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Abstract—Link prediction is the task of social network analysis
whose goal is to predict the links that will appear in the network
in future instants. Among the link predictors exploiting the time
evolution of the networks, we can find the tensor decomposition-
based methods. A major limitation of these methods is the lack
of appropriate approaches for estimating their parameters and
initialization. In this paper, we address this problem by proposing
a parameter setting method. Our proposed approach resorts
to optimization techniques to drive the search for an adequate
parameter and initialization choice.

I. INTRODUCTION

Social network analysis is the field of research which aims at
understanding and unveiling the hidden patterns of interactions
in the networks. This research area encompasses, among
others, the task of link prediction. The link prediction problem
in time-evolving networks may be described as follows: given
the states of the network at the previous T time instants, how
to predict future (new or re-occurring) links? Thus, given the
sequence of states of the network from instants 1 to T , the
goal is to predict which are the links which are more likely
to occur at instant T + 1.

One of the directions followed to tackle this problem was
to consider tensor decomposition-based methods [1], [2]. The
idea behind these methods is to exploit the multi-way structure
of time-evolving networks, which have a time dimension
associated to the network topology. In particular, the authors
combined PARAFAC tensor decomposition (CP) [3] with
forecasting techniques to define the link predictor.

Since, this type of methods are not parameter free (both
CP and forecasting methods have parameters); an attempt
to use the CP-based link predictors will arise the question:
how should the model parameters be set in order to obtain
a good predictor? According to our preliminary experiments,
the methods found in the literature, which only cover one
parameter of the model, did not perform well when applied to
this task.
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Another issue that has been neglected in the literature is
the initialization of CP. Currently, it is not clear how the
performance of these CP-based models is affected by the
initialization: are the CP-based link predictors not sensitive
to initialization? Or does the initialization have a strong
impact on the performance of such models? It is important
to understand the influence of this factor in order to guarantee
the reproducibility of the results, a key issue in science.

In this work, we address both the initialization issue and
the parameter setting problem in CP-based predictors. In
particular:
• We provide empirical evidence that the initialization

affects the performance of CP-based link predictors;
• We propose a method for estimating both the parameters

and the initialization of a CP-based link predictor;
• We carried out a study on the performance of the models

obtained by our procedure in real world data.
Based on this, we highlight that the problem being ad-

dressed in this work is not the link prediction problem itself,
but the problem of parameter setting and initialization in
tensor-based link predictors.

The rest of the paper is organized as follows. In Section
II we describe the problem in more detail. In Section III, we
cover the theoretical background associated with the work.
The proposed solution is described in Section IV and the
experiments results are exposed and analyzed in Section V.
We present the future work and conclude the paper in Section
VI.

II. PROBLEM DESCRIPTION

After the introduction of CP-based link predictors in 2011
[1], [2], it would be expected that such models would raise
the researchers’ attention leading to the further emergence of
new related works. However, few advances have been made
in this context.

A limitation of this type of link predictors is the setting of
their parameters: the parameters of the models are expected
sources of variability and, consequently, an incorrect parameter
setting may compromise the performance of the model.

Regarding CP parameters, the choice of the number of com-
ponents is traditionally carried out using the core consistency
diagnostic (CORCONDIA) [4], [5]; nevertheless, according



to our preliminary tests, the results of such tool lead to
CP approximations with extremely low fitting, which were
compromising the performance of the CP-models. On the
other hand, the authors of one of the CP-based link predictors
overcame the problem of choosing the number of components
by using an ensemble of CP-based link predictors with varying
number of components.

Besides these approaches (which cover only a parameter of
the model), no appropriate methods for estimating the CP-
based link predictors parameters were, to the best of our
knowledge, developed.

We note that, despite of not being addressed in the lit-
erature, this problem is expected since parameter-dependent
methods require tuning. However, this source of variability
was not unique: during the application of these CP-based
link predictors, we also observed that their performance was
dependent on the initialization. To the best of our knowledge,
this influence of the initialization on the performance of the
models was not addressed nor reported in the literature so far.

Thus, when applying CP-based link predictors we identified
two issues: the problem of initialization and the problem of
parameter setting. Based on this, we drove our work in order
to address such problems.

III. BACKGROUND

Since the proposed method resorts to optimization tech-
niques to tackle the problem of initialization and parameter
setting in CP-based predictors, in this section we cover both
the background associated to tensor theory and the optimiza-
tion algorithm considered in the proposed approach.

A. Tensors Theory

1) Notation: The notation used in this work is summarized
in table I.

TABLE I
NOTATION

Symbol Description
◦ vector outer product
x vector (bold lower case)
x(i) ith entry of vector x
X matrix (bold upper case)
XT matrix transpose of X
X(i, j) entry (i, j) of matrix X
X(i, :) ith row of matrix X
X(:, j) jth column of matrix X
X tensor
X (i1, . . . , iM ) entry (i1, . . . , iM ) of tensor X
X(d) mode-d matricization of tensor X

2) Tensors: Informally, a tensor may be described as a high
order generalization of a matrix. In mathematical terms, a M -
order tensor is a M -dimensional array X ∈ RN1×N2×...×NM

where Ni is referred to as the dimensionality of mode i and
N1 ×N2 × . . .×NM is the size of the tensor. It should be
noted that 1-order and 2-order tensors are, respectively, vectors
and matrices.

The norm of such a M -order tensor is defined as

||X || =

√√√√ N1∑
i1=1

N2∑
i2=1

. . .

NM∑
iM=1

[X (i1, i2, . . . , iM )]
2
.

In some cases, it may be useful to rearrange the tensor as a
matrix, such operation is known as unfolding or matricizing.
Formally, given a tensor X ∈ RN1×N2×...×NM , the mode-
d matricization of X consists of reshaping the original tensor
into a matrix in RNd×(

∏
i6=d Ni), obtained by fixing each mode-

d index and varying the indexes the other modes. The resulting
matrix is denoted by X(d).

As illustrative example of the matricization operation, let
us consider a generic 3-order tensor X ∈ RN1×N2×N3 , then
entry (i, j, k) of the tensor will map to entry (i,N2(k−1)+j)
of mode-1 matricization; to entry (j,N1(k− 1) + i) of mode-
2 matricization and to entry (k,N1(j − 1) + i) of mode-3
matricization.

In order to simplify the notation, we restrict our theory
exposition to 3-order tensors. However, we note that the
methods exposed in this section can be generalized to higher
orders.

3) PARAFAC (CP) Tensor Decomposition: The CP decom-
position [3] of a 3-order tensor X ∈ RN1×N2×N3 is given
by

X ≈
R∑

r=1

ar ◦ br ◦ cr (1)

where R is a positive integer, referred to as the number of
components or factors, and ar ∈ RN1 , br ∈ RN2 , cr ∈ RN3 .

Elementwise, expression (1) assumes the form:

X (i1, i2, i3) ≈
R∑

r=1

ar(i1)br(i2)cr(i3) .

The vectors associated to the same mode may be grouped
in a matrix so that we obtain 3 matrices describing the decom-
position result: A ∈ RN1×R, B ∈ RN2×R and C ∈ RN3×R,
each having the R corresponding vectors as columns, that is,
A(:, r) = ar,B(:, r) = br and C(:, r) = cr. These matrices
are referred to as factor matrices.

The traditional algorithm for computing the CP decompo-
sition is the alternating least squares CP (CP-ALS) [6]. Given
a number of factors R, the goal of CP-ALS is to find factor
matrices A,B,C minimizing the approximation error, which
is given by:

||X −
R∑

r=1

ar ◦ br ◦ cr|| (2)

The idea of the algorithm is to iteratively update each of the
factor matrices. The update of a given factor matrix is per-
formed by solving the minimization problem considering the
other factor matrices fixed. By considering the minimization
problem with all but one matrix fixed, the authors obtain an
explicit form of the solution.

Thus, besides the number of factors, the solution of CP-
ALS is also influenced by: (i) the maximum number of



iterations allowed; (ii) the minimum level of change in the
approximation error allowed between consecutive iterations
and (iii) the order in which the modes are updated.

Moreover, the initial factor matrices must be provided to
the algorithm. Two common approaches to generate the initial
factor matrices are randomly or SVD-based. In the SVD-based
approach, the factor matrices associated to each mode d are
obtained by applying the singular value decomposition (SVD)
to the matrix X(d)X

T
(d).

Given the CP decomposition results, the fitting rate of the
approximation X̃ =

∑R
r=1 ar ◦ br ◦ cr is defined as:

%fitting = 100×

(
1− ||X − X̃ ||

||X ||

)
.

In case the fitting rate is low it means that the approximation is
a poor representation of the original data. On the other hand, if
the fitting rate is maximum (100%), it means that the equality
X = X̃ holds and the approximation represents exactly the
original data.

4) CP-based Link Predictors: Given a time-evolving net-
work, we can construct a tensor by considering the sequence
of adjacency matrices describing the state of the network at
each instant. Therefore, the idea of link prediction CP-based
methods is to exploit the entities× entities× time structure
of the tensor (and inherent interactions) to infer future links.

In this work we employ the term CP-based link predictors
to refer to link prediction methods that combine CP-ALS
decomposition with forecasting algorithms. In particular, we
restrict this term to link prediction methods which encompass
the following steps:

1) apply CP-ALS decomposition on the tensor formed by
the t available network adjacency matrices to obtain the
factor matrices A,B,C, where C is the factor matrix
associated to the time mode;

2) apply a forecasting method to the temporal factor matrix
C in order to estimate the future temporal trend of the
network, C(t+ 1, :), corresponding to the next row of
the temporal matrix;

3) combine the estimated future temporal trend C(t+ 1, :)
with the factor matrices associated to the entities modes,
A and B, to estimate the future state of the network,
that is, to estimate the adjacency matrix of the network
at instant t+ 1:

S =

R∑
r=1

(ar ◦ br)C(t+ 1, r)

We refer to the resulting estimation of the future network
state, S, as score matrix.

What differentiates two CP-based link predictors is the
forecasting algorithm applied. In this context, Dunlavy et al.
[1] considered the sum across the last (most recent) L available
time instants, that is, the authors defined

C(t+ 1, r) =

t∑
k=t−L+1

cr(k) .

Spiegel [2] employed exponential smoothing considering
the same smoothing factor across the several components
(columns of C).

B. The Nelder-Mead method
The Nelder-Mead algorithm [7] is an optimization method

which drives the search for the minimum based on the cost
function values at a given simplex. The simplex vertexes are
iteratively updated in order to sequentially discard the vertex
associated with the largest cost function value.

Thus, assuming that the cost function, f , is defined in Rn,
the first step consists in finding a simplex of n + 1 vertexes:
{P1, P2, . . . , Pn+1}. Then, the cost function values of the
simplex vertexes are computed: fi = f(Pi).

Based on the result obtained, the indexes l and h are
computed so that:

fl = min({fi}n+1
1 ) ∧ Pl = argmin({fi}n+1

1 )

and

fh = max({fi}n+1
1 ) ∧ Ph = argmax({fi}n+1

1 ) .

By ignoring Ph, a centroid is computed: P̄ = 1
n

∑
i6=h Pi.

The goal now is to find a new point which has a lower cost
than Ph in order to replace Ph. The search for such point
is carried out based on 3 operations: reflection, expansion
and contraction. Each operation is controlled by a distinct
parameter.

1) Reflection Step: First, the reflection point is computed
as:

Pr = (1 + α)P̄ − αPh ,

with α > 0. The corresponding cost function value is also
computed: fr = f(Pr).

2) Expansion Step: Then, if fr < fl, which means that
Pr is the best point found so far, the expansion point and
corresponding cost function value, fe, are computed:

Pe = (1− β)P̄ + βPr ,

with β > 1.
If fe < fl, then Ph is replaced by Pe, otherwise, it is

replaced by Pr.
3) Contraction Step: Alternatively, if ∃i 6= h : fr ≤ fi,

then Ph is replaced by Pr.
Otherwise, Ph is replaced by Pr (only in case fr ≤ fh) and

the contraction point and corresponding cost function value,
fc, are computed:

Pc = γPh + (1− γ)P̄

with 0 < γ < 1.
Finally, if fc ≤ fh, Ph is replaced by Pc; otherwise,

the simplex vertexes are updated according to the following
expression:

Pi = (1− δ)Pl + δPi ,

∀i 6= l, with 0 < δ < 1.
After these simplex updates, the stopping criteria is checked.

In case convergence is not achieved, all this procedure (starting
on the l and h indexes computation) is repeated.



IV. PROPOSED METHOD

We tackle the initialization and parameter setting problem in
CP-based link predictors using a two stage procedure. Briefly,
in the first stage we estimate the CP parameters and initializa-
tion using optimization, combined with validation techniques,
while in the second stage, we use the CP decomposition result
to estimate the forecasting parameters.

The core of the first stage of the method resides on the
application of optimization methods to carry out a task-driven
search: the CP parameters, such as the number of components,
are computed in order to maximize the task performance
evaluation metric.

The idea of the second phase is to consider the time-series,
which are defined according to the decomposition result, to
drive the search for the adequate forecasting parameter values.

For simplicity, we refer to the resulting model as tCPLP,
meaning tuned CP-based link predictor.

A. Stage 1: CP Parameters Estimation

The first stage is defined upon the assumption that the
networks change smoothly. Based on such assumption, it
is expected that the CP parameters, namely, the number of
factors, that best model the data in such instants, do not change
dramatically when we add a new timestamp (temporal slice).
Thus, in this stage, we start by splitting the available times-
tamps into training and validation sets so that the validation
set is formed by the number of instants corresponding to the
prediction period we are interested in.

Then, given the set of non-numeric parameter values we
want to cover (including the initializations), we generate all
the possible combinations of such values so that we obtain a
set of parameter and initialization combinations.

For each of such combinations, we apply an optimization
method known as Nelder-Meads [7] (see Section III-B, for
details on the method) to find the numeric parameters that
maximize the model performance on the validation set. The
optimization process covers both CP and forecasting numeric
parameters. We note that fixed numeric forecasting parameters
could be used in this stage, however, such approach could lead
to biased CP parameters, that is, the CP parameters obtained
could be too adjusted to a model with those forecasting
parameters.

Given the models and their performance on the validation
set, we select the CP parameters as the parameters of the model
which achieved the highest performance. The forecasting
parameters of such a model are discarded.

It is important to note that, since the application of Nelder-
Mead to each combination of non-numeric parameters and
initialization is independent, it can be carried out in parallel,
thus, allowing a speed up on the procedure run time.

B. Stage 2: Forecasting Parameters Estimation

After obtaining the CP parameters, we proceed to the second
stage. We start by joining the validation set with the previous
training set, to obtain a new larger training set. Then, we apply
CP to the new training set using the estimated CP parameters

and use the temporal factor matrix to estimate the forecasting
parameters.

In this work we only consider the Spiegel et al. model,
referred to as CPES. The only forecasting parameter of this
model is the smoothing factor. Since each column of the tem-
poral factor matrix is interpreted as a time-series, as estimation
method we propose a generalization of the traditional method
used to estimate the smoothing factor in univariate time-series
[8]. Thus, the smoothing factor is computed as the value
minimizing the mean squared error of the forecasts across all
the time-series (temporal factor matrix columns).

V. EXPERIMENTS

The experiments were carried out using MATLAB along
with Tensor Toolbox [9], [10] in a machine with 2.7GHz
processor and 12GB RAM.

A. Datasets

We considered 4 time-evolving (directed) social networks
in our experiments: Friends&Family [11], Enron [12], Reality
Mining [13], Social Evolution [14].

The Enron dataset consists of an email exchange network
in which there is a link from person i to person j at time t if
person i sent at least an email to person j during such instant.

The remaining datasets are phone calls networks in which
there is a link from person i to person j at time t if person i
called person j at least once during such instant. These phone
call datasets were submitted to a pre-processing phase in which
we discarded all the calls involving individuals not under study
at the time the data was collected. Moreover, we also discarded
missing calls.

Each dataset was processed using 3 different time granu-
larity levels so that at the end we obtained a daily, weekly
and monthly version of the same network. Regardless of
the periodicity considered, we did not model the weight of
the link, in our case, the number of emails or calls (all
networks used are unweighted). The datasets were organized
in people × people × time tensors. A summary is presented
in Table II. The number of links by month registered in each
dataset is presented in figure 1.

TABLE II
DATASETS SUMMARY.

Network Content Periodicity Size
Friends&Family [11] Phone calls Daily 129× 127× 505

Weekly 129× 127× 73
Monthly 129× 127× 18

Enron [12] Email exchange Daily 184× 184× 1317
Weekly 184× 184× 189
Monthly 184× 184× 44

Reality Mining [13] Phone calls Daily 67× 68× 318
Weekly 67× 68× 46
Monthly 67× 68× 11

Social Evolution [14] Phone calls Daily 80× 78× 297
Weekly 80× 78× 44
Monthly 80× 78× 10
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Fig. 1. Number of links by month on (a) Friends&Family dataset; (b) Enron dataset; (c) Reality Mining dataset; (d) Social Evolution dataset.

B. Baseline

As baseline, we considered Katz scores [15], [16], a method
initially designed for static networks, which was later applied
on time-evolving networks [1].

Katz score is a path-based node similarity measure. This
type of measures takes into consideration paths with length
greater than two. In particular, for a given static network, the
Katz score between nodes v1 and v2 is given by:

sKS(v1, v2) =

∞∑
l=1

βl|paths<l>
v1,v2 |

where β ∈ (0, 1) and |paths<l>
v1,v2 | is the number of length-l

paths between v1 and v2. The idea of Katz score is to weight
the paths according to their length so that paths with shorter
length have a greater impact than the longer ones.

In the case of large networks, in order to reduce the com-
putational complexity, a truncated version is recommended.
In such variation, only the paths of length less (or equal)
than an established value (L) are considered. In our work,
we considered β = 0.0005 and L = 4 as suggested in [16],
[17].

The extension of this method to a time-evolving network is
carried out by first collapsing the network adjacency matrices
into a single one and then computing the Katz scores based on
the resulting matrix [1]. The collapsing technique employed
consists of weightily summing the adjacency matrices so that
the matrices associated with the most recent activity have more
weight than the previous ones.

C. Evaluation Metric

The problem of link prediction may be interpreted as a
classification task, where the classes are either “there is a link
between the entities” or “there is no link between the entities”
at a given time period.

Despite of being traditionally the most used evaluation
metric, the area under receiver operator characteristic curve
(AUCROC) may not be the most appropriate measure for
assessing the link predictors performance in social networks,
as pointed out by Yang et al. [18].

Social networks are usually very sparse and, in the context
of link prediction, we are interested in predicting the presence
of a link (not its absence). By considering AUCROC, we
are considering predictions of type “there will be no link”
as correct, which may bias the results given the amount of
unlinked pairs in the network.

Thus, we considered in our experiments the area under
precision-recall curve (AUCPR), as suggested in the work of
Yang et al..

D. Experimental Setting

In order to carry out our study, we needed to assess the
quality of the CP-based link predictors in different scenarios.
Thus, given the dataset and the time granularity, we split the
timestamps into training and test sets so that if timestamp
t was defined as test instant, then (i) the network state at
time instants 1 up to t− 1 were used for training, that is, for
generating the models; (ii) the network state at instant t was
used for assessing the models quality and (iii) the remaining
timestamps, t+ 1 up to the last, were discarded.



TABLE III
AUCPR OF THE CPES MODELS OVER 10 DIFFERENT RANDOM CP

INITIALIZATIONS.

Datasets Periodicity Mean Min Max Max-Min
Friends&Family Daily 0,100 0,083 0,124 0,040

Weekly 0,647 0,636 0,663 0,027
Monthly 0,653 0,636 0,662 0,027

Enron Daily 0,188 0,134 0,233 0,099
Weekly 0,398 0,379 0,430 0,051
Monthly 0,378 0,361 0,393 0,032

Reality Mining Daily 0,098 0,064 0,132 0,067
Weekly 0,622 0,552 0,658 0,106
Monthly 0,385 0,359 0,403 0,044

Social Evolution Daily 0,662 0,632 0,683 0,051
Weekly 0,439 0,399 0,469 0,069
Monthly 0,360 0,314 0,398 0,085

E. Results

We organized our results in terms of research questions. The
research questions we addressed in this work were:

1) RQ1: Does the initialization of CP influence the perfor-
mance of the CP-based link predictors?

2) RQ2: Do the tCPLP models outperform the initial (un-
tuned) models?

3) RQ3: Is the performance of the tCPLP models compet-
itive when comparing to Katz method?

In order to address RQ1, we fixed all model parameters
and varied the initialization. In this setting, for each dataset,
we considered a parameter combination such that the CP
decomposition had 30% of fitting and a smoothing factor of
0.5. Since few links were registered in the last months of
the datasets (see figure 1), we discarded them. The daily and
weekly versions of the datasets were also truncated in the
same manner. In particular, we discarded the last 3 months of
Friends& Family, the last 5 months of Enron and the last 2 of
the remaining datasets. Results are exhibited in Table III.

In this set of experiments, we verified that the models
performance depended on the initialization. However, dif-
ferent levels of variability in the models performance were
observed. There were cases in which the performances were
relatively stable, as it was the case of the models applied
to the Friends&Family dataset. Nonetheless, we registered a
performance oscillation of ≈ 0.1 between the best and the
worst models in some scenarios, namely in the daily Enron and
the weekly Reality Mining datasets. These results emphasize
the need of taking into consideration the initialization as a
possible source of variability in the models under study.

With the purpose of understanding if we could improve the
models performance, we proceeded with the experiments by
applying the proposed method to each of the datasets, thus, ad-
dressing RQ2. We opted to eliminate the randomness sources
of our models by considering only the SVD initialization.
Results are presented in Table IV.

We observed that in the majority of the scenarios, the
tCPLP model outperformed the initial model. On average, the
improvement of the tCPLP models performance over the initial
models was ≈ 0.11. The smallest performance improvement

TABLE IV
AUCPR OF THE CPES MODELS BEFORE (INITIAL MODEL) AND AFTER

(FINAL MODEL - TCPLP) THE APPLICATION OF THE CPLP-TUNER.

Datasets Periodicity Initial Model Final Model
Friends&Family Daily 0,045 0,296

Weekly 0,658 0,793
Monthly 0,658 0,703

Enron Daily 0,255 0,204
Weekly 0,386 0,340
Monthly 0,365 0,332

Reality Mining Daily 0,110 0,087
Weekly 0,511 0,604
Monthly 0,378 0,480

Social Evolution Daily 0,434 0,552
Weekly 0,475 0,482
Monthly 0,384 0,487

TABLE V
AUCPR OF THE TCPLP MODELS, THE BASELINE AND RANDOM

PREDICTOR.

Datasets Periodicity tCPLP Katz Random
Friends&Family Daily 0,296 0,445 0,002

Weekly 0,793 0,734 0,010
Monthly 0,703 0,734 0,018

Enron Daily 0,204 0,101 0,001
Weekly 0,340 0,401 0,005
Monthly 0,332 0,328 0,013

Reality Mining Daily 0,087 0,083 0,002
Weekly 0,604 0,660 0,003
Monthly 0,480 0,602 0,009

Social Evolution Daily 0,552 0,439 0,002
Weekly 0,482 0,482 0,006
Monthly 0,487 0,523 0,015

was ≈ 0.01 in the weekly version of the Social Evolution
dataset while the largest improvement was ≈ 0.25 registered
on the daily version of Friends&Family.

Regarding the other scenarios, in which the parameter
setting procedure failed, we verified that the maximum perfor-
mance loss registered in such scenarios was ≈ 0.05 in the daily
setting of Enron. We investigated these scenarios and verified
that in the daily versions of Enron and Social Evolution, there
were at most 6 links in the validation timestamp. Thus, since
the number of links was small, a small change in the score
matrix may have led to a great change in the performance of
the model. Such issue may have compromised the parameter
search. In the case of the monthly version of Enron, there was
a great change in the network topology from the validation set
to the test set: the number of links was similar in both instants
but the majority of the links observed in the test set were not
observed in the validation set.

When we compared the previous tCPLP models with the
baseline (Katz) (see table V), we verified that the tCPES
exhibited higher (or equal) performance than Katz in 50% of
the scenarios. However, the tCPLP models performed always
better than random.

Thus, with the goal of understanding how the models
obtained by the CPLP-tuner perform in other scenarios, we
addressed RQ3 by considering several test sets. Since the
random predictor performance is given by the rate of links in
the test set and, as we observed in figure 1, the networks are
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Fig. 2. Performance of the baseline (Katz) and the tCPLP models in each test instant on: (a) monthly; (b) weekly; and (c) daily versions of Friends&Family
dataset.

very sparse, it assumes extremely low values whereby we did
not consider the random predictor in this set of experiments.

Given a timestamp, the idea was to consider all the previous
timestamps as training set; apply CPLP-tuner on the training
set and evaluate the model on the given timestamp. The results
are exposed on figures 2-5. Once more, for each dataset,
we considered different degrees of time granularity. Due to
the heterogeneity in the number of timestamps and in the
distribution of the number of links by time slice, the number of
test sets used depended on both the dataset and the periodicity.
Moreover, in the case of the daily setting, we considered test
days spaced by 15 days.

Regarding the Friends&Family dataset (figure 2), when we
considered monthly data, we observed that both models, tC-
PLP and Katz, exhibited similar performance values, however,
the tCPLPs were usually less accurate in their predictions.
In particular, we observed a decrease in the second test set
(month 9), which may be associated with the large amount of
change. We further investigated and found that the number of
new links appearing in such month was near 3 times larger
than the following maximum registered. The decrease on the
number of links to less than half observed in month 17 was
also associated with a performance decrease which may be
due such a change in the network. An analogous behavior
was observed in the last test month.

With respect to the week setting of this dataset, we observed
that the models generated by our method outperformed the
baseline in almost all test sets considered. In the last weeks,

we observed a performance decrease which, once again, cor-
responded to weeks with few links.

Finally, when we considered daily granularity, the CP-based
models obtained by CPLP-tuner outperformed the baseline in
≈ 67% of the test days. Katz outperformed the tCPLP models
mainly on the test days belonging to months 7 to 10, which
corresponded to a strong increase in the number of links (see
figure 1a).

Similarly to what was observed in the Friends &Family
monthly dataset, both methods exhibited identical performance
in the monthly version of Enron dataset. When considering this
setting of Enron, the tCPLP models outperformed the baseline
in only ≈ 27% of the test sets. Moreover, we observed that
the low performance peak at month 33 was associated with
a low peak in the number of links. This behavior was also
observed on month 43, however, such peak was followed by
a performance increase eventually due to the reduced change
observed in the last 3 months (see figure 1b).

By considering week time granularity on the Enron dataset,
we observed that tCPLP outperformed the baseline in ≈ 50%
of the test weeks. We also observed that the time periods in
which tCPLP was outperformed by the baseline corresponded
to low performance peaks in both methods, for example, weeks
137 to 140 and 161 to 167.

When we considered the daily setting of this dataset, a
highly variant performance evolution was observed. In partic-
ular, we observed 7 zero performance peaks, which we further
investigated and verified that they corresponded to time slices
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Fig. 3. Performance of the baseline (Katz) and the tCPLP models in each test instant on: (a) monthly; (b) weekly; and (c) daily versions of Enron dataset.

with a number of links between 0 and 2. Regarding the remain-
ing day test sets, tCPLP outperformed the baseline in ≈ 70%
of the test sets. In most of which cases, tCPLP performance
was considerably higher than the baseline. Another interesting
observation was that the performance of the tCPLP models in
this setting had a near periodical evolution.

With respect to the Reality Mining data, when we consid-
ered the month granularity, tCPLP outperformed the baseline
in 50% of the test sets.

By considering weekly timestamps, such rate increased to ≈
65% of the test sets considered, while in the daily setting, if we
restrict our analysis to the first 12 test days, such rate attained
75%. Regarding the last 3 test days, we verified that (i) the
zero performance peaks (at days 288 and 303) were associated
to days in which no links occurred and (ii) there were no links
in the last validation set so that it was not possible to train the
model; thus, the CP-model parameters were not tuned, which
justifies the poor performance of the model in that test instant.

Concerning the last dataset, Social Evolution, we verified
that the behavior of the models in the monthly setting was
identical to the ones observed in the monthly settings of the
first two datasets: the performance evolution of the 2 methods
over time was similar, however, the tCPLP models exhibited
always less (or equal) accuracy.

When we considered weekly periodicity, the tCPLP models
outperformed the baseline in 40% of the test weeks. In the
case of the daily setting, there were ≈ 85% of test days in
which the tCPLP models outperformed the baseline.

In general terms, based on the analysis of each setting,

we observed that the tCPLP models achieved a better per-
formance, when comparing to the baseline, as we refined the
timestamps, from months to days.

Given a time-evolving network, the time refinement is
usually associated with more time slices, more sparsity and
more dynamics. Thus, further investigation, namely, a more
extensive study, should be carried out in order to understand
how such factors influence the performance of the CP-based
link predictors.

VI. CONCLUSION

In this work we showed that both the parameters and the
initialization have impact on the CP-based link predictors
performance. Such impact is critical since it arises the problem
of, on the one hand, choosing the appropriate parameters
values and, on the other hand, guaranteeing the reproducibility
of the results: different initialization may lead to different
results and, consequently, initialization should be reported so
that replicability can be ensured.

In order to tackle such problem, we proposed CPLP-tuner,
a method for estimating the parameters and initialization of
the CP-based link predictors. The proposed approach has the
advantages that (i) it is easily generalizable for other CP and
forecasting algorithms and (ii) it is parallelizable.

We applied the proposed method and studied the perfor-
mance of the resulting models in different scenarios. We ver-
ified that the CP-based link predictors obtained using CPLP-
tuner exhibited competitive performance, especially when con-
sidering more refined timestamps.
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Fig. 4. Performance of the baseline (Katz) and the tCPLP models in each test instant on: (a) monthly; (b) weekly; and (c) daily versions of Reality Mining
dataset.
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Fig. 5. Performance of the baseline (Katz) and the tCPLP models in each test instant on: (a) monthly; (b) weekly; and (c) daily versions of Social Evolution
dataset.



Future work will include, at a first stage, the extension of
the study to other larger networks. Another direction we are
interested in is studying what are the most critical parameters
of the models, that is, the ones that have more impact on the
performance of the model so that we can improve the proposed
method.
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