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Abstract Sophistication and logical depth are two measures that express how
complicated the structure in a string is. Sophistication is defined as the minimal com-
plexity of a computable function that defines a two-part description for the string that
is shortest within some precision; the second can be defined as the minimal computa-
tion time of a program that is shortest within some precision. We show that the Busy
Beaver function of the sophistication of a string exceeds its logical depth with loga-
rithmically bigger precision, and that logical depth exceeds the Busy Beaver function
of sophistication with logarithmically bigger precision. We also show that sophisti-
cation is unstable in its precision: constant variations can change its value by a linear
term in the length of the string.
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3 Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa, Lisboa,
Portugal

4 SQIG-Instituto de Telecomunicações, Lisboa, Portugal

5 Health Information and Decision Sciences Department, Universidade do Porto, Porto, Portugal

6 CINTESIS, Center for Research in Health Technologies and Information Systems, Porto,
Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-016-9672-6&domain=pdf
mailto:lfa@fc.up.pt


Theory Comput Syst (2017) 60:280–298 281

Keywords Sophistication · Logical depth · Kolmogorov complexity · Algorithmic
sufficient statistics · Busy Beaver function

1 Introduction

Solomonoff [1], Kolmogorov [2] and Chaitin [3] independently defined a mea-
sure of information contained in a bit string x as the length of a shortest program
that produces x on a universal Turing machine. This measure, usually represented
by C(x), is called Kolmogorov complexity. Kolmogorov complexity does not express
whether the string contains sophisticated structure. For example, consider for some
n a randomly generated n-bit string. With high probability the complexity is about
n and the string has no (complicated) structure. On the other hand, the (2n − 1)-
bit string representing the Halting problem for programs of length less than n has
also complexity close to n but has very complicated structure. Informally, “sophis-
tication of structure” can be measured by the minimal computation time of a
program modeling the structure or by the minimal size of a program that models the
structure.

The first notion is Bennett’s logical depth [4]. At significance level c, it is defined
as the minimal time to compute x by a program p that is c-incompressible on a
universal prefix-free Turing machine U (of some type), i.e. CU(p) ≥ |p|−c. Bennett
[4] showed that this measure is closely related to the minimal time for which some
time-bounded version of algorithmic probability converges within a factor 2−c. We
will use the following simpler variant (which is closely related with the previous one,
see Section 2):

The time required to compute x by a program no more than c bits longer than
a shortest program.

Examples of strings that are non-deep according to this definition are the random
strings and the efficiently computable ones. In [5], this notion was used to show that
if the complexity class NP reduces to a sequence for which every initial segment is
not deep, up to “polylog” precision in the length of the string, then the polynomial
time hierarchy collapses. In particular, it would imply a collapse if NP reduces to a
sparse or to a random set.

Koppel [6] defined a different notion of depth for infinite sequences based on some
variant of monotone Kolmogorov complexity. The class of deep sequences is defined
by the ones for which the depth of initial segments is not bounded by a computable
function of their length. In particular, the set of such sequences is disjoint from the
set of random ones, and hence, they define a set of measure zero. Lutz [7] showed
that deep sequences contain useful information in the following computational sense:
the class of sequences that truth-table reduces to them has non-zero measure in the
class of computable sequences.

Kolmogorov [8, 9] defined for each string the notion of structure function divid-
ing a shortest program for a string in two parts – one part accounting for useful
regularities and another accounting for the remaining information presented in the
string – in such a way that this two-part description is as small as the shortest one-part
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description. He represented the regularities in the string by finite sets. Later, Kop-
pel [6, 10, 11] expressed regularities as monotone computable functions and called
the minimal complexity of the function defining a shortest two-part code sophistica-
tion. Following Koppel’s work, Li and Vitányi [12] and independently Antunes and
Fortnow [13] revisited the notion of sophistication considering computable functions
(that are not necessarily monotone). It was observed that there are strings with near
maximum sophistication, and such strings encode the halting problem for smaller
programs. Furthermore, in [13] coarse sophistication was introduced, and it was
shown that it is roughly equivalent to a variation of logical depth based on the Busy
Beaver function. In Section 3, we present a more detailed overview of the literature
on these measures of sophistication.

In order to quantify the amount of structure in a string, we consider the length of its
representation in terms of some model, for which the string is “typical”. Depending
on the definition, the model could be a set (set sophistication), or a density function
(effective complexity), or a monotone Turing machine (etc.) One definition that does
not follow this scheme is the notion of logical depth, which measures depth in terms
of time, instead of program length. The main contribution of this paper is to show
that by converting time to length using the Busy Beaver function, this notion of depth
is closely related to sophistication and that it has the same kinds of properties as the
other model-based definitions. From this, we conclude that all sophistication mea-
sures defined using Kolmogorov complexity, are equivalent in this sense. A closely
related result was previously shown in Theorems 3.1.21 and 3.3.3 of [30]. Although,
using a very technical but closely related scaling function based on the convergence
time of Chaitin Omega numbers. We also study the stability of sophistication under
changes of significance. From Theorem IV.4 in [14], one concludes that a logarith-
mic change of the significance can change sophistication maximally (i.e. almost |x|).
We show this also holds for constant changes of the significance.

2 Definitions and Results

For a string x, let |x| be the length of x. For each Turing machine, we associate a
partial function U that maps pairs of strings to strings. We fix a reference Turing
machine U that is universal in the following sense: for any other machine V , there is
a string wV such that U(wV p, y) = V (p, y) if V (p, y) is defined. If y is the empty
string we write U(p) rather than U(p, y).

The Kolmogorov complexity of x is defined as

C(x) = min
p

{|p| : U(p) = x}.

Note that changing the universal machine U affects Kolmogorov complexity by less
than an additive constant.

Koppel [6], using monotone functions as a model, defined sophistication for infi-
nite strings. Monotone complexity functions are standard in the literature, for the
definition of monotone Turing machines we reefer the reader to the original paper
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[6] and also to [30]. Later, Li and Vitányi [15] and Antunes and Fortnow [13] inde-
pendently simplified Koppel’s definition of sophistication for finite strings, using
computable functions (that are not necessarily monotone).

Definition 1 (as in [13]) Let c be integer. The sophistication of a string x with
significance c is:

sophc(x) = min
p

⎧
⎨

⎩
|p| :

U(p, d) is defined for all d

and there is a d s.t. U(p, d) = x

and |p| + |d| ≤ C(x) + c

⎫
⎬

⎭
.

If no such p exists, then sophc(x) = +∞.

Clearly, sophistication is non-increasing in c. For c = |x| + O(1), sophistication
is bounded by O(log |x|). It might happen that sophistication is finite for negative c,
however one can show that finite sophistication implies −c ≤ O(log |x|).

Bennett [4] defined the c-significant logical depth of an object x as the time
required by a prefix-free machine to generate x with a program p that is c-
incompressible (i.e. K(p) ≥ |p|−c, where K stands for the complexity on a universal
prefix-free machine). Our results are related to a more intuitive version of logical
depth (also discussed in [4]). In Appendix A, we explain why this notion is suffi-
ciently close to Bennett’s definition. Let time(p) be the number of computation steps
made by U on input x to reach a halting state.

Definition 2 (Logical depth) For any c ≥ 0, the logical depth of a string x at
significance level c is

depthc(x) = min {time(p) : |p| ≤ C(x) + c and U(p) = x} .

Note that depth is always finite (for c ≥ 0). For c < 0 let depthc(x) = +∞. One
can, scale down the running time to program length using the inverse Busy Beaver
function

bb(n) = min {|p| : U(p) halts and time(p) ≥ n} .

The Busy Beaver logical depth is simply the inverse Busy Beaver function of the
logical depth. By definition, this equals the minimal complexity of an upper bound
of the logical depth.

Definition 3 The Busy Beaver logical depth of x with significance c is:

depthbb
c (x) = bb(depthc(x))

= min
p,q

{

|q| : |p| ≤ C(x) + c and U(p) = x

and time(p) ≤ time(q)

}

From the definition it is easy to see that depthbb
c (x) ≤ C(x) ≤ |x|+O(1). Clearly,

depthc(x) is non-increasing in c. For some machines U we have depthc(x) ≥ |x| for
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all x, for example, if every halting program on U always scans the full input. The
following lemma shows that changing two such machines changes the Busy Beaver
logical depth to a function that is close.

Lemma 1 For all universal1 Turing machines U and V , there exist a constant c′
such that for all c and x: depthc,U (x) ≥ |x| [no Busy Beaver here!] implies

depthbb
c+c′,V (x) ≤ depthbb

c,U (x) + c′.

We postpone the proof of this lemma to the Appendix A. Let the upper graph of a
function f be {(n, m) : m ≥ f (n)}. Let the distance between two points (n, m) and
(n′, m′) be max(|n − n′|, |m − m′|).

Definition 4 Two functions f and g are c-close if the upper graphs of these functions
are in a c-neighbourhood of each other.

If f and g are non-increasing, this is equivalent to f (n + c) ≤ g(n) + c and
g(n + c) ≤ f (n) + c. The previous lemma shows that the depth function of all
universal machines U with depthc,U (x) ≥ |x| are O(1)-close.

Sophistication and logical depth are conceptually very different since the former
measures program lengths while the latter running times. In order to establish a
relationship between these measures, we rescale logical depth from running time to
program length using the Busy Beaver function. Our main results show that although
sophistication can suffer huge drops within O(log(c)) changes in significance (The-
orem 2), sophistication and bb-depth cannot diverge too much within a margin of
O(log(|x|)) in the significance.

The first main result of the paper states that sophistication and logical depth are
O(log |x|)-close.

Theorem 1 For a fixed x, the functions depthbb
c (x) and sophc(x) are O(log |x|)-

close, i.e., for some e and for all c and x with |x| ≥ e:

depthbb
c+e log |x|(x) ≤ sophc(x) + e log |x|

sophc+e log |x|(x) ≤ depthbb
c (x) + e log |x|.

In Theorem 6 in Section 6 it is shown that the margin in the significance cannot be
made constant, and hence, depth and sophistication are not O(1)-close. The second
main result states that for a fixed string x, the sophistication function is unstable in
its significance; more precisely, for some x and c, small changes of c can result in
large changes of sophc(x).

1In fact the proof only requires that U and V are optimal, i.e. for all machines W there exist cW such that
CU (x) ≤ CW (x) + cW and similarly for V .
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Theorem 2 For some e and for large c there are infinitely many x such that2

sophc(x) − sophc+e log c(x) ≥ 3

4
|x|.

This theorem shows that for a fixed string “the sophistication of this string” cor-
responds to a function (of c), rather than a single number (in a similar way as
Kolmogorov introduced the closely related structure function, see Section 3).

3 Related Definitions of Sophistication

We describe related notions of sophistication and present a few definitions. No defi-
nitions or results from this section are needed in later sections. For a recent overview
paper, we refer to [31].

The first approach to define some notion of sophistication goes back to Kol-
mogorov [8, 9] (see [16]) and uses the definition of a typical string in a set.

Definition 5 A string x is c-typical in a finite set S containing x iff

C(x|S) ≥ log |S| − c.

For such S, a literal representation of the lexicographic index of x in S (of length
log |S|+O(1)) is almost a shortest description for x given S. By a counting argument,
one can show that all but at most a fraction 2−c of elements in a set are c-typical.3

Kolmogorov asked whether there exist strings that are not typical in any finite set
with small Kolmogorov complexity.4

In [18–20] a positive answer was shown, i.e., some strings are only typical in
sets of complexity close to the length of the string. Kolmogorov called such strings
absolutely non-stochastic, because they have high mutual information with the Halt-
ing problem. It is believed that such strings can not appear with high probability in
a statistical experiment. We define the non-stochasticity of a string as the minimal
complexity of a set in which the string is c-typical:

Definition 6 nstochc(x) = min {C(S) : x is c-typical in S} .

Kolmogorov also considered a more restrictive class of “good” set-models for a
string x. To understand this criterion, consider the structure set, which is the set of
all pairs (i, j) for which there is an x-containing set of complexity at most i and
cardinality at most 2j , see Fig. 1. Ignoring O(log |x|)-terms, the set contains the

2 For any ε > 0, we can replace the term 3
4 |x| by (1− ε)|x| if the significance of the second sophistication

term is replaced by c + O(log(c/ε)).
3 On the other hand, any set must have non-typical elements unless the set contains a lot of mutual
information with the Halting problem [17].
4The Kolmogorov complexity of a set is the length of a shortest program that prints all its elements and
halts.
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Fig. 1 The structure set of a string x is the set of all pairs (i, j) for which there exists an x-containing set
of complexity at most i and cardinality at most 2j . Such a set is schematically represented above in gray.

points (C(x), 0) and (0, |x|) witnessed by the set {x} and the set of all strings of
length |x|. Note that if the set contains a point (i, j), it also contains the points (i +
k, j − k) for all k ≤ j .5 Hence, the lower border of the set, called structure function,
decreases with at least slope one (still ignoring O(log |x|) terms). No point appears
below the line i + j = C(x), otherwise the corresponding set could be used to
construct a program for x of size less then C(x). Cover [21] (see also Section 14.12
of the reference [22] and Section 5.5.1 [12]) mentioned explicitly the left-most place
where the set approaches this line, which we call set sophistication of x:

Definition 7 sophSet
c (x) = min{C(S) : x ∈ S ∧ C(S) + log |S| ≤ C(x) + c}.

By the following theorem and lemma, sophistication, set-sophistication and non-
stochasticity for a string x are all O(log |x|)-close.

Theorem 3 ([14]) For all x, the functions nstochc(x) and sophSetc (x) are O(log |x|)-
close.

Lemma 2 ([23]) For all x, the functions sophc(x) and sophSetc (x) are O(log |x|)-
close.

5Partition the set in subsets of size at most 2j−k , this increases the complexity of the x-containing set by
at most k.
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All these sophistication functions are unstable: increasing the parameter c by
O(log |x|), the function values can drop from maximal value |x| − O(log |x|) to
O(log |x|).

Corollary 1 (of Theorem IV.4 in [14]) There exists e such that for all c there exist
infinitely many x such that6

sophSetc (x) ≥ |x| − e log |x| and sophSetc+e log |x|(x) ≤ e log |x|.

In [20] it was shown that a sufficient set of almost minimal complexity of a string x

can be computed from an initial segment of the binary code of the number of halting
programs of length C(x). Hence, such a set contains high mutual information with
the Halting problem for short programs (see [24]). In [25, 26] it is argued that in
some cases this statistic can hardly be interpreted as a denoised version of x. In fact,
compared to x, a sufficient two part-code (S, z) (where z is the lexicographic index of
x in S) can contain different computational information from x, although C(x|S, z)

and C(S, z|x) are both small. The proposed solution was to impose the existence of
a computable bijection of small complexity between x and (S, z). This is equivalent
to the requirement that there exists a short total program computing S from x. In
[26] it was shown that this version of sophistication can be much larger than set-
sophistication. In fact, the result shows that strings with large such sophistication can
appear with non-negligible probability in some statistical experiments.

Until now, we considered two model types in the definitions of sophistication. In
Definition 1, we used computable functions that are c-sufficient for x, i.e., functions
f for which a string d exists such that f (d) = x and C(f ) + |d| ≤ C(x) + c. In
Definition 7, we considered c-sufficient sets for x, i.e., sets S containing x for which
C(S) + log |S| ≤ C(x) + c. Another popular model type are computable probabil-
ity density functions P . Such a P is c-sufficient for x if C(P ) + log(1/P (x)) ≤
C(x) + c [20].7 In a similar way, probabilistic sophistication at significance level c

is defined as the probability density function of minimal complexity that is c-
sufficient. By Lemmas 7.1 and 7.2 of [23] all these variants of sophistication are
O(log |x|)-close.

In order to generalize the notion of sophistication for (infinite) sequences, Koppel
[6, 10, 11] considered monotone computable functions f as models. The suffi-
ciency criterion for the two-stage code for x is the existence of a string d such that
f (d) = x and Km(f ) + |d| ≤ H(x) + c where H(x) is the minimal length of a
two-part description for x on some special monotone machine and Km(x) denotes

6Theorem IV.4 in [14] states that every decreasing function f is (C(f )+O(log |x|))-close to the function

λx(k) = min {C(S) + log |S| : S � x ∧ C(x) ≤ k}
of some string of length f (0). (We use plain complexity in the definition of λx , because all results hold up
to O(log |x|) terms). For fixed x, the function λx is the inverse of sophSet

x .
7 This probabilistic sufficiency criterion was defined in [20] in terms of prefix-free complexity, because
2−K(x|P) defines a probability distribution and hence, it is natural to compare it with P(x). Prefix com-
plexity and plain complexity differ by at most O(log |x|) [12], and this precision is sufficient for our
discussion.
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the monotone Kolmogorov complexity relatively to the machine considered. It is
not hard to show that H(x) = C(x) + O(log |x|) and that this notion of sophis-
tication is O(log |x|)-close to the aforementioned notions.8 On this model, Koppel
defined sophistication and depth for sequences in two variants, and for each variant
he showed that sophistication and depth are equal up to constants.

The last variant of sophistication is effective complexity [27, 28]. This notion uses
a probability density function P . Inspired by an information-theoretic solution of the
problem of Maxwell’s Demon, total entropy of P has been defined as C(P )+H(P ),
where H(P ) = ∑

x P (x) log2(1/P (x)) denotes the Shannon entropy of P .9 A prob-
ability density function P is a c-good model for x if C(P ) + H(P ) ≤ C(x) + c and
log(1/P (x)) ≤ H(P ) + c.10 The c-effective complexity is the minimal complex-
ity of a c-good model. In Lemma 21 of [29], it is shown that effective complexity
is O(log |x|)-close to set-sophistication.11 In Theorem 18 of [29] it was also shown
that strings with high effective complexity have high computational depth. Moreover,
the proof shows that effective complexity is upper bounded by the Busy Beaver log-
ical depth with slightly bigger significance. Our Theorem 1 implies also the other
direction, i.e., that effective complexity is O(log |x|)-close to Busy Beaver logical
depth.

4 Sophistication and Busy Beaver Logical Depth are Close

Koppel [6] proved an equivalence between logical depth and sophistication for infi-
nite sequences. For such sequences, and for fixed significance, depth is defined as
the minimal complexity of a total function rather than the minimal complexity of
an upper bound for a number. In this section we show that sophistication and Busy
Beaver logical depth of a string x are O(log |x|)-close functions.

Theorem 4 The functions depthbb
c (x) and sophc(x) are O(log |x|)-close, i.e., for

some e and for all c and x with |x| ≥ e:

depthbb
c+e log |x|(x) ≤ sophc(x) + e log |x|

sophc+e log |x|(x) ≤ depthbb
c (x) + e log |x|.

8It is unclear whether H(x) = Km(x) + O(1).
9The definition of total entropy used in [27, 28] is K(P ) +H(P ). Notice that plain and prefix complexity
are close (|K(P ) − C(P )| ≤ O(log C(P )). See also footnote 7.
10In fact, in [27] the precision for which these inequalities should hold is not discussed. Also, the authors
suggest that the computation time of a program for P is bounded by some computable function. In [29] the
first requirement c = δ|x| is chosen for some δ > 0 and in the second requirement a different parameter
is chosen. Furthermore, P should be computable as a real function and no restrictions on the computation
time are considered. Also, K(P ) was replaced by K(P,H(P )).
11Indeed, if P is c-good then it is (2c)-sufficient. For the other direction, note that at most 2H(P )+c+1

elements satisfy log(1/P (x)) ≤ 	H(P )
+c, and these elements can be computed given P and 	H(x)
 ≤
C(x) + c ≤ |x| + c + O(1). Hence a c-good model defines a (c + O(log |x|))-sufficient set.
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In the Appendix we provide an alternative and more technical proof of this result
involving Chaitin Ω-numbers that might be of interest for people with background
in the theory of algorithmic randomness.

Proof To prove the first inequality, we consider c ≤ |x| + O(1); otherwise the
theorem follows directly. Consider p and d such that

A1. the function U(p, ·) is total,
A2. U(p, d) = x,
A3. |p| + |d| ≤ C(x) + c.

For later use, note that by assumption on c we have that |p| and |d| are bounded by
2|x| + O(1). We need to construct q and r such that

1. U(q) = x and |q| ≤ |p| + |d| + O(log |x|),
2. time(q) ≤ time(r),
3. |r| ≤ |p| + c + O(log |x|).

The idea of the construction is to let r be a shortest program for the maximal
computation time needed to simulate U(p, e) for some e of length |d|. Let us define
this quantity more formally.

Construction of q. For a string y, let y be a computable prefix-free encoding
of length |y| + 2 log |y|. (For example y = b10b20 . . . blog |y|1y where b is |y| in
binary.) Let V be a machine such that V (ye) = U(y, e) if U(y, e) is defined.
Thus U(wye) = V (ye) = U(y, e) for some w and all y, e. Let q = wpd. Thus,
U(wpd) = U(p, d) = x. Recall that |p| ≤ 2|x| + O(1), hence, |q| satisfies
condition 1:

|q| ≤ O(1) + (|p| + O(log |p|)) + |d| ≤ |p| + |d| + O(log |x|) .

Construction of r . Let

t = max
e

{time(wpe) : |e| = |d|}.
The program r is a shortest program printing a string containing t zeros. Clearly, the
running time of this program is at least t and by construction this exceeds time(q) ≥
time(wpd), which verifies condition 2. For condition 3 notice that to compute t , we
only need to know p and |d| ≤ 2|x| + O(1), hence,

|r| ≤ |p| + O(log |d|) ≤ |p| + O(log |x|).
This concludes the proof of the first inequality.

Now we prove the second inequality. For each k, l such that l ≤ k consider a
sequence of strings xi and markers

Sl,k = x1, x2, . . . , xi,�, xi+1, . . . , xj ,�, xj+1, . . .

that can be enumerated as follows: dovetail all programs of length l and k, and enu-
merate the output of the k-bit programs in order of computation time. Each time a
program of length l halts, also append a marker to the series (if k-bit programs with
the same computation time appear, append the marker last). One easily observes that:

1. the sequence Sl,k can be enumerated from k, l,
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2. there are at most 2l markers, and at most 2k strings,
3. if a program of length k outputs x in at most BB(l) = max {time(p) : |p| ≤ l}

steps, then x appears in the sequence Sl,k before its last marker.

The second inequality of the theorem follows from the following lemma.

Lemma 3 Every string that appears before the last marker in a sequence Sl,k

satisfying properties 1 and 2 above, satisfies

sophk−C(x)+O(log k)(x) ≤ l + O(log k).

We show that this lemma and Property 3 implies the inequality. Assume c ≤
|x| + O(1), otherwise the inequality holds for trivial reasons. Let l = depthbb

c (x).
There is a program p for x with |p| ≤ C(x)+ c that runs in at most BB(l) steps (and
in more than BB(l − 1) steps). Let k = |p|, thus l ≤ k (if |p| < l, the running time
of p would be at most BB(l − 1)). Enumerate a sequence Sl,k as described above
with parameters l and k. Notice that x appears in Sl,k before the last marker. By the
claim, we have

sophc+O(log k)(x) ≤ l + O(log k).

The inequality follows from this and k ≤ C(x) + c ≤ 2|x| + O(1).

To complete the proof of Theorem 1 we prove Lemma 3.

Proof of Lemma 3 For any computable function f , let C(f ) denote the minimal
length of a program that computes f . For any x as in the Lemma, we need to show
that there is a computable function f such that:

1. C(f ) ≤ l + O(log k)

2. C(f ) + |d| ≤ k + O(log k) for some d ∈ f −1(x).

Consider a segment of strings xi+1, . . . , xj in the sequence, separated by two
markers � that contains x. We associate a function f to this segment that maps the
lexicographic first j − i strings to xi+1, . . . , xj and all other strings to the empty
one. Notice that f is computable, and can be computed from k, l and the number
of markers that precede the defining segment (which is at most 2l). This implies
C(f ) ≤ l + O(log kl) = l + O(log k), i.e., condition 1.

It remains to show condition 2. Let δ = log(j − i), i.e. the logarithm of the size
of the segment. Observe that at most 2k−δ segments in the sequence have size at
least 2δ (by assumption 2). Hence, C(f ) ≤ k − δ + O(log klδ). Since the segment
contains x, there is a d such that f (d) = x, and by construction |d| ≤ δ. Hence
C(f ) + |d| ≤ (k − δ) + δ + O(log(klδ)), i.e. condition 2.

5 Sophistication is Unstable

In [13] the authors conjectured that Koppel’s definition of sophistication might not
be stable, in the sense that small changes in the significance c level could drasti-
cally change the value of sophc(x). To avoid this problem, they proposed a different
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sophistication measure where they incorporated the significance level as a penalty in
the formula obtaining a robust measure, called coarse sophistication. However, one
can argue that this measure is not robust in the sense that drastic changes can happen
for slight changes of the weight of the penalty function [25].

In Section 3, we used Theorem IV.4 of [14] to show that (most variants of) sophis-
tication are unstable if the significance is increased by O(log |x|). With the same
proof technique, one can show that also sophistication when defined with prefix
complexity is unstable with constant changes of the significance.

One might ask whether sophistication functions defined with plain complexity are
also unstable with constant changes in the precision? We provide a positive answer
to this question.

Theorem 5 For some e and for large c there are infinitely many x such that

sophc(x) − sophc+e log c(x) ≥ 3

4
|x|.

The proof also uses a technique inspired by the proof of Theorem IV.4 in [14].
However, some technical difficulties appear because we are using plain machines.
Let us explain the problem. In the definition of sophistication of x, we consider pairs
of strings (p, d) such that U(p, d) = x. For some k there are 2k strings of length
k, but there are (k + 1)2k pairs (p, d) with |p| + |d| = k. In [14] self-delimiting
programs are used and the combinatorial part of the argument uses that the amount
of two-part codes of length k is at most 2k . In this paper we do not use self-delimiting
machines, and therefore the combinatorial argument needs a bit more care.

Lemma 4 For some c′ and for all k and x such that k + log k ≤ |x| we have
soph|x|−C(x)−log k+c′(x) ≤ k + c′.

Recall that sophistication is defined for negative significance. This lemma even
proves that sophistication can be negative for all random strings, i.e., strings x for
which C(x) ≥ |x|.

Proof Let n = |x|. In order to prove the lemma it is sufficient to show that there
is a two-part description (p, d) for x satisfying |p| + |d| ≤ n − log k + O(1) and
|p| ≤ k + O(1). The idea to prove it is to use the length of |p| to encode the last
log k − 1 bits of x.

Let i be the index of the last log k−1 bits of x in the lexicographic order of strings;
(i.e., xn−log k+2 . . . xn is the i-th string in the sequence ε, 0, 1, 00, 01, . . . ). Notice
that i < k.

Let p be the program that on input d first prints x1 . . . xi , subsequently prints d,
and finally prints xn−log k+2 . . . xn. Clearly, the above description defines a total func-
tion. Moreover, only the information in x1 . . . xi is needed to evaluate this function,
since the last part of the output can be computed from i. Hence, we can construct p

such that |p| = i + O(1) ≤ k + O(1).
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Furthermore, for d = xi+1 . . . xn−log k+1 we have U(p, d) = x and |p| + |d| ≤
(i + O(1)) + (n − i − log k) ≤ n − log k + O(1).

Proof of Theorem 5. It is sufficient to show that for all k, c there is a string x of length
k + log k + 2 such that sophc−O(log c)(x) ≥ k and sophc+O(1)(x) ≤ k/8 + O(1).

Our construction of x implies that C(x) ≥ k − c. Hence, applying Lemma 4
with k ← k/8 implies sophc+O(1)(x) ≤ k/8 + O(1); indeed, the significance
is

|x| − C(x)− log(k/8) + c′ ≤ (k + log k + 2) − (k − c) − log k + 3 + c′ = c + O(1).

The inequality sophc−O(log c)(x) ≥ k − c follows by the requirements that C(x) ≤
k − c + O(log c) and that there exist no pairs (p, d) such that

1. U(p, d) = x and |p| + |d| < k,
2. |p| < k − c and U(p, y) is defined for all y such that |p| + |y| < k.

Let us summerize the properties needed in the construction of x (of length k +
log k + 2). The complexity should be

k − c ≤ C(x) ≤ k − c + O(log c),

and there should not exists pairs (p, d) satisfying conditions 1 and 2 above.
Construction of x. We keep a list of all strings of length k + log k + 2. At each

stage we mark some strings and the lexicographic first string without a mark is the
current candidate for x. At each stage, marks are given as follows: we dovetail all
programs p, and if a program of length less than k − c halts with an output in the list,
then that output is marked. Clearly, there are less than 2k−c strings that are marked
in this way. Secondly, if a program p is found satisfying condition 2, i.e., for which
the computations U(p, y) terminate for all y such that |y| + |p| < k, then all strings
U(p, y) in the list are simultaneously marked. These marks appear in less than 2k−c

different stages, and the number of such marks is less than
∑k

i=0 2i2k−i < (k+1)2k .
Hence, the total number of marked strings is less than (k + 1)2k+1 ≤ 2n which
means there is always a candidate for x and at some stage the new candidate remains
permanent. By construction, C(x) ≥ k − c and there is no pair (p, d) for which both
conditions 1 and 2 are satisfied.

Now we have to prove that C(x) ≤ k − c + O(log c). x can be computed from
k, c and the total number N of replacements of the candidate for x. Since there are
less than 2k−c + 2k−c stages where new marks are given, we have N < 2k−c+1

times and hence C(x|k, c) ≤ k − c + O(1). In fact, if N is represented in binary
with k − c bits, we can compute k from c and the length of this representation. Thus
C(x|c) ≤ k − c + O(1) and hence C(x) ≤ k − c + O(log c).

6 Sophistication and Busy Beaver Logical Depth are not O(1)-Close

In this section we investigate whether there exists an O(1)-close relation between
sophistication and logical depth. More precisely, for every c can we find an e such
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that

sophc+e(x) ≤ depthbb
c (x) + e and depthbb

c+e(x) ≤ sophc(x) + e?

The following theorem provides a negative answer:

Theorem 6 For all large l there exist infinitely many strings x such that
depthbb

l (x) ≥ |x| − O(l) and soph0(x) ≤ O(l22l).

We explain informally why an equivalence with O(1) precision fails. In the defini-
tion of sophistication of x, we consider pairs of strings (p, d) such that U(p, d) = x.
As noted before, for all k there are 2k strings of length k, but there are (k +1)2k pairs
(p, d) with |p| + |d| = k. This suggests that strings might exist that have a two-part
code (p, d) for which |p| + |d| is smaller than C(x). In other words, this suggests
that sophistication can be finite even for negative significance. For an explicit exam-
ple, choose a string x for which C(x) ≥ |x| and apply Lemma 4 in Section 5. For all
random and almost random strings, sophistication with negative significance can still
be small. There exist x that are only compressible by a small amount and for which
the logical depth is high for small significance. Such x are almost random, and hence
can have small sophistication even with negative significance.

We now prove Theorem 6 by combining Lemma 4 in Section 5 with the following
lemma.

Lemma 5 For some c, for all d and for all n > d there is x of length n such that

C(x) ≥ n − d ,

depthbb
d−2 log d−c(x) ≥ n − d .

Proof We prove the existence of such strings for n > d , since for the other case is
trivial.

Let x be the lexicographically first string of length n which is incompressible
in time BB(n − d), i.e. there is no program strictly shorter than n computes x in
BB(n − d) steps.

To show the inequalities in the statement of the lemma, it is sufficient to show that

n − d < C(x) ≤ n − d + 2 log d + O(1).

For the right inequality, notice that we can compute x from BB(n − d) and n.
Furthermore, with O(1) bits of information, n can be computed from d and the
length of a witnessing program for BB(n − d) (notice that a program witnessing
BB(n − d) has length n − d + O(1)). Hence x has a program of length n − d +
2 log d + O(1).

For the left inequality, notice that by the right inequality we have C(x) < n for
large d. By choice of x, any program producing x of length at most n − 1 must do it
in time longer than BB(n − d), and by definition of BB(n − d) this program must
be strictly longer than n − d.



294 Theory Comput Syst (2017) 60:280–298

Proof of Theorem 1 Let c′ be the constant from Lemma 4. For any large k we apply
Lemma 5 with d = log k−c′ to obtain a string x of complexity C(x) ≥ |x|−log k+c′.
Apply this bound to Lemma 4; the significance of the sophistication is at most |x| −
(|x|− log k + c′)− log k + c′ = 0 and we conclude that soph0(x) ≤ k + c′ ≤ O(2d).

At the same time x satisfies depthd−2 log d−c(x) ≥ |x| − d. Hence setting l =
d − 2 log d − c the equations of the Theorem 1 are satisfied. Since k can be any large
number, also d and l can be any large number, completing the proof.

If sophistication can be finite for negative significance, it would be fair to com-
pare depthO(1)(x) to sophbb

� (x) where � equals the minimal value of the significance
for which sophistication is finite. This value is − log C(x) + O(1) for every x.
The following lemma implies that even with such a correction we can not have a
correspondence with sublogarithmic terms in the significance.

Lemma 6 There exists an e such that for all x and c ≥ 0: soph−2c−e(x) ≥ 2c.

If f is a sublogarithmic function, this lemma implies that soph− log |x|+f (|x|)(x) is
at least proportional to

√|x| for large x. (And is finite for x such that C(x) ≥ |x|.) On
the other hand, depthO(1)(x) ≤ bb(|x|+O(1)) for all random x. Hence, this approach
does also not provide a close correspondence between depth and sophistication.

Proof of Lemma 6 Let e be a large enough constant that will be determined later.
Suppose that soph−2c−e(x) < 2c for some x and c ≥ 0. Let p and d be such that
U(p, d) = x with |p| < 2c and

|pd| ≤ C(x) − 2c − e.

Let p be a self-delimiting encoding of p of length at most 2 log |p| + |p| ≤ 2c + |p|.
This code can be concatenated to d to get a program for x and this implies that
C(x) < 2c + |p| + |d| + e for some large enough e. By assumption on |pd| this
implies C(x) < C(x), a contradiction.

To study the relationship between depth and sophistication with more precision,
one can avoid the pathology of two part codes by using self-delimiting programs for
the total functions. Such programs can be concatenated with an argument without
blank between both strings. This implies that one also needs to use self-delimiting
programs for x, or otherwise again pathological examples can be constructed. More
formally, one uses prefix-free Turing machines, which are machines for which the
set of halting programs is a prefix-free set. There exists a universal such machine and
we denote Kolmogorov complexity, sophistication and Busy Beaver logical depth of
x on such a machine as K(x), sophK

c (x) and depthK
c (x). It was shown in Theorem

3.2.2 in [30] that with these definitions sophistication and logical depth are still not
O(1)-close.12

12 The formulation of Theorem 3.2.2 in [30] uses I (x;H) = K(x)−KH (x) with KH (x) the Kolmogorov
complexity on a machine that has an oracle for the Halting problem. To obtain Theorem 7 from this, use
the folklore result: depth0(x) ≥ I (x;H) + O(log I (x;H)).



Theory Comput Syst (2017) 60:280–298 295

Theorem 7 ([30]) For all c and e there exist infinitely many x such that

sophK
c (x) ≥

(
depthK

0 (x)
)e

.

For all c there exist ε > 0 and infinitely many x such that

sophK
c (x) ≥ ε|x| + depthK

0 (x).
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Appendix A: Machine Invariance of Logical Depth

Lemma 7 For all universal Turing machines U and V , there exist a constant c′ such
that for all c and x: depthc,U (x) ≥ |x| [no Busy Beaver here!] implies

depthbb
c+c′,V (x) ≤ depthbb

c,U (x) + c′.

Note that for some universal machines there exist a string w such that U(wx) = x

for all x and the computation requires at most O(1) steps. For such machines U

we have depth|wx|(x) ≤ O(1) and hence depthbb|wx|(x) ≤ O(1). Other universal

machines always scan the input, and on such machines we have depthbb|wx|(x) ≥
bb(|x|) − O(1) for all x. Hence, the assumption in the lemma is necessary.

Proof Let wV be the prefix such that V (wV p) simulates U(p) for all p. Our result
would follow easily if we assume that for any halting programs p, q on U such
that time(p) ≤ time(q) we have time(wV p) ≤ time(wV q) on V ; i.e. simulating
U on V preserves the order of computation time. Indeed, any pair (p, q) usable in
the definition of depth on U defines a pair (wV p,wV q) that can be used in the
definition of depth on V . The program wV p is minimal on V within c + |wV | +
|wU | error (where wU is the string that allows to simulate U on V ). Hence, the
pair (wV p,wV q) witnesses an increase of sophistication by at most |wV | for an
increase of the significance of at most c + |wV | + |wU |.

In the case where the assumption is not true, we need to find c′ and a program of
length at most |q| + c′ on V that computes longer than time(wV p) (where c′ does
not depend on p, q, c). Consider the following algorithm on input q: determine all
programs p that have running time at most time(q) on U , determine for all these p’s
the maximal running time T of a program wV p on V (assume for now that for finite
time(q) there are finitely many such p), and finally print a string of length T . For
(p, q) usable in the definition of depthc,U (x), the algorithm with input q produces
an output longer than time(wV p), and by universality there is a program of length
|q| + c′ on V that prints this string and hence computes longer than T .
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Above, we have assumed that only finitely many programs on U have a halting
time at most time(q) for halting q. This assumption is not true in general, but by
the additional assumption of the lemma: depthc,U (x) ≥ |x|, it suffices to consider
only a finite subset of candidates: we only need the pairs (p, q) on U such that
|p| ≤ |x|+O(1) and |x| ≤ time(q), which implies |p| ≤ time(q)+O(1). The proof
finishes by modifying the above algorithm such that it only considers programs p for
which |p| ≤ time(q) + O(1).

Recall that Bennett’s definition of logical depth is the minimal computation time
of a program on a prefix-free machine W (of some type) that is c-incompressible. We
show that when scaled by the inverse Busy Beaver function, both notions of depth
are O(log |x|)-close. On a prefix-free machine W , both (unscaled) depths are closely
related: Bennett’s logical depth of x at significance c is at most depthc+O(1),W (x),
because any c-shortest program p for x is c + O(1)-incompressible on W . On
the other hand, by Lemma 5.3 of [7] (attributed to Bennett [4]), depthc+O(1)(x) is
bounded by a computable function of Bennett’s logical depth of x with significance c.
Hence, after rescaling with the inverse Busy Beaver function, both notions are O(1)-
close. Exchanging prefix-free machine by a plain machine, both depth notions are
O(log |x|)-close; indeed this follows by the same argument as Lemma 7 for W = V

and replacing |wV | by O(log |x|)-terms in the proof (since |KW(x) − CU(x)| ≤
O(log |x|)).

Appendix B: Alternative Proof of Theorem 1

An alternative proof for the second inequality in Theorem 1 is given: there exists e

such that for all c and x with |x| ≥ e we have

sophc+e log |x|(x) ≤ depthbb
c (x) + e log |x| .

A prefix stable machine V is a plain machine such that for all strings p and exten-
sions q of p: if p ∈ DomV then q ∈ DomV and V (p) = V (q). For (infinite)
sequences ω let V (ω) be V (p) if a prefix p of ω exists such that V (p) is defined,
and undefined otherwise. For any string or sequence ω, let 0.ω be the real

∑
i ωi2−i .

A prefix stable machine is left computable [17] if for p such that V (p) is defined
and for all q such that 0.q ≤ 0.p, also V (q) is defined. There are universal prefix
stable machines that are left computable (just rearrange the programs on a universal
machine). Let Ω = sup{0.p : V (p)is defined}.

In order to prove the result aforementioned, it is sufficient to show that
sophc+2 log |x|,U (x) ≤ depthbb

c,W (x) + 2 log |x| for large x, where W is a universal left
computable machine. Indeed, there exists a universal plain machine U such that

depthbb
c+2 log |x|,W (x) ≤ depthbb

c,U (x) + O(log |x|).
(translating plain programs to self-delimiting ones can happen by affecting program
sizes by at most O(log |p|) and computation time by a computable function of |p|
and the halting time).
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Let p be a program satisfying the conditions in the definition of depthbb
c (x). We

show that the initial segment where p and Ω are equal defines a computable function
that satisfies the conditions in the definition of sophistication. More precisely, let i

be the length of the common initial segment, then F(d) = V (Ω1 . . . Ωi0d) satisfies
the conditions. Note that, p1 . . . pi = Ω1 . . . Ωi−10 and Ωi = 1 by construction
of i. Thus F(pi+2 . . . p|p|) = x. For any d we have 0.Ω1 . . . Ωi0d < Ω and by left
computability this is in DomV, thus F is computable. It remains to show that C(F) ≤
depthc,W (x) + O(log depthc,W (x)). We show that C(Ω1 . . . Ωi−1) ≤ depthc,W (x) +
O(log i). In fact, given i and a t that exceeds the computation time of p, we can
search for the maximal value 0.w for a program w that halts in t computation steps.
We know that 0.p ≤ 0.w ≤ Ω , hence we can compute the first i − 1 bits of Ω which
completes the proof.
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