
A distributed cache memory system for custom vector processors∗

João M. Meixedo and José C. Alves
{jmeixedo@inescporto.pt, jca@fe.up.pt}

FEUP / INESC-Porto

Abstract

This paper presents a parameterized distributed cache
memory system for application specific processors imple-
mented in FPGA devices. The system is made of several di-
rect mapped cache memory modules that share the access
to a single external data memory, and provide parallel data
lanes that will feed the inputs of an arithmetic datapath.
Each cache block is assigned to one or more application
data vectors and includes a module to compute the effec-
tive memory address of each data value (32 bit), based on
a reduced set of 4-bit commands that specify the iterations
over up to 3 vector indexes. A prototype memory system
was implemented and verified on a Virtex4LX80-10 FPGA,
supporting one cycle reading latency of data located in the
cache memory and a clock frequency of 200 MHz.

1. Introduction

Application specific vector processors can be an ef-
fective mean to improve the performance of conventional
(scalar) processors. This is particularly interesting for em-
bedded applications implemented in field-reconfigurable
devices with integrated processors, where important gains
in speed can be leveraged by custom designed deep
pipelined datapaths to handle sequences of computations
on vectors of data. Current FPGA devices can effectively
host pipelines with tens of floating-point arithmetic opera-
tors, reaching performances up to a few giga flops. How-
ever, feeding the required data to minimize (ideally avoid)
pipeline stalls can be impossible without the support for
an adequate bandwidth to the data memory. This is the
usual situation in FPGA-based systems where the main
data memory is implemented by low cost dynamic mem-
ories that exhibit long reading latencies.

Vector architectures implementing the SIMD paradigm
are being used for years to execute efficiently computing
applications that perform operations on vectors of data.
A vector processor extends the datapath of a conventional
scalar CPU by including additional memories that form a
vector register file, along with vector instructions that ap-
ply to the whole set of elements of the vector operands.
Important performance gains can be achieved by building
complex vector instructions that push their operands (vec-
tors) through a pipelined datapath built by chaining arith-

∗This work is funded by FCT (Fundação para a Ciência e Tecnologia),
project PTDC/EEA-ELC/71556/2006

metic operators, as can be commonly identified in various
sections of an application.

With current FPGAs it is possible to create deep
pipelines with several floating point arithmetic operators
and input operands. In spite of the high performance po-
tential attained by such pipelines, to effectively use them
it is necessary a convenient memory organization that may
be able to provide enough data bandwidth to the datapath
inputs. The ideal (and obvious) solution is to use ded-
icated memory banks to implement independent register
files. However, limitations on the quantity of inter-chip
memory available and the practical impossibility of pop-
ulating discrete memories off-chip makes this approach us-
able only when the number and size of vectors used by an
application is compatible with the quantity of memory that
may be allocated to the vector registers.

In this paper we propose a parameterized and distributed
cache memory system aimed to be implemented within a
FPGA device, including dedicated but simple address gen-
erators for vector applications. The rest of the paper is orga-
nized as follows. Section 2 summarizes works of other au-
thors related to the main subject of this paper. In section 3 a
general overview of the memory system is presented. Sec-
tions 4 and 5 describe the architecture of the parameterized
cache and the vector address generator associated with each
cache block, respectively. Finally, section 6 summarizes
the preliminary results and concludes the paper presenting
plans for future developments.

2. Related work

Vector processing is being used for several years in high
end processors and supercomputers to effectively exploit
the data-level parallelism observed in many computing ap-
plications [1]. Until the appearance of high-density FP-
GAs by the late 90’s, vector processing was an exclusive
feature of commercial high-performance processors, appli-
cation oriented processors like DSPs or GPUs or sophisti-
cated custom designed machines.

Current FPGAs that include several inter-chip arith-
metic functions and memory blocks offer now a technol-
ogy capable of supporting practical applications of cus-
tom vector processing as a mean to meet the performance
requirements of demanding embedded applications. This
has motivated the development of vector processing units
for embedded applications that act as auxiliary proces-
sors of conventional CPUs. Making use of hardware cus-
tomization, the specific needs of a problem (eg. num-



ber of processing lanes or organization of vector register
file) can be exploited to better utilize the limited hardware
resources of FPGA devices. Customizable and scalable
vector FPGA-based co-processors were proposed in recent
works [2, 3, 4], as a means to increase the computing power
of embedded systems based on on-chip soft processors, like
the MicroBlaze or the NIOS-II.

Targeting CMOS (non-configurable) technology, the
VIRAM architecture [5, 6] developed at the University
of California at Berkeley, USA, is a scalable vector co-
processor for the 64-bit MIPS core that implements a multi
lane processing core with a centralized vector register file,
aimed for multimedia applications. A different microar-
chitecture from the same authors CODE [7] introduces a
clustered vector register file that distributes the vector reg-
isters defined in the ISA by different (physical) groups, thus
reducing the data traffic among functional units.

Memory access bandwidth is a key issue that affects sig-
nificantly the performance of vector processors. The gains
in speed obtained by processing vectors of data can only
be effective when the memory system is capable of provid-
ing the required operands to the arithmetic units as close
as possible to the fastest rate allowed by the datapath, thus
avoiding pipeline stalls. Because it is not practical, mainly
for cost reasons, to attach to a FPGA-based processing sys-
tem lots of fast off-chip memory chips, the constraints im-
posed by the limited amount of inter-chip memory blocks
in FPGA devices do require a careful design of the whole
memory system.

With the relatively low granularity of memory blocks
available in modern FPGAs, it is easy to organize different
configurations of the memory system, with respect to the
number of blocks, their depth and width. When the appli-
cation data can be held entirely in the internal RAM blocks,
the memory system may be organized in order to allocate
sets of variables (either scalars or vectors) to several inde-
pendent memories that can be accessed in parallel to feed
the inputs of multi-operand datapaths at clock rate. This
was exploited in [8] with a set of thirteen, 16 KByte dual-
port memories, each one holding a 16×16×16 3D matrix
and feeding at clock rate the inputs of a deep pipeline with
15 floating point arithmetic operators.

When external memories are needed to hold large data
sets, the slow access may compromise the efficiency of
the execution datapath, unless appropriate memory caching
mechanisms are used to exploit the temporal and spatial lo-
cality of data. The utilization of cache memory and data
prefetching for FPGA-based vector processors has been ad-
dressed in [9], where the authors study the design trade-offs
for different data cache organization in a soft vector proces-
sor, while optimizing the utilization of the internal FPGA
blocks of RAM. Data prefetching was exploited in order to
deal with the burst access modes of modern dynamic mem-
ories, while trying to avoid filling the cache memories with
surplus data.

Figure 1. General organization of the cache memory
system.

3. Parameterized cache memory system

In this work we extend the proposal of automatic cache
generation for FPGAs [10] to build a cache memory sys-
tem for vector processors, using a set of independent cache
memories built with the internal SRAM block memories
present in modern FPGA devices. The data width is 32
bits (for single precision floats) and each cache memory
bank can be configured with different cache line size and
depth. For now, only direct-mapped cache memories are
supported and the whole design has been specialized for a
specific family of FPGAs (Xilinx Virtex4). Besides, only
1D, 2D and 3D vectors can be handled by the address
generation unit, with their elements residing in contiguous
memory positions, line-by-line (for 2D and 3D vectors).
This memory system is intended to implement the inter-
face between an external dynamic memory and a custom
vector processor, providing, in parallel, several data values
to a custom designed pipelined datapath.

Presently this has been integrated with a simple
microcode controller that issues sequences of read-
ing commands from data vectors allocated to 4 dif-
ferent cache blocks. The whole system has been
implemented in a Virtex4 LX80 FPGA connected to
a 512 MB DDR2 memory module, integrated in a
DN8000K10PSX prototyping board from the Dini Group
company (www.dinigroup.com).

Figure 1 illustrates the general organization of the sys-
tem and implementation details are presented in the next
sections.

4. Cache memories

The configuration of each cache memory block is spec-
ified by the parameterization of a Verilog synthesizable
model. Although this model do not explicitly instanti-
ate any XILINX-specific primitives, the Verilog templates
used to code the blocks of RAM memory are specific of



the Xilinx synthesis tool and may not map to similar RAM
blocks present in different FPGA technologies or when us-
ing other synthesis tools.

Because the primitive SRAM blocks in Virtex4 FPGAs
are 18 Kbit, the size of each cache memory must always be
a multiple of 2 KByte (16 Kbit) in order to fully utilize the
block memories allocated. Also, because a reading com-
mand from the DDR2 memory always returns a 32 byte
block in two consecutive clock cycles (128+128 bits), the
cache line size must be always defined in multiples of 32
bytes.

The associative memory was designed to be mapped
into distributed memory built with lookup-tables and flip-
flops, in order to reduce the read cycle (when cache hit)
and the write cycle (cache miss) to a single clock period.
A simple cache line replacement policy was implemented,
that always substitutes the oldest written cache line. This
was implemented using a FIFO for the associative memory
and simple arithmetic to map each entry of the associative
memory to the cache block that actually holds the data.

Two additional replacement policies can be chosen that
share similar resources: LRU (least recently used) and LFU
(least frequently used). A set of history registers associated
with each entry of the associative memory represent either
the aging of a cache line or the frequency of reading from
that line, depending on the replacement policy selected.

To implement LRU, a read hit from cache line i sets its
history register HRi to the maximum value (all ones) and
decrement all the registers associated to the other lines by
one unit (the same happens when cache line i is replaced
with new data). This is only done if HRi has not yet the
maximum value, meaning that the previous read operation
was not issued from the same cache line. This avoids that
repeated reads from the same cache line rapidly decrement
the aging registers assigned to the other cache lines. The
entry of the associative memory to be written when a re-
placement occurs is determined by the current values in
the history registers, selecting the lowest value (meaning
the oldest accessed cache line). Because the effective write
into the associative memory only needs to be done when the
data requested effectively arrives from the main memory,
the calculation of the minimum among all the history reg-
isters can be done sequentially, within a time budget equal
to the read latency of the DDR2 memory (22 clock cycles

Figure 2. Logic circuit of the history registers (HR) for
implementing the LRU replacement policy.

in the current implementation). Figure 2 details the logic
circuit that implements the update of the history registers
for LRU.

To implement the LFU technique, the selection of the
cache line to be replaced is also done by choosing the cache
line which history register has the minimum value. In this
case, the set of history registers build a histogram represent-
ing the frequency of read accesses from each line. When a
cache hit occurs and the history register HRi of line i still
does not have the maximum value, it is incremented by one;
if current value is the maximum, then all the values in the
history registers are divided by 2. Figure 3 presents the
logic circuit that implements this mechanism.

The access to the main memory is shared by all the
cache blocks instantiated in the memory system. A control
module manages the read aand write requests issued from
the different cache blocks and performs the reading oper-
ations, according to predefined priorities assigned to each
cache block.

5. Address generator

Each cache memory block is assigned to one or more
data vectors whose dimensions and locations in memory
(absolute address) are known at synthesis time. Associated
to each cache block, a dedicated address generator converts
references to elements in a vector (the requested element
indexes, for vectors up to 3 dimensions) into the absolute
memory address that is then sent to the cache block. Instead
of referencing absolute indexes, what would require addi-
tional arithmetic to compute the effective memory address,
the references to vector elements are encoded into a small
set of commands that specify an iteration over the previ-
ous reference (for example A[i++,j]). This translates
to simple loads, additions and subtractions of constants to
the address register and reduces significantly the number of
control lines necessary from the microinstruction.

Table 1 presents the iteration commands implemented
and the operations required to calculate the absolute mem-
ory address. Label ADDR represent the address of the

Figure 3. Logic circuit of the history registers for im-
plementing the LFU replacement policy.



Iteration memory address
A[i++,j,k] ADDR+1
A[i--,j,k] ADDR-1
A[i,j++,k] ADDR+NI
A[i,j--,k] ADDR-NI
A[i,j,k++] ADDR+NI*NJ
A[i,j,k--] ADDR-NI*NJ
A[0,0,0] START
A[0,j,k] START I
A[i,0,k] START J
A[i,j,0] START K
A[NI-1,j,k] START I+NJ-1
A[i,NJ-1,k] START J+NJ*NI-NJ
A[i,j,NK-1] START K+NJ*NI*NK-NI*NJ

Table 1. Example of iteration commands implemented
by the address generator. This considers a 3D vector
A[,,] located in the main memory at address START
and with NI, NJ and NK elements along each of the 3
dimensions.

last element accessed (a register) and START is a constant
that represents the memory address of the first element in
the vector. Three additional registers (START I, START J,
START K) are maintained with the address of the first ele-
ment of a row along each dimension.

6. Results and conclusions

In this paper we proposed a parameterized cache mem-
ory system, aimed to increase the effective memory band-
width for vector applications, while making use of the fast
block RAMs present in modern FPGA devices. This will
be later integrated into a design framework to automate the
synthesis of application specific vector processors.

A first implementation was done to a Virtex4LX80-10
FPGA, including 4 independent cache blocks with LRU re-
placement policy. The writing process implementing the
write-allocate policy has been validated in simulation but it
was not yet integrated in a real hardware implementation.
To issue a series of reading commands, a simple microcode
sequencer sends to the cache memories a sequence of the it-
eration commands presented in table 1. With 4 cache mem-
ories, each one with 32 lines and 16 Kbit per line (for a total
of 2 Mbit of RAM), the design uses 68% of the BRAMs,
7% of LUTs and 4% of flip-flops. This design has been
sucessfully verified with a 200 MHz clock, which is the
maximum frequency allowed by the interface used to ac-
cess the external dynamic memories.

References

[1] Mateo Valero Roger Espasa and James E. Smith. Vector
architectures: Past, present and future. In Proceedings of
the 2nd Intl. Conference on Super Computing, pages 425–
432, July 1998.

[2] Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose.
Vespa: portable, scalable, and flexible fpga-based vector
processors. In CASES ’08: Proceedings of the 2008 interna-
tional conference on Compilers, architectures and synthesis
for embedded systems, pages 61–70, New York, NY, USA,
2008. ACM.

[3] Jason Yu, Guy Lemieux, and Christpher Eagleston. Vector
processing as a soft-core cpu accelerator. In FPGA ’08: Pro-
ceedings of the 16th international ACM/SIGDA symposium
on Field programmable gate arrays, pages 222–232, New
York, NY, USA, 2008. ACM.

[4] Junho Cho, Hoseok Chang, and Wonyong Sung. An fpga
based simd processor with a vector memory unit. In Proc.
IEEE International Symposium on Circuits and Systems IS-
CAS 2006, pages 4 pp.–, 2006.

[5] Christoforos Kozyrakis. Scalable Vector Media-processors
for Embedded Systems. PhD thesis, Computer Science Di-
vision, University of California, Berkeley, May 2002.

[6] D.A. Kozyrakis, C.E. Patterson. Scalable, vector proces-
sors for embedded systems. Micro, IEEE, 23(6):36–45, Dec.
2003.

[7] C. Kozyrakis and D. Patterson. Overcoming the limitations
of conventional vector processors. In Proc. 30th Annual
International Symposium on Computer Architecture, pages
399–409, 2003.

[8] Filipe Oliveira, C. Silva Santos, F. A. Castro, and José C.
Alves. A custom processor for a TDMA solver in a CFD
application. In ARC ’08: Proceedings of the 4th interna-
tional workshop on Reconfigurable Computing, pages 63–
74, Berlin, Heidelberg, 2008. Springer-Verlag.

[9] J. Gregory Steffan Peter Yiannacouras and Jonathan Rose.
Improving memory system performance for soft vector pro-
cessors. In WoSPS: Workshop on Soft Processor Systems,
2008.

[10] P. Yiannacouras and J. Rose. A parameterized automatic
cache generator for fpgas. In Proc. IEEE International Con-
ference on Field-Programmable Technology (FPT), pages
324–327, 2003.


