧ distance(X, Y, E) ∧ E < Error

Quantity lowRisk(F) ←− number O f Foci(F, N ) ∧ N = 1

Similarity lowRisk(F) ←− previous_ f inding(F, B F) ∧ date(B F, D1)∧
date(F, D2) ∧ D1 < D2 ∧ pathology(B F, benign), similar(F, B F)

Timing lowRisk(F) ←− previous_ f inding(F, B F) ∧ date(B F, D1)∧
date(F, D2) ∧ D1 < D2 ∧ pathology(B F, benign)

Association high Risk(F) ∨ excise(F) ←− calci f ications(F, yes)

Priority incidental(P) ←− pathology Priori t y(P, low) ∧ pathologyT ype(P ′, ARS′)

is present. In termsof probabilistic graphicalmodels, this integration canbe expressed
in two ways depending on available knowledge and data:

• MC AL ←− BC −→ M ASS: This descriptive representation expresses the
causal knowledge that microcalcifications andmasses are signs (effects) of the dis-
ease “breast cancer” (cause) and given that the disease is present then it is expected
to appear as amammographic sign. The uncertainty in this appearance (e.g., obscu-
rity in the image due to high breast density) is provided by the conditional probabil-
ity tables of MC AL and M ASS based on domain knowledge, e.g., P(MC AL =′
malignant ′|BC =′ present ′) = 0.86 and P(M ASS =′ malignant ′|BC =
′ present ′) = 0.93. Once a sign is observed, the probability P(BC |MC AL ,

M ASS) can be computed using the Bayes theorem.
• MC AL −→ BC ←− M ACC : This discriminative representation aims at pre-
dicting the probability for breast cancer given the mammographic observations.
When sufficient data from image processing or human annotation reports are avail-
able, one can learn the conditional probabilities P(BC |MC AL , M ASS), express-
ing the combined effect of the signs in breast cancer dignosis.

The vertical integration in a hierarchy, on the other hand, is a knowledge rep-
resentation at different levels of abstraction. An example in the current context is
the parallel interpretation of multiple two-dimensional breast projections, such as
M L O and CC , to provide a complete picture whether or not a finding is present in
the breast B as a whole. Similarly to the horizontal integration, the vertical knowl-
edge representation can be expressed in various forms based on domain knowledge
or available data.

Abstract concepts can be represented to help structure the physician’s reasoning.
Table4.4 presents a number of typical concepts in establishing the risk for breast
cancer.
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4.3.4 Observations and Hypotheses

From a knowledge representation point of view, we distinguish between observations
and hypotheses. Observations are factual information obtained by means of a visual
(physical) inspection, reporting, tests, or computer processing. Typical examples
include risk factors (age, medical history), image features (location and shape of a
finding), image findings (mass,microcalcifications), symptoms (pain, palpablemass)
or laboratory results (breast biopsy).

A hypothesis is a possible explanation for the phenomenon we observe and it is
often related to a variable of interest (output). Examples include the diagnosis of a
disease (e.g., breast cancer) or determining the state of organ functioning (e.g., renal
dysfunction). In the knowledge representation process, hypotheses may be included
as separate entities that establish dependencies between the observations. In this case,
we refer to hypotheses as “hidden variables”.

Despite this hard distinction between observed and hidden variables, in practice a
variable can play the role of both, depending on available information or the problem
at hand. For example, in certain situations, an image finding of mass may be reported
by a human reader and be used as evidence for determining whether or not breast
cancer is present, whereas in another situation the goal might be to predict whether
mass is present given a number of observed image features.

4.4 Inference and Decision-Making in the Management
of Breast Cancer

4.4.1 Deductive Inference

A deductive system uses the data combined with pre-defined rules to draw conclu-
sions and to support the decision-making process. For example, after the first screen-
ing, a medical doctor can lookup the guideline on Breast Screening and Diagnosis
produced by the National Comprehensive Cancer Center (NCCN)1, to assist his/her
the decision-making. With the guideline, depending on the symptoms found during
a screening, the physician can follow different paths suggesting a possible follow-
up to a patient. A guideline implements a limited form of deduction, where, given
some knowledge about a patient, the physician infers a decision based on the paths
followed in that guideline. This inference of deduction can be done automatically if
we use formal languages such asmathematical logic that, for example, uses complete
and sound proof procedures such as resolution [9]. In fact, there are several works
in the literature that represent guidelines (or parts of) by means of logics [10, 13].
The knowledge represented in Sect. 4.3, using the logic formalism, can be used to
automatically answer questions such as “what are the findings that are malignant?”

1 http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf, available after registration.

http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf
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(in logic: ∃ Fmalignant (F)) or “Is there a benign findingwith a highmass density?”
(in logic: ∃ F pathologyT ype(F, benign) ∧ mass Densi ty(F, high)), using reso-
lution.

4.4.2 Inductive Inference

Inductive systems, on the other hand, support the decision-making by automating
the process of creating models based on available data or expert knowledge. Systems
that fall in this category are usually called machine learning systems. In the case of
creating rules, a machine learning algorithm can automatically produce a guideline
as defined byNCCN or the rule presented in Fig. 4.9, or even complement a guideline
with a newly created rule.

The example rule shown in Fig. 4.9, written with the Prolog syntax, was auto-
matically extracted from a database containing more than 65,000 patients. This rule
suggests that a set of patients may have had a delayed treatment, because they had
obtained a BI-RADS category of 3 (low-risk benign, b3) in past exams, which later
became 5 (high-risk malignant, b5) [2]. In fact, this rule was validated against the
dataset, and this condition held true for seven positive patients and for none of the
negative ones with benign findings.

Inductive learning with logic is very useful to extract readable and interpretable
models from the data. Rather than producing a black-box classifier, logical rules
can explain the classifier itself to the physician. This can further contribute to the
refinement of the expert knowledge in a way that the inductive system learns rules,
the physician can modify or refine them, then the system learns new rules from the
refinements and the process continues.

One good side-effect of inductive learning is that the rules found during this
interactive process can shed some light on the most relevant primitive features that

Fig. 4.9 An example of knowledge representation using a Prolog rule.
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can suggest a diagnosis. For example, some of the features may consistently appear
in every learning step. The health professionals can then concentrate on studying
these features and even improving the quality of the data values entered for these
features by enforcing better data collection.

4.4.3 Application

In this sectionwedemonstrate the application of knowledge representation formalism
for mammographic diagnosis. We show two different formalisms. One is based on
a probabilistic graphical model and the second one is based on first order logic.
In the first one, features are automatically extracted from image processing. In the
second one, features come from multiple tables generated by annotations performed
by doctors when preparing medical reports about mammography, pathology analysis
and biopsy procedures.

Fig. 4.10 A Bayesian network for interpretation of mammographic signs
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4.4.3.1 Probabilistic Graphical Model

Figure4.10 presents a Bayesian network model whose structure was manually built
using domain knowledge and its parameters were learnt from real-world mammo-
graphic data. The model aims at detecting a malignant finding on a mammogram
based on image features automatically extracted from a CAD system and follow-
ing the two-view image interpretation as done by radiologists. For a more detailed
description of the model, the reader is referred to [8, 12].

Table4.5 presents the data for three real-world cases obtained from the Dutch
mammographic screening program, which contains a number of automatically
extracted regions of interest and their respective features on a breast view (image).
The ground-truth of each region is provided by pathology reports. The last row in

Table 4.5 A sample of three real-world cases with mammographic regions of interest (ROI) and
respective features extracted from a CAD system. Variable Finding is the ground-truth.

Cases (C#) C1 (right breast) C2 (left breast) C3 (right breast)

ROI# ROI1 ROI2 ROI1 ROI2 ROI1 ROI2

Finding FALSE TRUE FALSE TRUE FALSE TRUE

MLO-FPlevel very high low very high high very high low

CC-FPlevel very high very low very high very low very high very low

MLO-Dlik very low high very low very low very low low

CC-Dlik very low low very low high very low medium

MLO-Spic present present present present absent absent

CC-Spic absent present present present absent absent

MLO-FM present absent present present present present

CC-FM present absent present present present present

MLO-Size very small very small medium medium very small very small

CC-Size small small small medium small small

MLO-Contrast low low low low low low

CC-Contrast very low very low very low high very low very low

MLO-LinText low low low low low low

CC-LinText low low low low low low

MLO-D2Skin far medium close medium medium medium

CC-D2Skin close close close close close close

MLO-LocX region1 region1 region1 region1 region1 region1

CC-LocX region2 region1 region1 region1 region1 region1

MLO-LocY region3 region3 region4 region3 region1 region3

CC-LocY region1 region1 region1 region1 region1 region1

P(Finding = T ) 0.07 0.89 0.11 0.77 0.11 0.62



4 Automated Diagnosis of Breast Cancer on Medical Images 65

Table4.5 shows the Bayesian network (shown in Fig. 4.10) computed probability that
a malignant finding is present, given the features in each view.

4.4.3.2 First Order Logic (FOL)

Another example using a logic representation is shown in Fig. 4.11, where each of
the rules, automatically learned from data, is true for 30 out of 79 benign findings
(with 40% Recall) while not missing any malignant finding out of 17 (with 100%
precision). In other words, when these rules are used to classify new cases, a true
malignant case is never missed and mistakenly sent home. On the other hand, some
benign cases will may be misclassified, but not all. The dataset used to train the rules
consists of non-definitive biopsies collected from the Medical School of the Univer-
sity of Wisconsin-Madison, USA. The relevance of this result is that the classifier is

Fig. 4.11 FOL rules

Fig. 4.12 Instances represented in FOL
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capable of sparing somewomen from excision while not missing anymalignant find-
ing. Currently, when biopsies are inconclusive (non-definitive), the common practice
is to excise all women in this situation.

In order for that to work, data instances need also to be represented in FOL. Two
examples are shown in Fig. 4.12. These instances are coded from medical mam-
mography reports, and include extra information about the biopsy procedures and
about the patient data. They also use the BI-RADS encoding. Applying the rules
from Fig. 4.11 to the two instances, classifies correctly the left instance as malignant
and the right instance as benign. We only show partial data for the instances, since
the rules only describe mass margins (mammographic finding), biopsy features and
patient data.

4.5 Discussion and Conclusion

We outlined various types of knowledge available in the domain of image interpre-
tation of breast cancer diagnosis and their representation using two main formalisms
from the field of artificial intelligence—Bayesian networks (BNs) and first-order
logic (FOL). While both formalisms are capable of explicitly expressing domain
knowledge, for example, in terms of causal, spatial and temporal relations, they
differ in the form of this expression.

The power of Bayesian networks lies in their capabilities to deal in a probabilistic
manner with uncertainty, which is often encountered in medical image intepretation
due to, for example, image quality or resemblance in the image appearance between
abnormalities and normal body structures. In the current context, we demonstrated
how Bayesian networks can be used to model multi-view image interpretation by
using a hierachical representation following the human expert’s working principles.

As a propositional method, however, Bayesian networks are restricted in the rep-
resentation of a dynamic number of objects and relationships, which is naturally
done by FOL. In the context of breast cancer diagnosis based on medical images, we
showed how the latter can be applied in formalizing expert knowledge in a compact
manner.

Recent advances in medical imaging have led to a variety of modalities such as
MRI, tomosynthesis, and ultrasound, to augment the current tools (primarily mam-
mography) for breast cancer screening. The integrated interpretation of these modal-
ities at a patient level imposes even more challenges for human readers and new
modelling techniques are needed to handle both uncertainty and dynamics in find-
ings. Probabilistic logics—themerge of probability theory and logic—is a promising
direction for future research in this application domain.



4 Automated Diagnosis of Breast Cancer on Medical Images 67

References

1. D’Orsi, C.J., Bassett, L.W., Berg, W.A., et al.: BI-RADS: Mammography, 4th edn. American
College of Radiology Inc., Reston (2003)

2. Davis, J., et al.: Knowledge discovery from structured mammography reports using inductive
logic programming. In: 2005 Annual Symposium American Medical Informatics Association,
pp. 86–100 (2005)

3. Fenton, J.J., et al.: Influence of computer-aided detection on performance of screen-
ing mammography. N. Engl. J. Med. 356(14), 1399–1409 (2007). PMID: 17409321,
http://wwwnejm.org/doi/pdf/10.1056/NEJMoa066099

4. Halford, G.S., Wilson, W.H., Phillips, S.: Relational knowledge: the foundation of higher
cognition. Trends Cogn. Sci. 14(11), 497–505 (2010). doi:10.1016/j.tics.2010.08.005

5. Horsch, K., et al.: Classification of breast lesionswithmultimodality computer-aided diagnosis:
observer study results on an independent clinical data set. Radiology 240(2), 357–368 (2006).
doi:10.1148/radiol.2401050208. PMID: 16864666

6. Murphy, K.P.: Dynamic Bayesian networks: representation, inference and learning. PhD thesis,
UC Berkeley (July 2002)

7. Pisano, E.D., et al.: Diagnostic performance of digital versus film mammography for
breast-cancer screening. N. Engl. J. Med. 353(17), 1773–1783 (2005). PMID: 16169887,
http://wwwnejm.org/doi/pdf/10.1056/NEJMoa052911

8. Robben, S., et al.: Discretisation does affect the performance of Bayesian networks. In: Bramer,
M., Petridis, M., Hopgood, A. (eds.) Research and Development in Intelligent Systems XXVII,
pp. 237–250. Springer, London (2011)

9. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1),
23–41 (1965)

10. Shiffman, R.N., Greenes, R.A.: Improving clinical guidelines with logic and decision-table
techniques: application to hepatitis immunization recommendations. Med. Decis. Making
14(3), 245–254 (1994)

11. Skaane, P., et al.: Comparison of digital mammography alone and digital mammography plus
tomosynthesis in a population-based screening program. Radiology 267(1), 47–56 (2013)

12. Velikova, M., et al.: On the interplay of machine learning and background knowledge in image
interpretation by Bayesian networks. Artif. Intell. Med. 57(1), 73–86 (2013)

13. Wilk, S., et al.: Clinical practice guidelines and comorbid diseases: a MiniZinc representation
of guideline models for mitigating adverse interactions. Stud. Health Technol. Inform. 192,
352–356 (2013)

http://wwwnejm.org/doi/pdf/10.1056/NEJMoa066099
http://dx.doi.org/10.1016/j.tics.2010.08.005
http://dx.doi.org/10.1148/radiol.2401050208
http://wwwnejm.org/doi/pdf/10.1056/NEJMoa052911

	4 Automated Diagnosis of Breast Cancer  on Medical Images
	4.1 Introduction
	4.2 The Domain of Breast Cancer
	4.3 Knowledge Representation for Breast Cancer Diagnosis
	4.3.1 Motivation
	4.3.2 Object-Attribute Knowledge
	4.3.3 Relational Knowledge
	4.3.4 Observations and Hypotheses

	4.4 Inference and Decision-Making in the Management  of Breast Cancer
	4.4.1 Deductive Inference
	4.4.2 Inductive Inference
	4.4.3 Application

	4.5 Discussion and Conclusion
	References


