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Abstract—In classification, when there is a disproportion in the
number of observations in each class, the data is said to be class
imbalance. Class imbalance is pervasive in real world applications
of data classification and has been the focus of much research.
The minority class contributes too little to the decision boundary
because the learning process learns from each observation in
isolation. In this paper, we discuss the application of learning
pairwise rankers as a solution to class imbalance. We compare
ranking models to alternatives from the literature.

I. INTRODUCTION

It is not uncommon in classification problems for data
to be class imbalance; that is, the class distribution is not
uniform, sometimes dramatically not. This is true in such fields
as medicine where more people are cleared as negative in
screening than are accused positives by such tests. In such
cases, a naive application of learning algorithms will produce
uninteresting models that have very good overall accuracy, at
the expense of the minority class.

Several approaches have been proposed in tackling this
problem, which usually involve:

A. Pre-processing step changing the class priors by under-
sampling the majority class and/or creating new synthetic
examples of the minority class [1], or even changing class
priors by changing class labels themselves (e.g. MetaCost
[2]);

B. Training with costs instead of maximizing accuracy, the
training algorithm maximizes weighted accuracy, so that
the cost of misclassifying a class is inversely proportional
to its frequency;

C. Post-processing by tweaking the decision boundary by
such measures as changing a threshold after which one
class is selected, sometimes with the aid of a ROC curve;

D. Ensembles by which each model within the ensemble is
trained with balanced subsets of the data, coupled with
the previous preprocessing techniques.

This list is by no means meant to be exhaustive. One-class
models are also sometimes used to identify the minority class,
though they do not usually produce very interesting results [3,
see Table 4]. On the other hand, some rule induction models
can be made to prioritize one class, and have been found to
produce interesting results [4].

In this work we propose adding pairwise rankers to the
repertoire of such techniques. We will first introduce some
of the current techniques from the literature in more detail

before delving into learning pairwise rankers. Previous work
had found that rankers can produce better AUC curves [5].

A. Pre-processing

Stratification is the most popular pre-processing approach. It
works either by undersampling from the majority class which
has the side benefit of greatly improving training times when
class imbalance is severe. Another approach, sometimes used
in conjunction, is oversampling by creating new synthetic
samples. A common algorithm is known as SMOTE [1],
where new observations are created in between two existing
observations using Euclidean distances. SMOTE has been
extended by other algorithms; for example, MSMOTE [6].
These extensions improve SMOTE by adding new heuristics,
most notably by identifying outliers and refraining from using
them for the oversample, as well as identifying boundary
points.

Also worth of notice is MetaCost which works by first
assigning a probability to each observation as belonging to
each class, by using a bagging of models, and secondly by
calculating a threshold below which any observation of the
majority class is assigned to the minority class [2]. In other
words, it balances class priors by actually changing the class of
those majority observations for which the underlying estimator
is less certain about.

The immediate advantage of pre-processing is that it is
model agnostic: class imbalance can then be solved as a
separate problem. This is especially important when one is
unsure of the most appropriate learner, and would prefer to
tackle class imbalance as a separate issue.

B. Training with costs

Training by explicitly defining costs seems like the most
direct approach. Instead of minimizing total misclassifica-
tion, FP+FN, we minimize the weighted misclassification,
wPFP+wNFN, where to the weights wP and wN are assigned
the inverse frequency of their class priors (P and N stand for
Positives and Negatives, respectively, while TP and FP are
True and False Positives, conversely for TN and FN).

Unfortunately, adding cost-sensitivity to the training algo-
rithm is not always straight-forward and is sometimes cum-
bersome. Taking SVMs as an example, suggestions have been
made to introduce costs in the feature space transformation
by changing the kernel function [7], introducing different



penalties for the positive and negative SVM slack variable
ξ [8], among other approaches.

Furthermore, cost training sometimes saturates and cannot
expand beyond the limits of the data, which pre-processing
methods can help. It has been found that pre-processing
approaches are in fact oftentimes superior [2].

C. Post-processing

This step consists in varying the threshold by which the
class is chosen in a binary classifier (e.g. neural network), or
it could mean varying the bias in a SVM model to adjust the
decision boundary [9].

D. Ensembles

Several ensembles have been proposed recently. Easy En-
semble is a high performing bagging technique where each
model is trained from undersampled pools of the data, in
which each pool has the same number of positive and negative
observations [10]. An extension to this model is Balance Cas-
cade whereby undersampling of the majority class is guided
to remove observations that have been correctly classified by
the previous model in the ensemble, also [10].

Other methods, such as SMOTE Boost, SMOTE Bagging,
IIVOTES or RUSBOOST, on the other hand, create new
synthetic observations based on the harder to classify cases
of minority observations; this is in opposition to traditional
boosting methods which assign a distribution of weights to
the observations.

Ensembles tend to triumph in recent literature [3]. It does
not seem completely clear however whether what contributes
to these gains is the combination of ensemble and strati-
fication, or whether it is simply the ensemble since they
are not usually benchmarked against ensembles of the other
approaches.

II. RANKING FOR CLASS IMBALANCE

One possible family of methods to tackle the class im-
balance problem is pairwise ranking algorithms, in particular
pairwise scoring rankers. The term document is typically used
in the literature to refer to observation because of its genesis
and tight connection to information retrieval techniques [11].

In ranking, document xi is compared with another document
xj , and we are interested in predicting whether xi � xj ,
meaning xi is “preferred” to xj . The three big umbrellas of
rankers are:
• Pointwise, in which each document xi is trained individ-

ually and a score function, f(xi), is given based on its
relevance;

• Pairwise: each document xi is compared against all
others xj , and if xi � xj , then we train a function f
so that:
– pairwise scoring ranker: if xi � xj then f(xi) >
f(xj), with f : X → R;

– pairwise non-scoring ranker: the decision function
is such that it decides which of two documents is
preferred, f : X2 → X;

• Listwise, where the training loss function is based on all
documents and their scores.

We propose to consider pairwise scoring rankers for the
class imbalance problem. Ranking algorithms for classification
have been found to make highly competitive classifiers [12].
And, as we will see, there is no class imbalance when doing
pairwise ranking. Since we are comparing each observation of
one class to every observation of the other class, the ensuing
training process is necessarily balanced.

In the same spirit of the category of models presented in
the introduction, we can see the ranking process as being
composed of the following steps: pre-processing, training, and
post-processing (see diagram in Figure 1).

A. Pre-processing
In the case of binary classification, pairwise rankers are

trained so that for every two observations, (xi,xj) and respec-
tive class labels (yi, yj), a transformation f is applied so that
xi � xj if P(yi = 1) > P(yj = 1), and xi ≺ xj otherwise.
Here we take 1 as being the minority class, without loss of
generality.

In order to illustrate the ranking approach, among many
potential pairwise scoring rankers, here three are considered.
Any others could be adapted in an analogous manner. These
were selected because they are a) pairwise scoring, and b) they
encompass major families of rankers:

TABLE I
RANKING MODELS EXPLORED

Family Ranker Reference

Linear SVM RankSVM [13]
Neural Networks RankNet [14]
AdaBoost RankBoost [15]

In RankSVM, data is transformed into the space of differ-
ences, so the original dataset X becomes X′, where x′ij =
xi − xj and x′ji = xj − xi, for all pairs (i, j) such that
yi 6= yj , with y′ij = yi and y′ji = yj .

In all others, data is transformed so that Xi = {xi, yi}
becomes X′ij = {xi, y

′
ij}, for all combinations (i, j), (and

ditto for the symmetric relation (j, i)), where y′ij denotes a
relation of preference between xi and xj (y′ij = 1 if xi � xj ,
or −1 otherwise). In RankBoost, y′ij denotes the class of i,
y′ij = yi (and all combinations such that yi = yj are omitted),
while in RankNet y′ij represents the ranking probability we
aim to estimate,

y′ij =

 0, if yi < yj
1, if yi > yj
0.5, if yi = yj .

The data with which the ranking estimator is trained is
therefore usually bigger, and so training times tend to be
slower than ordinary classification methods. In general, the
transformed dataset N ′ ∈ O(N2), but in cases like RankSVM
or RankBoost which use only pairs of opposite classes,
N ′ = 2N0N1 and, because of class imbalance, N0 � N1,
so N ′ ≈ 2N0.
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Fig. 1. Schematic of the pairwise ranking classifier applied to class imbalance data.

B. Training

When it comes to training, RankSVM makes use of a linear
SVM as a base estimator to classify observations within the
space of differences, where the decision rule w ·(xi−xj) > 0
can be transformed into a scoring function since w·(xi−xj) >
0 ≡ w · xi > w · xj ≡ s(xi) > s(xj). In RankNet, a neural
network is used to estimate y′ij which denotes the probability
P(xi � xj).

RankBoost, like AdaBoost from the same authors, trains
a base estimator, at each iteration t, using an underlying
distribution of weights for each pair, for which Dij = Dji.
The difference from AdaBoost is in that αt is a function
of the number of pairs whose order has been correctly or
incorrectly estimated: αt =

1
2 log

W−1

W+1
, where Wb={−1,+1} =∑

i,j DijIft(xi)−ft(xj)=b.
Loss functions are therefore hinge loss, logistic loss, and

exponential loss for RankSVM, RankNet, and RankBoost,
respectively.

C. Post-processing

As discussed, a pairwise scoring ranker produces a score
function f : X → R, with which we predict a class {0, 1}
using a scoring threshold. We have chosen the threshold T
that maximizes the F1 score, which is more appropriate than
accuracy for class imbalance, and is defined as:

F1 =
2TP

2TP + FN+ FP
.

Using the training data, we have si = f(xi) which we order,
and use each midpoint s′i =

si+si+1

2 as possible candidates for
threshold T , so that

T = argmax
s′i

F1(s
′
i).

For fairness, the F1 score metric is also used when cross-
validating the best parameters of the models we are comparing.

In the following experiments tables, we also make use of
these scores to calculate the area under curve (AUC) of ROC
curves. The ROC curve is a common measure to evaluate
how correctly classified observations would be if the decision
threshold T was changed. What should constitute this decision
threshold is not always obvious; in the SVM, this could be the
distance to the separating hyperplane, as was used, or varying
the bias [9]. In ranking models, the ROC can easily be drawn
by choosing different scores si for T .

III. EXPERIMENTS

Fifteen empirical datasets are considered (see Table II).
Most datasets used have N (the number of observations) in the
order of thousands, to ensure what is being tested is “relative
rarity”, and avoid “absolute rarity” issues [16]. Some of these
are multinomial classification datasets which were converted
to binary classification using the class label mentioned in the
“Minority” column. These samples are based on [17]. All
others are binary classification datasets. “IR” is the imbalance
ratio (N1/N ). Datasets in all proceeding tables are ordered by
IR.

Overlap is a measure of how intertwined the observations
from the two classes are. There is a big amount of literature
on the role of overlapping in class imbalance [21], with
some authors arguing these problems are often conflated [22].
Our measure of overlap is defined as the ratio of minority
observations whose closest neighbor is an observation of the
majority class. We compare models’ correlation to IR and
overlap in the results.

Experiments are done by cross validation through a boot-
strap process: each sample is randomly split into 40 folds
of 80-20% stratified splits of train-test. The average of F1

and ROC AUC for each dataset is exhibited. The best scores
are presented in bold, as well as all statistically identical
scores, using a paired difference Student’s t-test with a 95%

TABLE II
DATASETS

Dataset Minority N Features IR Overlap
sonar — 208 60 0.466 0.216
breast-cancer — 699 9 0.345 0.075
german — 1000 24 0.300 0.563
haberman — 306 3 0.265 0.605
transfusion — 748 4 0.238 0.629
vehicle van 846 18 0.235 0.090
CTG — 2126 22 0.222 0.172
hepatitis — 143 14 0.203 0.621
segment 1 2310 19 0.143 0.009
winequality-red 7,8 1599 11 0.136 0.512
vowel 1 990 13 0.091 0.011
abalone 9vs18 731 7 0.057 0.595
glass 6 214 9 0.042 0.556
car good 1728 6 0.040 0.667
yeast ME1 1484 8 0.030 0.341

Acknowledgments: Datasets come courtesy of the UCI Machine Learning
repository [18]. The breast cancer dataset was obtained from the University
of Wisconsin Hospitals, Madison from Dr. William H. Wolberg [19]. The
vehicle dataset is originally from the Turing Institute, Glasgow, Scotland.
Wine-quality is originally from [20].



TABLE III
FAMILY: LINEAR SVM

Linear SVM F1 ROC AUC
Sample Ranking Baseline Weights SMOTE MSMOTE MetaCost Ranking Baseline Weights SMOTE MSMOTE MetaCost
sonar 0.741 0.723 0.734 0.723 0.724 0.725 0.832 0.823 0.826 0.823 0.823 0.816
breast-cancer-wisconsin 0.957 0.953 0.954 0.955 0.954 0.953 0.994 0.994 0.994 0.994 0.994 0.994
german 0.618 0.568 0.622 0.616 0.617 0.598 0.808 0.809 0.809 0.806 0.804 0.808
haberman 0.485 0.188 0.476 0.484 0.469 0.253 0.685 0.689 0.690 0.677 0.668 0.688
transfusion 0.516 0.154 0.528 0.518 0.522 0.174 0.758 0.758 0.757 0.753 0.752 0.758
vehicle-van 0.937 0.940 0.930 0.932 0.934 0.927 0.995 0.995 0.995 0.995 0.994 0.994
CTG 0.925 0.931 0.915 0.917 0.919 0.934 0.993 0.993 0.993 0.993 0.992 0.993
hepatitis 0.634 0.606 0.651 0.630 0.632 0.648 0.882 0.877 0.884 0.882 0.871 0.881
segment-1 0.986 0.991 0.988 0.990 0.990 0.990 0.996 0.998 0.997 0.998 0.998 0.999
winequality-red-7,8 0.517 0.228 0.479 0.482 0.491 0.346 0.858 0.857 0.858 0.856 0.850 0.855
vowel-1 0.457 0.180 0.445 0.442 0.421 0.273 0.892 0.884 0.893 0.887 0.850 0.870
abalone-9vs18 0.652 0.502 0.473 0.493 0.500 0.632 0.948 0.952 0.950 0.948 0.926 0.950
glass-6 0.695 0.000 0.234 0.236 0.226 0.010 0.984 0.507 0.763 0.752 0.761 0.436
car-good 0.476 0.064 0.422 0.438 0.391 0.274 0.959 0.958 0.959 0.958 0.941 0.955
yeast-ME1 0.612 0.523 0.556 0.562 0.564 0.571 0.986 0.986 0.986 0.985 0.984 0.986
Average 0.681 0.503 0.627 0.628 0.624 0.554 0.905 0.872 0.890 0.887 0.881 0.865
Winner 80% 20% 40% 26% 26% 20% 80% 66% 73% 13% 20% 46%

TABLE IV
FAMILY: ADABOOST

AdaBoost F1 ROC AUC
Sample Ranking Baseline Weights SMOTE MSMOTE MetaCost Ranking Baseline Weights SMOTE MSMOTE MetaCost
sonar 0.787 0.824 0.824 0.824 0.824 0.818 0.891 0.917 0.917 0.917 0.917 0.916
breast-cancer 0.937 0.932 0.932 0.937 0.934 0.948 0.990 0.989 0.989 0.990 0.989 0.991
german 0.597 0.541 0.541 0.588 0.583 0.587 0.783 0.794 0.794 0.792 0.793 0.796
haberman 0.419 0.375 0.375 0.464 0.458 0.441 0.638 0.663 0.663 0.671 0.673 0.692
transfusion 0.502 0.418 0.418 0.511 0.509 0.493 0.718 0.745 0.745 0.737 0.737 0.740
vehicle-van 0.928 0.901 0.901 0.905 0.909 0.906 0.993 0.991 0.991 0.991 0.991 0.989
CTG 0.973 0.972 0.972 0.970 0.971 0.979 0.996 0.997 0.997 0.996 0.997 0.996
hepatitis 0.578 0.525 0.525 0.581 0.596 0.596 0.822 0.808 0.808 0.833 0.842 0.846
segment-1 0.993 0.990 0.990 0.987 0.988 0.988 1.000 1.000 1.000 1.000 1.000 1.000
winequality-red-7,8 0.520 0.431 0.431 0.509 0.511 0.528 0.867 0.868 0.868 0.864 0.863 0.869
vowel-1 0.692 0.443 0.443 0.610 0.549 0.633 0.953 0.946 0.946 0.948 0.930 0.939
abalone-9vs18 0.369 0.318 0.318 0.287 0.298 0.377 0.803 0.820 0.820 0.793 0.791 0.822
glass-6 0.801 0.670 0.670 0.825 0.777 0.713 0.996 0.998 0.998 0.993 0.989 0.982
car-good 0.573 0.388 0.388 0.596 0.515 0.401 0.974 0.977 0.977 0.976 0.965 0.919
yeast-ME1 0.667 0.671 0.671 0.654 0.635 0.698 0.982 0.986 0.986 0.985 0.982 0.986
Average 0.689 0.627 0.627 0.683 0.671 0.674 0.894 0.900 0.900 0.899 0.897 0.899
Winner 73% 13% 13% 46% 33% 46% 40% 66% 66% 46% 33% 60%

TABLE V
FAMILY: NEURAL NETWORKS

Neural Networks F1 ROC AUC
Sample Ranking Baseline Weights SMOTE MSMOTE MetaCost Ranking Baseline Weights SMOTE MSMOTE MetaCost
sonar 0.805 0.804 0.801 0.731 0.732 0.725 0.881 0.896 0.895 0.830 0.829 0.817
breast-cancer 0.946 0.942 0.947 0.955 0.954 0.955 0.975 0.989 0.991 0.994 0.993 0.994
german 0.513 0.540 0.543 0.618 0.609 0.623 0.665 0.744 0.721 0.808 0.807 0.809
haberman 0.444 0.361 0.459 0.435 0.431 0.497 0.604 0.675 0.678 0.676 0.663 0.688
transfusion 0.495 0.391 0.506 0.492 0.502 0.525 0.549 0.764 0.753 0.757 0.755 0.758
vehicle-van 0.944 0.940 0.941 0.593 0.596 0.596 0.982 0.996 0.996 0.985 0.985 0.923
CTG 0.961 0.965 0.963 0.919 0.919 0.925 0.993 0.997 0.998 0.993 0.993 0.993
hepatitis 0.600 0.502 0.528 0.520 0.515 0.611 0.828 0.803 0.801 0.795 0.791 0.846
segment-1 0.989 0.990 0.975 0.984 0.984 0.986 0.999 0.999 0.999 0.996 0.996 0.996
winequality-red-7,8 0.477 0.482 0.508 0.316 0.317 0.269 0.555 0.823 0.843 0.790 0.786 0.655
vowel-1 0.397 0.946 0.855 0.480 0.482 0.379 0.516 0.989 0.973 0.963 0.954 0.899
abalone-9vs18 0.511 0.485 0.362 0.301 0.347 0.358 0.801 0.917 0.907 0.927 0.922 0.889
glass-6 0.024 0.000 0.136 0.350 0.347 0.290 0.442 0.338 0.556 0.683 0.698 0.610
car-good 0.839 0.849 0.737 0.447 0.402 0.392 0.959 0.996 0.982 0.966 0.951 0.953
yeast-ME1 0.653 0.564 0.528 0.603 0.583 0.597 0.950 0.986 0.983 0.986 0.984 0.986
Average 0.640 0.651 0.653 0.583 0.581 0.582 0.780 0.861 0.872 0.876 0.874 0.854
Winner 46% 40% 33% 20% 13% 33% 26% 60% 40% 26% 13% 33%



confidence level.
Furthermore, a 5-fold validation is performed for SVM and

neural networks to find the best parameter: the regularization
coefficient C and hidden nodes H , respectively, choosing
between 5 parameters along the range C ∈ [0.01, 100], and
H ∈ [F, F 2], with F being the number of features. SVM
was trained using a linear kernel with liblinear. Stochastic
gradient descent was used with learning rate = 1.0, and 1000
as the epochs maximum. The data was normalized for both.
AdaBoost and RankBoost were trained as an ensemble of 50
binary classifiers.

Four variants of the baseline model are provided in each
column: loss function with weights using inverse class fre-
quencies, and also together with SMOTE [1] and MSMOTE
[6] with number of neighbors k = 5 applied to equalize
frequencies, as well as with MetaCost [2] using an ensemble
of m = 50 with the other parameters being n = N , p = False
and q = True.

All implementations from our work including the dataset
folds are made publicly available at http://pong.inesctec.pt/
~rpcruz/ijcnn2016/ (mostly Python was used).

IV. RESULTS

The ranking models here considered have performed sta-
tistically significantly better than their counterparts from the
literature, especially with regard to the F1 score (Table III).
In Linear SVM, when ranking won, it won by a much bigger
margin than when it lost, 0.068/−0.009, relative to the second
performer and best performer.

The lower performance from the ROC AUC scores could
suggest the threshold selection (section II-C) is partly respon-
sible for the gain.

While not the main point of the work, it is worth noticing
that, as other authors have argued [21], data’s overlap (from
Table II) explains better model’s F1 scores than imbalance
ratio (IR), as measured by Spearman’s ρ (ρ ∈ [−1, 1] with
high/low |ρ| meaning high/low correlation), see Table VI.
More importantly, rankers, when compared to the other models
within their family, produce models least correlated to the
imbalance ratio. It was already visible from Table III, which
is ordered by IR, that rankers gains are concentrated in the
bottom (the more unbalanced). And, while overlap explains
scores better than IR, as already stated, no systemic tendency

TABLE VI
CORRELATIONS: DATA COMPLEXITY

Spearman’s ρ Ranking Baseline Weights SMOTE MSMOTE MetaCost
Linear SVM
IR 0.312 0.477 0.576 0.555 0.544 0.401
Overlap -0.185 -0.302 -0.293 -0.285 -0.293 -0.293
AdaBoost
IR 0.115 0.224 0.224 0.148 0.208 0.238
Overlap -0.668 -0.609 -0.609 -0.613 -0.601 -0.674
Neural Networks
IR 0.210 0.135 0.277 0.398 0.407 0.463
Overlap -0.645 -0.756 -0.791 -0.650 -0.647 -0.584

TABLE VII
CORRELATIONS: INTER-FAMILY

Spearman’s ρ Baseline Weights SMOTE MSMOTE MetaCost
RankSVM 0.710 0.742 0.751 0.756 0.715
RankBoost 0.842 0.842 0.888 0.861 0.862
RankNet 0.736 0.754 0.610 0.614 0.656

TABLE VIII
CORRELATIONS: INTRA-FAMILY

Spearman’s ρ RankSVM RankBoost RankNet
RankSVM 1.000 0.365 0.235
RankBoost 0.365 1.000 0.555
RankNet 0.235 0.555 1.000

is apparent, and so all gains from rankers seem to accrue to
solving the IR problem.

Finally, we compare correlations within and between fami-
lies of models. This can help in differentiating, on one hand,
whether rankers are competing classifiers or if, on the other
hand, rankers are alternative models that learn different data
patterns. Correlation is, again, measured by Spearman’s ρ.
Naturally, the correlation between any two models will be
high since we are using datasets that were chosen because they
have different IRs, and IR is (inversely) correlated to model’s
performance, and is therefore a confounder. We control for
IR’s correlation using Fisher’s partial correlation formula. This
does not affect the relative correlations between any two
models, but it reduces the overall magnitude of correlations
to be more aligned to use cases when random samples from
the same population, having the same IR, are used.

Table VII and VIII clearly show rankers more closely follow
the decision function of their family of models than that of
the rest of the rankers. Ranking techniques are therefore an
extra technique of tackling class imbalance to try to improve
a currently employed solution.

V. DISCUSSION

There is a latent benefit when considering rankers as
possible classifiers; a latent benefit that has not so far been
discussed. Rankers can use extra information about the order
of classes. This means that data collection is not as constrained
to broad categories such as “healthy” and “sick”, or “credit-
worthy” and “not credit-worthy”. Rankers can make use of
extra subtlety in the classification by having a gradient of
classes. A tangent point is that in many real world applications
it might make sense to express the data from the get-go in
terms of pairwise comparisons. It is often more intuitive for
the human classifier to compare observations than to assign
labels.

This was not a focus of this discussion, but one incon-
venience is that training times are usually higher, possibly
insuperably higher for very big datasets. We have however
only implemented and experimented with the three major
ranking families while ignoring the more recent progress.

Further work is required to more finely tuned ranking
solutions, as well as combining rankers with current pre-



processing and ensemble solutions. Tackling imbalance in
multi-class problems and reducing training times are other
problems of interest. The ranking threshold decision could
possibly be solved using a SVM to separate classes, or, more
elegantly, while training.

VI. CONCLUSION

Almost two hundred papers have been published since 2012,
just by searching titles by “class imbalance“ as reported by
Google Scholar. It is not clear that ranking is a superior
solution, but it is a very competitive and promising alternative
that we felt was sorely lacking in the literature.

Some classical ranking models were compared with con-
ventional classification models. This work shows promising
efficiency improvements from training using pairwise scoring
ranking models. These models have been in general superior,
and when their performance was worse, it was worse by
a smaller margin than when the performance was positive.
It is clear class imbalance performance can be improved
by combining these models with other approaches from the
literature.

It was also found that performance scores of ranking models
tend to correlate with those of their underlying models, and
so they may be seen as potential improvements on top of
traditional classifiers.
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