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Abstract We present the disparity map computation core

of a hardware system for isolating foreground objects in

stereoscopic video streams. The operation is based on the

computation of dense disparity maps using block-matching

algorithms and two well-known metrics: sum of absolute

differences and Census transform. Two sets of disparity

maps are computed by taking each of the images as ref-

erence so that a consistency check can be performed to

identify occluded pixels and eliminate spurious foreground

pixels. Taking advantage of parallelism, the proposed

architecture is highly scalable and provides numerous

degrees of adjustment to different application needs, per-

formance levels and resource usage. A version of the sys-

tem for 640 9 480 images and a maximum disparity of

135 pixels was implemented in a system based on a Xilinx

Virtex II-Pro FPGA and two cameras with a frame rate of

25 fps (less than the maximum supported frame rate of 40

fps on this platform). Implementation of the same system

on a Virtex-5 FPGA is estimated to achieve 80 fps, while a

version with increased parallelism is estimated to run at

140 fps (which corresponds to the calculation of more than

5.9 9 109 disparity-pixels per second).

Keywords Dense disparity map � Reconfigurable
embedded system � Real-time image processing

1 Introduction

Many applications require an efficient way to compute the

distance of objects in a scene to a camera or image sensor,

as is the case of automobile crash-avoidance systems [18],

or human-computer interface systems such as the one

described in [9, 11], which inspired the present work. In

that system, the user’s hand position is detected and its

coordinates sent to a computer so that the hand itself serves

as pointing device, much like a computer mouse.

A typical stereoscopic setup uses two side-by-side

cameras for capturing images of a scene from two slightly

different viewpoints. The position of a given object will

exhibit a relative displacement in the two images, which is

inversely proportional to the object’s closeness to the

cameras. This displacement is called disparity: objects with

a large disparity are close to the cameras, while those with

small disparity are farther away. Image processing tech-

niques, such as block-matching algorithms, can be applied

to stereo image pairs to compute the distance of all points

in a scene to the cameras, thus generating dense disparity

maps from which depth maps can be calculated. Disparity

maps can be used as a means to obtain a segmentation of

the scene into objects, by aggregating pixels that have

similar disparities (or in other words, points at similar

distance from the cameras). Identification of foreground

objects is a direct application of this technique.

This work presents the implementation of a system for

isolating foreground objects, which is capable of pro-

cessing pairs of 640 9 480 images (8-bit pixels) at a

frame rate of 40 frames per seconds (fps), detecting a
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maximum disparity of 135 pixels. It was deployed in a

hand-tracking application operating at a frame rate of 25

fps, the maximum rate allowed by the used cameras. The

hardware platform used in this application uses a Xilinx

Virtex-II Pro xc2vp30 FPGA. The same architecture, with

increased parallelism, achieves 140 fps on a Virtex-5, as

estimated by post-layout timing analysis. The proposed

architecture is scalable and adjustable with respect to

several system parameters, such as maximum attainable

disparity, window and image size. The use of an FPGA as

the hardware platform allows system reconfiguration for

different application needs and different trade-offs of

resolution, speed and power consumption for the same

application.

The overall data flow of our system is as follows: ste-

reoscopic image pairs arrive from two CMOS cameras set

side-by-side. A disparity for each pixel of an image is

computed by finding the displacement, in pixels, that cor-

responds to the same point of the scene in the other image,

using a block-match algorithm with two different similarity

metrics: sum of absolute differences (SAD) and Census.

Pixels from the right image are searched in the left one and

vice-versa, thus resulting in two independent disparity

maps. These are then thresholded to isolate the foreground

pixels, and a consistency check takes place over the two

resulting bitmaps to eliminate spurious assignments to the

foreground due to occlusion. Finally, the coordinates of the

center of gravity of the foreground pixels are computed.

The major innovative characteristics of the proposed

architecture are

– expandable architecture that can be used to generate

implementations for various image sizes and frame rate

requirements (by increasing the number of similarity

calculation modules);

– parallel computation of the disparity of several neigh-

boring pixels (minimizing data transfers between

memory and similarity calculation modules);

– highest maximum disparity among reported

implementations;

– highest frame rate for implementations that support two

similarity metrics.

The remainder of the article is organized as follows:

Section 2 provides background information of disparity

map determination from stereoscopic images and reviews

previous work. Section 3 then provides an overall

description of the system’s architecture. The hardware

modules and their interaction are described in detail in

Sect. 4. Section 5 analyses how system parameters can be

adjusted to meet different goals and quantifies system

performance. Resource usage and comparison with other

implementations are discussed in Sect. 6. Finally, Sect. 7

presents the conclusions.

2 Background and related work

2.1 Depth-extraction algorithms using block matching

Computing the disparity of a point in one image requires

finding its corresponding point in a second image and

computing the displacement in number of pixels. Repeating

this operation for all pixels of an image yields a dense

disparity map.

An extensive overview of disparity-computation algo-

rithms is given by [25]. Due to their good compromise

between efficiency and complexity, block matching algo-

rithms are commonly used for computing this displacement

in hardware implementations. For each pixel in an image of

the stereoscopic pair, a block matching algorithm picks a

block of pixels around it (with at least 3 9 3 pixels) and

compares it with blocks of pixels extracted from the other

image, along an adequate search area. The horizontal dif-

ference in number of pixels between the location of the

initial block and the block that was found to be most

similar in the other image, is the disparity. For conve-

nience, the block being searched for will be named as

reference block, and blocks drawn from the search area on

the other image will be named candidate blocks; Fig. 1

shows these concepts and how the process takes place.

Note that it is sufficient to perform the search in the right

Fig. 1 The top image refers to the left image of the stereoscopic pair

and a reference block for which a match is to be found in the right

image. The bottom image shows the area to be swept in search of a

similar block and, within it, a candidate block
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image starting from the X-coordinate of the reference

block.

For a complete disparity map, the search process must

be repeated for all pixels in the image, which means that a

large number of similar operations with small mathemati-

cal complexity will be required, thus rendering the system

susceptible to take advantage of a parallel implementation.

Various metrics have been used to assess the similarity

of two blocks, as discussed by [3]. One well-known metric,

used in a wide variety of contexts, is the Sum of Absolute

Differences (SAD). For blocks of size w 9 w (odd w) the

SAD value can be calculated, for a given displacement

d, by

XDu¼w0Dv¼w0

Du¼�w0Dv¼�w0

jI1ðuþ Du; vþ DvÞ � I2ðuþ Duþ d; vþ DvÞj

ð1Þ

where w0 = bw/2c is the half-width of the block, and I1 and

I2 specify the pixel intensity for the reference and candidate

blocks, respectively. The reference block is centered on

(u, v); the candidate block is horizontally displaced by the

disparity d.

The essence of SAD is to subtract the intensity value of

a pixel in the reference block from the intensity of the

corresponding pixel in the candidate block. Summing the

absolute values for all pixels of a block yields a measure of

the intensity difference of the two blocks: the smaller the

value, the more similar the two blocks are considered to be.

Similarity metrics are not restricted to direct mathematical

operations, but may involve transformations of the pixel data

(see [3, 4]). The metric based on the Census transform,

described by [27], belongs to this category. Forw 9 w blocks,

the dissimilarity between a block centered on (u, v) and

another displaced horizontally by d pixels is given by

DHðCensusðI1; u; vÞ;CensusðI2; uþ d; vÞÞ; ð2Þ

where DH(b1, b2) gives the Hamming distance between bit

vectors b1 and b2, and

CensusðI;u;vÞ ¼ b
Du¼w0Dv¼w0

Du¼�w0Dv¼�w0
fIðuþDu; vþDvÞ� Iðu;vÞg

ð3Þ

Here,b
2

1

denotes the concatenation of the bits encoding the

result of the test included in brackets.

The idea underlying the Census metric is to take the

central pixel of a block and then to classify all other pixels

according to their relative brightness. A value of one or

zero corresponding to the result of the comparison is

assigned to each pixel, producing a code word for each

block (the Census transform of the block). The Hamming

distance between two code words (i.e., the number of equal

bits in corresponding positions of the two words) provides

a measure of the similarity between the blocks. This metric

is sensitive to the position and relative brightness of the

block pixels, but not to their absolute brightness. Therefore,

it can be used to complement the information provided by

the SAD metric.

Color information may be used to extend the scope of

these metrics. The SAD operation can be extended to

incorporate the chrominance or the RGB color components

of the pixel, as done in [7, 19]. Alternatively, color seg-

mentation can complement the operation of the Census

transform, which tends to ignore textureless, usually

homogeneously colored areas; this is the approach of [12].

Some of the issues that arise in exploiting color informa-

tion are discussed by [24] in the context of image

enhancement.

Using disparity information, it is possible to segment the

image into objects or groups of objects that occupy the

same focal plane by clustering pixels with similar dispar-

ities. Assigning a focal plane to a given range of disparity

values cannot be done straightforwardly without having

some kind of knowledge about the scene in advance. It is

usually an empirical association based on the scene’s

characteristics, and there will always be a degree of

uncertainty associated. Although the system provides full

support to this segmentation, for the current work the goal

is only to identify those objects that are closer to the

cameras. Hence, there is only the need to distinguish

between foreground and background, meaning that a single

threshold may be used.

A problem that all disparity computation methods face is

the handling of occluded areas. In fact, the operation of the

block matching algorithm is such that a given background

pixel in one image may not be visible in the other image

because it is occluded by a foreground object. In this case,

the block matching algorithm returns an incorrect disparity

value based on a spurious match, as exemplified in Fig. 2.

For the specific case of disparity maps used for two-

level foreground/background segmentation (as for the

current work), a simple consistency check for detection of

occluded pixels is possible if the search is repeated with the

roles of both images switched. By combining the infor-

mation of both searches, pixels that appear in only one of

the images and for which the disparity information is

invalid can be identified (see [6]). Although conceptually

simple, it requires twice the computational resources nec-

essary for computing a single disparity map; thus, many

implementations avoid this feature.

The reasoning behind the consistency check is to verify,

for each pixel assigned to the foreground in one disparity

map, whether the other disparity map also assigned it to the

foreground. If the condition is true, the pixel has been

correctly classified as belonging to the foreground; other-

wise, it is considered as belonging to an occluded area and
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therefore to the background. Figure 3 provides more

insight on this.

2.2 Dedicated hardware for disparity map computation

Many hardware architectures for disparity computation are

reported in the literature (see Table 2, Sect. 6). This sum-

mary focuses on FPGA-based implementations that target

real-time performance using block matching with SAD or

Census metrics. The work in the field is very heteroge-

neous, as many aspects of the systems (e.g., hosting plat-

forms, algorithms, internal architecture and additional

features like rectification) vary in such a manner that a

meaningful comparison is hard to achieve. Nevertheless,

some parameters are often used to provide a framework for

comparisons, such as frame rate, maximum disparity range,

operating frequency, image and block size.

A seminal work in the area is the PARTS system by

[26]. It is composed of 16 Xilinx 4025 FPGAs and is

capable of computing stereo disparities of up to 24 pixels

on 320 9 240 images at 42 fps using the Census metric.

The same metric is used by the implementation described

in [5], which employs two boards with 6 FPGAs each

(Xilinx 4K family) to process 256 9 256 images at 29 fps.

A single-FPGA implementation, described in [2],

employs a Virtex XCV800 device to implement a SAD-

based disparity computation system. Operating at 66 MHz,

this implementation processes 320 9 240 images at 71 fps

for a maximum detectable disparity of dmax ¼ 16: The

block size used is 7 9 7.

The characteristics of more recent, noteworthy systems

are summarized in Table 2 (Sect. 6), together with the

implementation proposed in this work. Comparing these

hardware implementations needs to consider multiple

objectives which depend on the intended application area.

Nevertheless, the table includes a column with the GDPS

score (trillion (Giga) Disparity-Pixel results produced per

seconds) as a rough indicator of computational perfor-

mance. The score has been estimated for all implementa-

tions as

GDPS ¼ width� height� dmax � frame rate� 10�9 ð4Þ

The implementation discussed in this paper is closest to

the one described in [9] since it also uses two metrics (SAD

and Census) and performs consistency checks, handling a

total of four intermediate disparity maps. An ASIC

implementation is reported, which handles 320 9 480

images with dmax ¼ 47 and an image data rate of 5

MPixels/s. An ASIC (application-specific integrated

circuit) implementation of a similar approach (using the

sum of squared differences instead of SAD) is discussed in

[16]. It handles 256 9 192 images at more than 50 fps with

dmax ¼ 25 and 10 9 3 blocks. More recently, the ASIC

implementation of [10] employs SAD with left/right

Fig. 2 The background area confined by the block in the left image

(left figure) is not found in the right image (center figure) due to

occlusion by the hand (dashed arrow), causing the system to find a

match farther along the left-wise search (solid line), and thus

erroneously assigning that block a high disparity. The resulting

thresholded disparity map (right figure), where white pixels represent

foreground pixels, exhibits this wrong classification (circled area)

Fig. 3 The consistency check crosses the information of the two

thresholded disparity maps to identify errors due to occlusion. For an

area that was erroneously considered as foreground in the left bitmap

(circled area in left figure), the other bitmap is verified at the location

indicated by the area’s assigned disparity (circled area in center

figure). If a foreground area is not found as well, the initial

classification is discarded, and thus a corrected bitmap is produced

(right figure)
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consistency checking to process 320 9 240 images

(11 9 11 block size and dmax ¼ 64). Our FPGA-based

implementation processes 640 9 480 images at 80 fps,

implements both SAD and Census metrics and performs

consistency checks while achieving dmax ¼ 135:

3 Architecture overview

This section gives a general description of our system for

location of foreground objects in real-time that includes the

expandable architecture for disparity map computation and

object location proposed in this paper. The key innovations

are to be found in the disparity computation stage, which

will be described in more detail in the following section.

The inputs are two video streams and the system pro-

duces a VGA output with the visual representation of the

disparity map (useful only for debugging and system tun-

ing) and the coordinates of the foreground object. The

overall data flow and main hardware modules, based on

[21], are presented in Fig. 4, and the four main computa-

tion stages are described next.

Disparity computation: This stage uses the block-

match algorithm to compute disparity maps. Both the right

image and the left image are used as source for reference

blocks, using two different metrics (SAD and Census), thus

producing four distinct disparity maps. Two mem 3x3

modules receive data from the cameras and feed them to an

array of metric_fund modules, which perform the

actual disparity calculation.

Thresholding In this stage, the scene is segmented into

two focal planes by performing a binarization of the dis-

parity values in each of the four maps , according to a user-

defined threshold, at the thresholder modules. More-

over, the bitmaps obtained from the SAD and Census

metrics are combined by a logical-OR operation; thus only

two bitmaps are output: one corresponding to the disparity

map of which the left image provided the reference blocks

and another in which the reference blocks came from the

right image.

Consistency check Spurious areas, that were errone-

ously considered as foreground due to occlusion, are

removed in this stage. The matcher module combines the

two bitmaps from the previous stage and performs the

consistency check discussed in Sect. 2. This stage produces

a single bitmap.

Coordinate computation The center-of-gravity of the

pixels in the bitmap is computed by module coordi-

nate_computer and its coordinates output.

A goal for the current architecture is to be efficiently

adaptable to the amount of logic resources available in the

target platform and to exploit parallelism as much as pos-

sible. In this context, an important architectural decision

was to have multiple instances of a fundamental hardware

module (metric_fund) for calculating block similarity

metrics: each module receives a reference block and

compares it with a stream of incoming candidate blocks. At

the end of a computational cycle, each module outputs the

maximum disparity found for a given reference block.

Processing the disparity of several pixels simultaneously

employs a potentially large number of these modules

(which may vary for different designs according to the

available resources).

Another relevant architectural option is to use two sets

of these modules so that the consistency check discussed

earlier can be performed. This allows the two types of

disparity maps to be computed simultaneously: one having

the right image providing the reference blocks that are

searched for in the left image and vice-versa.

A third key decision is to support two different metrics

to increase the system’s robustness. SAD and Census are

fundamentally different in nature, and thus their results are

somehow complementary and highlight different visual

thresholder module thresholder module

matcher module

coordinate_computer module

Thresholded 
left bitmap

CENSUS 
disp. map

metric_fund modules

Left
Refer.
Matrix

Right
Refer.
MatrixRight Candidate Matrices

Left Candidate Matrices

mem_3x3 module mem_3x3 module

SAD 
disp. map

CENSUS 
disp. map

SAD 
disp. map

Thresholded 
right bitmap

Matched 
left bitmap

[X, Y] coordinates
by RS-232

Pixel data from
LEFT camera

Pixel data from
RIGHT camera

metric_fund modules

Fig. 4 Diagram depicting the overall dataflow and the interaction

between the main hardware modules
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aspects, as discussed in Sect. 2.1. In addition, both metrics

present a good quality vs. resource consumption trade-off

for hardware implementation. In simulation, both metrics

showed good results, while only demanding fairly basic

arithmetic and boolean operations such as additions,

comparisons and XORs. Moreover, the use of color infor-

mation to improve the metrics’ performance was found

unnecessary. If applied to the SAD metric computing

hardware, it would consume the triple of the resources due

to the color components. Alternatively, Census could be

complemented by a color analysis to identify homoge-

neously textured areas, but SAD achieves the same goal

with a more straightforward implementation.

For other applications beyond the proof-of-concept

implementation described here, the last stage may be

replaced by implementations of more sophisticated tech-

niques such as, for instance, connectivity analysis or color-

based segmentation.

4 Architecture and operation

This section addresses the four computation stages while

focusing on the internal operation and the key innovating

features of the disparity computation modules. For the sake

of concreteness, the following discussion examines dis-

parity calculations for 8-bit grayscale images of size

640 9 480 at 25 fps, as implemented in our prototype. A

general discussion of implementation characteristics for

other image sizes and frame rates is presented in Sect. 5.

Regarding the system inputs, the pixel data are provided

directly by the cameras as a row-ordered stream of bytes.

Camera synchronization is ensured by the interface elec-

tronics. Dedicated signals from the cameras determine the

start and end of each pixel row.

4.1 Disparity computation

To compute a disparity map for an 640 9 480 pixel image,

each one of the 640 reference blocks in a line has to be

compared with up to dmax candidate blocks. Our strategy is

to handle each reference block independently by assigning

it to a dedicated metric_fund module, which receives

up to dmax candidate blocks and outputs the disparity of the

reference block at the end. Candidate blocks are drawn

sequentially from the respective search area, shifted by one

pixel, one per clock cycle.

Complete parallelization would require a dedicated

module for each reference block. In our case, that would be

640 hardware modules, which is a number unfit for FPGA

implementation. Instead, the proposed architecture per-

forms the computation in rounds. Only 20 metric_fund

modules are used in the current implementation: during the

first round, 20 reference blocks are processed; in the second

round, reference blocks 21 to 40 are handled and so on

until all 640 blocks are processed.

Within each round, the proposed architecture is able to

share resources between the processing of multiple refer-

ence blocks. Note that the spatial relation between two

consecutive reference blocks is a mere shift of one pixel.

This observation also applies to the respective search areas

in the other image. Furthermore, reference blocks and

search areas, although extracted from different images,

start from the same X-position. Our approach is then to

provide one single stream of candidate blocks to all

metric_fund modules and have the modules start their

operation at different times.

An exemplification is now presented, with the help of

Fig. 5. First of all, note that the mem3x3 module (which

holds the data received from the cameras) outputs a column

of 3 pixels every clock cycle and that three consecutive

columns form a block. If we designate a block by the

columns it is composed of (1, 2, 3 for the first block) and

label the block with R and C for reference and candidate

blocks respectively, the search area of R1, 2, 3 will be C1, 2, 3,

C2, 3, 4, C3, 4, 5 and so forth up to Cdmax�2;dmax�1;dmax
: For R2,

3, 4, the search area is the same, simply shifted by a pixel:

C2, 3, 4, C3, 4, 5, C4, 5, 6, up to Cdmax�1;dmax;dmaxþ1:

With this column-by-column mechanism, a steady flow

of candidate blocks is guaranteed. The spatial shift between

search areas of consecutive reference blocks is respected

by activating each metric_fund module precisely dur-

ing the time interval that the relevant search area is being

provided. This is shown in Fig. 5, where grey areas rep-

resent the activation intervals of each module. In this

small-scale example, dmax is 4.

From the perspective of the metric_fund modules,

this operation has two stages. In the first one, which takes

place on the first cycle of the round, the modules receive a

reference block from one of the mem3x3 modules and

store it a dedicated register. In the second stage, starting on

the following cycle, a stream of candidate blocks starts

arriving from the other mem3x3 module and the circuitry

dedicated to compute the metrics SAD and Census starts

operating. For each metric, the stored reference block is

compared with the incoming candidate blocks, and a sim-

ilarity value is output.

This similarity value is then compared with the value

stored in a register named best_match, which stores the

similarity value of the most similar candidate block found

so far. If the similarity value of the current candidate block

turns out to be better than the existing value, the best_-

match register gets updated as well as a second register

called disparity. This one stores the distance of the

478 J Real-Time Image Proc (2016) 11:473–485

123



candidate block to the reference block. In the end, when the

stream of candidate blocks is over, the module outputs the

content of the disparity registers, one per metric.

The described hardware organization involves some

redundancy in the calculations, because the same pixel

differences are calculated in three different met-

ric_fund modules in consecutive computation cycles.

This redundancy might be avoided by providing direct

connections between adjacent metric_fund modules

and implementing special case processing for the first and

last two final modules. This approach would incur in

additional routing and control complexity, so it is not clear

whether final performance would benefit from it. The

implemented architecture has less internal dependencies

and more straightforward control.

As for the mem3x3 module, it receives the images from

one of the cameras and delivers pixel blocks to the array of

metric_fund modules upon request. Two major

requirements constrain the design of this module. The first

is that area-matching algorithms require at least 3 9 3

pixels blocks to operate. In fact, both width and height of

the block are design parameters (w and h), and other values

may be defined for different speed, power and resource

usage trade-offs. The second is that, for the system to be

real-time, the processing of one line has to be done in the

same time it takes to receive one.

The first requirement translates to the need of the

mem3x3 module possessing h internal memories, one for

each line. The second requirement results in the incoming

line having to be stored while the other h are being pro-

cessed. Hence, an additional memory is used, along with a

round-robin mechanism: while h memories provide data

for the processing stages, the (h ? 1)th is being filled with

the pixel data that comes from the cameras.

Finally, the flow of data and all operations are man-

aged by the global_ctrl module, which is an elabo-

rate finite state-machine in charge of managing data flows

and modules operation. It activates and deactivates the

metric_fund modules at the correct time, through

dedicated enable signals, so that each one starts operating

as soon as the adequate block is output by the mem3x3

modules.

The global_ctrl module also provides the read and

store pointers for the mem3x3 modules and, as soon as a

line has been fully received from the cameras, it enforces

the round-robin mechanism, indicating another memory to

store the pixels arriving from the cameras and resetting the

store pointers. As for the read pointers, there are in fact two

sets of those, since two disparity maps are being computed

independently.

4.2 Segmentation, consistency check and coordinate

computation

The disparity maps of the previous stage encode the dis-

parity obtained for each pixel of the input images, in 8-bit

values. There are four disparity maps: for each kind of

disparity map (right image as reference, and vice-versa),

one is based on the SAD metric, and another on the Census

metric.

At this point, the module thresholder performs a

simple binarization for all four disparity maps: pixels are

transformed into a 1 or a 0, according to whether they are

above or below a user-defined threshold. Also, the SAD

and Census result of each kind of disparity map are

merged by an OR operation. If a pixel is a 1 in the SAD

or Census bitmap, the pixel in the resulting bitmap is

also a 1.

Fig. 5 The column-by-column

and sequential activation

mechanism. Blocks labeled with

C and R are candidate and

reference blocks, respectively.

Gray areas in the diagram

correspond to the operation

intervals of each module. As

consecutive reference blocks, as

well as their search areas, are

shifted by only one pixel, a

common search area is fed to all

modules, and each module is

only activated when the relevant

search area is made available
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The motivation for using this particular logical operation

is twofold. On one side, as discussed in Sect. 2.1, the

results of both metrics are somehow complementary,

meaning that if an intersection was to be performed

instead, relevant information could be lost. Given that the

subsequent stage will discard all results that were not

coherently considered foregroung pixels in both kinds of

disparity maps, it is important for this later stage to receive

as much relevant information as possible. Otherwise, the

final coordinate computation stage might not receive

enough data for computing a meaningful result.

In the end, the thresholding stage outputs two bitmaps:

one based on reference blocks extracted from the right image

(for convenience, it will be named the ‘‘right’’ bitmap), and

other in which reference blocks were extracted from the left

image (the ‘‘left’’ bitmap). The matcher module takes on

these two bitmaps and verifies that the foreground pixels in

the left bitmap were correctly identified as such. It uses the

left and right bitmaps produced by the threshold stage,

together with the disparity value for each pixel of the left

bitmap computed ealier. Either SAD or Census values can be

used; our experience agrees with [11] in that using the value

from the Census disparity map leads to better performance,

and, therefore, our prototype also uses it.

The bits from the right bitmap are stored in a shift

register, in which all positions are accessible for reading.

As each pixel from the left bitmap (and its associated

disparity) arrives to the matcher module, one per clock

cycle, this memory is accessed by a multiplexer that fet-

ches the right bitmap’s bit indexed by the disparity value of

the left bitmap’s bit. The two bits are then ANDed toge-

ther: if both are 1, the pixel of the left bitmap is considered

foreground. The reasoning behind this logical operation

is explained in Sect. 2.1 (or, more succintly, in Fig. 3).

Figure 6 presents the module’s internal architecture.

As the disparity value of each bit can only address dmax

positions (in our proof of implementation, dmax ¼ 135

pixels), the shift-register only needs to store this number of

bits from the right bitmap. For example, if the left bitmap’s

pixel under analysis is the 430th pixel from the left, the bits

from the right bitmap available in the memory are those

from position 430 - 135 = 295 up to position 430.

The need for storing a full line of bits and fetching from

it as needed is avoided by another architectural design

option. The right bitmap is produced from left to right:

reference blocks, as well as candidate blocks, are drawn

right-wise and one would expect the production of the left

bitmap to mirror this direction. However, as in [11], the

production of the left bitmap is slightly modified to

accompany the production of the right bitmap, thus

obtaining the temporal and spatial closeness that eliminates

the need to store a full line of results.

Finally, the coordinates of the center of gravity of the

foreground objects are calculated by the module coor-

dinate_computer. For that purpose, the number of

foreground pixels of each row and column is computed.

These values are multiplied by the index of the corre-

sponding row or column. The weighted sums of all rows

and columns are stored in two registers. Dividing the

content of these two registers by the total number of

foreground pixels in the bitmap yields, respectively, the X

and the Y coordinates of the center of gravity.

The major architecture restriction on this stage is the fact

that results arrive to this module in the same manner the

cameras deliver the images: from left to right, from top to

bottom. This means that, while the total number of fore-

ground pixels in a line can be computed at once, temporary

totals for all rows must be kept, requiring an extra memory.

5 Design parameters and performance

This section analyses the various trade-offs that can be

obtained by adjusting the system parameters and discusses

the dependencies between design parameters and perfor-

mance of the system.

px
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px
134

px
133

px
132

px
0

px
1

px
2

px
3

...

135-to-1 multiplexer

Right bitmap bits

Left bitmap bit’s 
disparity value

Left bitmap bit

Checked left bitmap bit

Fig. 6 Hardware structure of the matchermodule. A linear memory

as long as the maximum disparity range (135 bits in this case) stores a

window of bits from the right bitmap. The memory is then accessed

according to the value given by the disparity value for the left

bitmap’s pixel under analysis. The bit fetched from the memory and

the left bitmap’s bit are then used to confirm the classification of the

later
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5.1 Application requirements and design parameters

The main requirement posed by the application is the

minimum distance R between the cameras and the objects

that must be detected. To meet such application require-

ment, the designer must determine a single architectural

parameter: N, the number of metric_fund modules.

The system can be configured by a set of eight

interrelated parameters, which can be classified into two

types:

• camera parameters:

- distance between cameras dC;

- focal distance of the cameras f;

- frame width in pixels W;

- frame width in meters We (‘‘effective width’’).

• system parameters:

- maximum disparity dmax;
- operating frequency fop;

- data rate of incoming pixels fin;

- width of the block w;

- number of metric_fund modules N.

The maximum disparity parameter dmax plays a key role

because it establishes a relationship between system

parameters (which determine the system parameter N), and

camera parameters (that must be compatible with the

desired R). Ignoring any internal latency, system parameter

dmax is given by

dmax ¼
fop

fin
� N ð5Þ

To achieve a target dmax, only the relative values of

parameters fin and fop matter. If fop ¼ fin; then the number

of metric_fund modules needed will be the same as the

desired maximum disparity dmax, because each metric_

fund module handles only one reference block at a

time.

Our implementation has fin ¼ 12:5 MHz and fop ¼ 100

MHz. Their ratio is 100/12.5 = 8, so there are eight clock

cycles available for processing each block. Since the

implementation has N = 20, it can handle 20 reference

blocks simultaneously and thus achieve dmax ¼ 8� 20 ¼
160 in the absence of additional internal delays.

The actual value of dmax is smaller due to two sources

of latency. First, N clock cycles are necessary to

sequentially load the metric_fund modules with the

reference blocks at the beginning of each round. The

second source is memory latency: the w 9 w blocks are

output by the mem3x3 modules in columns, one per

cycle, and hence it takes w ? 1 clock cycles for each

module to get all the columns of its reference block and

of the first candidate block. Furthermore, an additional

cycle must be subtracted to account for the comparison

of the candidate block that has a relative displacement

of 0 with respect to the reference block. The resulting

expression for dmax is

dmax ¼ N � fop

fin
� N � ðwþ 1Þ � 1

¼ N � fop

fin
� 1

� �
� w� 2 ð6Þ

Hence, for N = 20 and w = 3, we have dmax ¼ 160�
20� 5 ¼ 135: Increasing the block width w results only in

a small latency penalty equal to the number of additional

columns of the block. Thus, for a 5-pixel wide block, the

value would be dmax ¼ 160� 20� 7 ¼ 133:

Using the camera parameters, dmax can be linked to the

main application requirement R (minimum distance

between cameras and objects in the image foreground).

Following the discussion by [22], the disparity d of an

object at a given distance R to the cameras is estimated by

d ¼ dC � f

R
� W

We

ð7Þ

where the proportionality factor W/We is used to obtain the

value in pixels.

For our prototype frame width is W = 640, inter-camera

distance dC = 7.5 cm, focal distance f = 6 mm, and the

effective width of the image is We = 4.86 mm, as found in

the cameras datasheet [21]. Taking d ¼ dmax ¼ 135 results

in R = 43.9 cm, which is quite adequate for our target

application.

Combining Eqs. 5 and 7 gives a single relationship for

recomputing the necessary number of metric_fund

modules for a given R:

N� dC � f

R
� W

We

þ wþ 2

� �
� fin

fop � fin
ð8Þ

Only one recommendation applies to the value obtained

from this formula: it is advisable to have N be a divisor of

the frame width W in order to ensure optimal usage of the

hardware resources.

Therefore, the work of exploring the existing large

solution space, in which FPGA resource usage can be

traded off with camera parameters and vice-versa, becomes

easier, and a designer can tailor the architecture for specific

applications while achieving different speed and power

trade-offs.

5.2 Calculation effort

This section estimates the amount of computational effort

of the proposed architecture using as indicator the number

of arithmetic operations (addition and subtractions)

J Real-Time Image Proc (2016) 11:473–485 481

123



performed by the disparity calculation modules. Take H to

be the number of pixels in a image row and w0 = b w/2 c to
be the distance between a block’s central point and the

block’s border. Then, the number of pixels for which

a disparity value is calculated is defined by H0 9 W0,
where

H0 ¼ H � w0 ð9Þ

W 0 ¼ W � w0 ð10Þ

Consider the processing of one image line. For W 0 �
dmax þ 1 pixels, a full search of dmax positions in the other

image is made (for each position, a block comparison is

made). For the remaining pixels, the distance to the image

borders is less than dmax, so fewer block comparisons

will be done. The number b of clock comparisons per

line is

b ¼ ðW 0 � dmax þ 1Þ � dmax þ ðdmax � 1Þ þ � � � þ 1 ð11Þ

¼ ðW 0 � dmax þ 1Þ � dmax þ
1

2
� dmax � ðdmax � 1Þ ð12Þ

Since the process is applied twice, as both images serve

as source for reference blocks, the total number of block

comparisons per image pair is

B ¼ H0 � 2� b ð13Þ

For the proof-of-concept implementation, we have

w0 = 1, H0 = 638, V0 = 478 and dmax ¼ 135; resulting in

B = 73,976,760 & 7.40 9 107 block comparisons per

frame. Since the supported frame rate is ffr ¼ 25; the

system executes 1.85 9 109 block comparisons per

second.

The metric_fund modules implement the block

comparisons. The calculation of the SAD metric involves

w 9 w subtractions and the additions of their results, which

is performed by a tree of a two-operand adders. So, the

calculation of the SAD metric requires the following

number of arithmetic operations:

nsad ¼ w� wþ a ð14Þ

For w = 3, the tree has a = 8 adders, resulting in nsad ¼
17 operations.

The calculation of the Census transform involves w2 - 1

subtractions. Ignoring for simplicity the logic operations

required for Hamming distance calculation, a lower bound

for the total number of arithmetic operations per block

comparison nb is given by

nb ¼ nsad þ w2 � 1 ¼ 2w2 þ a� 1 ð15Þ

For the proof-of-concept implementation, this results in

nb = 25. Overall, the implementation executes 4.62 9

1010 arithmetic operations per second for disparity map

computation.

6 Implementation and evaluation

In our proof-of-concept implementation, the disparity

computation is embedded in a hand position detection

system. The inputs come from two [21] digital cameras

placed side-by-side 7.5 cm apart. Each image has

640 9 480 8-bit pixels delivered at 12.5 MHz. The system

produces a VGA output with the visual representation of

the disparity map (which is useful for debugging and sys-

tem tuning), and sends the coordinates of the foreground

object over a serial port to a desktop computer. The pro-

cessing board is a Digilent XUP board with a Virtex-II Pro

FPGA (xc2vp30 device).

The complete system is described in Verilog HDL. It

has been synthesized for the evaluation platform just

described as well as for other FPGA families using the ISE

tools (version 10.1 for Virtex-II Pro devices, version 13.2

for the other devices). Table 1 summarizes the complete

resource usage (including the modules required for inter-

facing with cameras and VGA monitor) and the main

characteristics of the each implementation. The Virtex-II

Pro version was successfully deployed on the target

platform.

Versions with N = 40 metric_fund modules were

synthesized for all device families. Only results for the

Virtex-4 device implementations are included in Table 1,

since the versions for both values of N target the same

device model. The other device families exhibit similar

patterns of resource usage, which required devices with a

larger number of slices to be targeted. Based on post-place-

and-route timing information, the implementation with

N = 40 for the Virtex-5 device is estimated to run at

175 MHz, for a frame rate of 140 fps.

All the target FPGA families have efficient block RAMs

(BRAM), which are used in this implementation to store

each image line. As described before, four lines of each

image must be stored at all times. Since each line/memory

may have two simultaneous accesses, the mapping tools

replicate those memories, thus yielding a total of 16

memories. Another BRAM is used in the coordinate

computation stage to store the temporary totals per row.

The number of flip-flops used can be partially explained

by the 2 9 20 metric_fund modules. Counting only the

registers needed to hold the reference window and the nine

absolute differences of the SAD computation, the number

of flip-flops is 40 9 9 9 8 9 2 = 5,760 (since each reg-

ister is 8 bit wide, and disparity maps are computed in two

directions), which accounts for approximately half the total

of used flip-flops.

Total power consumption (Table 1) depends strongly

on the technology of each device family. As an example,

the Virtex-5 implementation for N = 20 has a lower

power consumption than the corresponding Virtex-4
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implementation despite the estimated operating frequency

being significantly higher. For Virtex-4 FPGAs, doubling

the number of metric_fund modules almost doubles the

power consumption.

Table 2 summarizes the characteristics of other recent

FPGA-based implementations of disparity calculation. The

‘‘check’’ column indicates whether the system performs a

left/right consistency check involving the calculation of

two disparity maps. Note that the GDPS score does not

reflect the block size, the effort due to the calculation of

intermediate disparity maps (for consistency checks) or the

quality of the disparity map.

The implementation discussed here has a maximum

disparity dmax ¼ 135; using 3 9 3 blocks, and processes

640 9 480 images, at a maximum frame rate of 80 fps

when running with a 200 MHz clock (N = 20), or 140 fps

when running with a 175 MHz (N = 40).

Compared with the other systems of Table 2, the pro-

posed system features a fairly large disparity and a rela-

tively small maximum window size. The frame rate is

adequate for most image processing tasks.

Only two systems of Table 2 have a higher GDPS than

the implementation evaluated in this work (with 40

metric_fund modules). Both [1] and [8] achieve very

high frame rates, but do not perform consistency checks.

The work of [15] achieves a lower GDPS score due to the

limited disparity range, but features a higher frame rate and

performs consistency check (using larger blocks). All of

these systems support only one metric with large blocks,

while our implementation supports two metrics with con-

sistency check and smaller blocks, together with the

highest value of dmax, a key feature for our intended

application. The only other system that supports two

metrics and performs consistency check is FingerMouse

Table 1 Resource usage and characteristics of system implementations on various FPGA families

Virtex-II Pro Virtex-4 Virtex-5

N = 20 N = 20 N = 40 N = 20

Resource usage

Slices 9,565 (69%) 12,881 (48%) 22,514 (84%) 5,082 (70%)

LUTs 16,847 (39%) 18,461 (34%) 34,090 (64%) 12,144 (42%)

Flip-flops 10,936 (61%) 11,682 (21%) 24,546 (46%) 12,144 (42%)

BRAM blocks (18 Kb) 18 (13%) 18 (11%) 19 (11%) 18 (38%)

Characteristics

Frequency (MHz) 100 133 133 200

Power consumption (W) 0.92 1.25 2.21 1.04

Frame rate (fps) 40 53 106 80

Maximum disparity (pixels) 135 135 135 135

GDPS 1.66 2.20 4.40 3.32

The target devices are xc2vp30-7 (Virtex-II Pro), xc4vlx60-12 (Virtex-4), xc5vlx50-3 (Virtex-5). Frequency and total (static ? dynamic) power

consumption estimates obtained from post place-and-route data by Xilinx tools. Slices have two 4-input LUTS and two flip-flops (Virtex-II Pro,

Virtex-4) or four 6-input LUTs and four flip-flops (Virtex-5)

Table 2 Overview of FPGA-

based systems for dense

disparity map computation

(present work characteristics are

for implementations on Virtex-5

devices)

Reference W 9 H dmax FPS Metric B‘lock Check GDPS

[14] 320 9 240 64 120 SAD 7 9 7 N 0.59

[23] 1024 9 1024 32 47 SAD 16 9 16 N 1.58

[17] 640 9 480 64 30 SAD 32 9 32 N 0.59

[9] 640 9 480 47 32 SAD/Census 3 9 5 Y 0.46

[20] 320 9 240 20 150 Census 7 9 7 N 0.23

[1] 450 9 375 100 599 SAD 9 9 9 N 7.4

[8] 640 9 480 80 275 SAD 7 9 7 N 6.76

[13] 640 9 480 64 130 Census 7 9 7 N 2.56

[15] 640 9 480 64 230 Census 11 9 11 Y 4.52

Present work (Virtex-5)

N = 20 640 9 480 135 80 SAD/Census 3 9 3 Y 3.32

N = 40 640 9 480 135 140 SAD/Census 3 9 3 Y 5.91
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[9, 11], but it achieves a lower frame rate and a smaller

maximum disparity than the present architecture.

In terms of architecture, there is one major alternative

to our system: whereas we compute the disparity of

several pixels simultaneously, other systems compute a

single pixel’s disparity at a time. For instance, in the case

of [11], each pixel is assigned 16 clock cycles for com-

putation; during each cycle, the reference block is com-

pared with three candidate blocks in parallel. The

maximum disparity is thus 3 9 16 - 1 = 47 pixels. This

strategy requires a large portion of the search area to be

available in a very short time; in our system, however, the

memories need not provide more than one column of the

search area per clock cycle. By parallelizing the compu-

tation of the disparity of several pixels over an array of

hardware modules, our architecture can take advantage of

the spatial closeness of the pixels to feed the same data

stream to all the modules, thus spreading the processing

over a larger period of time and hence attenuating the

requirements for data availability, with just a small cost in

the maximum disparity range.

7 Conclusion

We have presented the implementation of a system that

receives a pair of stereoscopic images and computes dis-

parity maps, from which it can isolate the closest objects to

the cameras in real-time. The goal is to isolate the user’s

hand from the background and send its coordinates to a

computer, so it can support new forms of human-computer

interface. The system is completely described in structural

Verilog HDL. An implementation sized to handle

640 9 480 images and achieve a maximum disparity of

135 using 3 9 3 windows was evaluated for different

Xilinx FPGA families. A hardware prototype was built

using a Virtex-II Pro FPGA, achieving 40 fps (with a

100 MHz main clock). Synthesis results show that a Vir-

tex-5 implementation of the same architecture achieves a

maximum frame rate of 140 fps with a 175 MHz main

clock.

The heart of the system is an expandable hardware

architecture for the computation of disparity maps. It uses

an array of modules that work in parallel, each comparing a

block from one of the images with a stream of blocks from

the other image. Our architecture implements a simplified

dataflow in which the stream of candidate blocks offered to

each of the modules is the same. The presented method-

ology exhibits significant trade-off and scalability capa-

bilities and, in particular, it allows a high disparity range to

be detected, an important characteristic for the application

addressed in the prototype implementation.
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