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Abstract. Informed driving is becoming a key feature to increase the
sustainability of taxi companies. Some recent works are exploring the
data broadcasted by each vehicle to provide live information for decision
making. In this paper, we propose a method to employ a learning model
based on historical GPS data in a real-time environment. Our goal is to
predict the spatiotemporal distribution of the Taxi-Passenger demand
in a short time horizon. We did so by using learning concepts originally
proposed to a well-known online algorithm: the perceptron [1]. The results
were promising: we accomplished a satisfactory performance to output
the next prediction using a short amount of resources.

Keywords: taxi-passenger demand, online learning, data streams, GPS
data, auto-regressive integrated moving average (ARIMA), perceptron.

1 Introduction

The rising cost of fuel has been decreasing the profit of both taxi companies and
drivers. It causes an unbalanced relationship between passenger demand and the
number of running taxis, thus decreasing the profits made by companies and also
the passenger satisfaction levels [2]. S. Wong presented a relevant mathematical
model to express this need for equilibrium in distinct contexts [3]. An equilibrium
fault may lead to one of two scenarios: (Scenario 1) excess of vacant vehicles and
excessive competition; (Scenario 2) larger waiting times for passengers and lower
taxi reliability [3L4]. However, a question remains open: Can we guarantee that
the taxi spatial distribution over time will always meet the demand? Even when
the number of running taxis already does?

The taxi driver mobility intelligence is an important factor to maximize both
profit and reliability within every possible scenario. Knowledge about where the
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services (i.e. the transport of a passenger from a pick-up to a drop-off location)
will actually emerge can be an advantage for the driver - especially when there
is no economic viability of adopting random cruising strategies to find their
next passenger. The GPS historical data is one of the main variables of this
topic because it can reveal underlying running mobility patterns. Today, the
majority of the public transportation networks have vehicles equipped with this
technology. This kind of data represents a new opportunity to learn/predict
relevant patterns while the network is operating (i.e. in real-time).

Multiple works in the literature have already explored this kind of data suc-
cessfully with distinct applications like smart driving [5], modeling the spatiotem-
poral structure of taxi services [6H8] or building intelligent passenger-finding
strategies [9,[10]. Despite their useful insights, the majority of techniques re-
ported are tested using offline test-beds, discarding some of the main advantages
of this kind of signal. In other words, they do not provide any live information
about the passenger location or the best route to pick-up one in this specific
date/time while the GPS data is mainly a data stream. In this work, we are
focused into predicting the short-term spatiotemporal distribution of the taxi-
passenger demand by using machine learning algorithms capable of learning and
predicting in a real-time environment.

One of the most recent advances on this topic was presented by Moreira-
Matias et. al in [411]. They propose a discrete time series framework to predict
the event count (i.e. number of services) for the next P-minutes with a periodicity
7 of 30 minutes. This framework handles three distinct types of memory: 1) short
term (ARIMA - AutoRegressive Integrated Moving Average [12]), 2) mid term
and 3) long term one (both based in time-varying poisson models [13]). This
model presented three main contributions facing the existing literature [4]:

1. It builds accurate predictions on a stream environment(i.e. using a real-time
test bed);

2. Part of the model is able to forget some past data by summarizing it into
sufficient statistics;

3. It is able to update itself on a short amount of timd] reusing the last real
event count to learn about the novelty thereby introduced;

However, such approach presents two relevant limitations: 1) it just produces
predictions each 30 minutes while the decision process is made in real-time
(i.e. can we guarantee that a prediction made at 8:00am is still informative
at 8:20am?); 2) the ARIMA weights are fitted (i.e. re-calculated using an offline
learning process) and not updated before each prediction by reusing the entire
time series of recent event counts plus the most recent one. A research question
arises from this analysis: Can this model handle with a real-time gran-
ularity (i.e. to build predictions per each period of 5, 2, 1 minute or even on
demand)?

! An averaged processing time of 99.77 seconds is reported in [4] to update the pre-
dictive model and to build the next prediction.
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In fact, this framework is divided into four components that work according to
distinct computational models: 1,2) while the two time varying Poisson models
are incremental learning methods, 3) the ARIMA model employed is an offline
one. Finally, the 4) ensemble method used is an online learning. To ease the in-
terpretation of the system characteristics, some definitions about computational
learning methods are presented below.

— Offline Learning: a method able to learn a predictive model from a finite
set of instances where the post-training queries do not improve its previous
training [I4];

— Incremental Learning: a method able to learn and update its predictive
model as long as the true labels of the input samples are known (i.e. a
stepwise method where each step uses one or more samples) [15];

— Online Learning: an incremental learning method which is able to update
the model every time a true label of a newly arrived sample is known (i.e.
it learns from one instance at time) [14];

— Real-Time Learning: an online process able to operate in real-time (i.e.
to use the last sample true label to update the predictive model before the
next sample arrives) [16];

In this paper, we propose a way to minimize the limitations previously described
as much as possible by 1) constantly updating the historical time series aggre-
gation of events and by 2) proposing an incremental framework to update the
ARIMA weights using just the most recent real event count. We tested our im-
proved model by using two distinct case studies: A) a large-sized fleet of 441
vehicles running in the city of Porto, Portugal and B) a small-sized fleet of 89
vehicles running in the cities of Odivelas and Loures, Portugal. While case study
A corresponds to a Scenario 1 city - where each vehicle waits on average 44
minutes to pick-up a passenger - case study B is a Scenario 2 one, where the
expected waiting time to pick-up a passenger is just 21 minutes.

As input, we considered the data about the services dispatched in each stand
over the time. As output, we produced predictions about the demand to arise in
the next 30 minutes (P = 30) with a periodicity 7 = 5 minutes. The test-bed ran
continuously for 9 and 6 months for case studies A and B, respectively. However,
we just produced outputs for the last four and two months of data, respectively.
The results demonstrated the usefulness of our contribution by reducing the
typical processing time to each in more than 40% (37.92 seconds) maintaining a
satisfying performance - a maximum aggregated error of 24% was accomplished
on both case studies.

The remainder of the paper is structured as follows. Section 2 revises the
predictive model, describing the extension hereby proposed. The third section
describes how we acquired and preprocessed the dataset used as well as some
statistics about it. The fourth section describes how we tested the methodology
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in two concrete scenarios: firstly, we introduce the experimental setup and met-
rics used to evaluate our model; then, the obtained results are detailed. Finally,
conclusions are drawn as well as our future work.

2 Methodology

The model previously proposed in [4)[11] is mainly an incremental one - it just
keeps sufficient statistics about the input data constantly updated using the ma-
jority of the recently arrived samples. Since the present time series of historical
data is a discrete one, it is not easy to propose a true real-time predictive model.
However, we can accomplish a good approximation by reducing the prediction
periodicity 7 from 30 to 5 minutes. The main challenge relies into doing this
without increasing the needs on computational resources. In this section, we
firstly revisit the model definition. Secondly, we detail how we can maintain an
aggregation without recalculating the entire time series in each period. Finally,
we propose an incremental ARIMA model.

2.1 A Review on the Predictive Model

The following model is deeply described in section ITin [4]. Let S = {s1, $2, ..., SN }
be the set of N taxi stands of interest and D = {d4, da, ...,d; } be a set of j possi-
ble passenger destinations. Consider Xy = {Xk,0, Xk.1, .., Xk} to be a discrete
time series (aggregation period of P-minutes) for the number of demanded ser-
vices at a taxi stand k. Our goal is to build a model which determines the set of
service counts Xy, ;41 for the instant ¢ + 1 per each taxi stand k € {1, ..., N}. To
do so, we propose three distinct short-term prediction models and a well-known
data stream ensemble framework to use them all. We formally describe those
models along this section.

Time-Varying Poisson Model. Consider the probability to emerge n taxi
assignments in a determined time period - P(n) - following a Poisson Distri-
bution. We can define it using the following equation

e~

n!

P(n;\) =

(1)

where A represents the rate (averaged number of the demand on taxi services) in
a fixed time interval. However, in this specific problem, the rate A is not constant
but time-variant. So, we adapt it as a function of time, i.e. A(¢), transforming
the Poisson distribution into a non homogeneous one. Let Ao be the average
(i.e. expected) rate of the Poisson process over a full week. Consider A(¢) to be
defined as follows

A(t) = Xobaeynd(e),n(t) (2)

where dg() is the relative change for the weekday d(t) (e.g.: Saturdays have
lower day rates than Tuesdays); 74 n(t) is the relative change for the period
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h(t) on the day d(t) (e.g. the peak hours); d(t) represents the weekday 1=Sunday,
2=Monday, ...; and h(t) the period in which time ¢ falls (e.g. the time 00:31 is
contained in the period 2 if we consider 30-minutes periods).

Weighted Time Varying Poisson Model. The model previously presented
can be faced as a time-dependent average which produces predictions based
on the long-term historical data. However, it is not guaranteed that every taxi
stand will have a highly regular passenger demand: actually, the demand at many
stands can often be seasonal. To face this specific issue, we propose a weighted
average model based on the one presented before: our goal is to increase the
relevance of the demand pattern observed in the previous week by comparing
it with the patterns observed several weeks ago (e.g. what happened on the
previous Tuesday is more relevant than what happened two or three Tuesdays
ago). The weight set w is calculated using a well-known time series approach to
these kind of problems: the Exponential Smoothing [17].

AutoRegressive Integrated Moving Average Model. The AutoRegressive
Integrated Moving Average Model (ARIMA) is a well-known methodology to
both model and forecast univariate time series data. A brief presentation of
one of the simplest ARIMA models (for non-seasonal stationary time series) is
enunciated below. For a more detailed discussion, the reader should consult a
comprehensive time series forecasting text such as Chapters 4 and 5 in [12].

In an autoregressive integrated moving average model, the future value of
a variable is assumed to be a linear function of several past observations and
random errors. We can formulate the underlying process that generates the time
series (taxi service over time for a given stand k) as

Ry = ko + P1 Xk -1+ G2 Xp 12 + .. + 0pXit—p 3)
+Ekt — K1€k,t—1 — K2E€k,t—2 — --- — Kq€k,t—q

where Ry, and {€k, k11, €k 1—2, ...} are the actual value at time period ¢ and
the Gaussian white noise’ error terms observed in the past signal, respectively;
ol = 1,2,...,p) and Ky(m = 0,1,2,...,q) are the model parameters/weights
while p and ¢ are positive integers often referred to as the order of the model.

Sliding Window Ensemble Framework. How can we combine them all to
improve our prediction? In the last decade, regression and classification tasks
on streams attracted the community attention due to its drifting characteristics.
The ensembles of such models were specifically addressed due to the challenge
related with. One of the most popular models is the weighted ensemble [I8]. The
model we propose below is based on this one.

Consider M = {M;, M, ..., M.} to be a set of z models of interest to model
a given time series and F = {Fy, Foy, ..., Fx+} to be the set of forecasted values
to the next period on the interval ¢ by those models. The ensemble forecast E;
is obtained as
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~ Fi* (1 - pinr) .
. it — PiH o _
By P ) S ) (4)
i=1 =1
where p;g is the error of the model M; in the periods contained in the time
window [t— H,t] (H is a user-defined parameter to define the window size) while
compared with the real service count time series. As the information is arriving
in a continuous manner for the next periods t,t + 1,¢ 4 2, ... the window will
also slide to determine how the models are performing in the last H periods.

2.2 How Can We Update the Time Series Aggregation without a
High Computational Effort?

In this paper, we propose to use the model previously described to build predic-
tions with a periodicity 7 for the next period of P-minutes (where P >> 7 AP
mod 7 = 0). However, it requires a newly calculated discrete time series each
7-minutes. How can we do this calculation without a high computational effort?
One of the main ways to do so is to perform an incremental discretiza-
tion [19]. An event count X; in an interval [t,t + P] will be very similar to the
count X4 in the interval [t+ 7, ¢+ P+ 7] (as much as 7 ~ 0). We can formulate
it as

X1 =X + X[/t+P,t+P+T] - X[It,t+7-] (5)

where X’ represents both the continuous event count on the first 7-minutes of
the interval [t,t + P] and on the T-minutes immediately after the same period.
By generalization, we can define two discrete time series of services demand
on a taxi stand k as X = {Xk,07Xk,17 -~-7Xk,t} and Y, = {Yk,O7Yk,17 -~-7Yk,t’}
(where ¢ > t) using granularities of P and 7 minutes, respectively. Let X} be the
discrete time series needed to predict the event count on the interval [¢/, ¢ + 7].
We can define the event count at the time period [t',¢ 4 P] as following

, X;C t/,1+Yk,t/+071 —Yk’t/,l,QZP/T ift! >t
Kot =\ Xy if b =t ©)

We take advantage of the additive characteristics of both time series to rapidly
calculate a new series of interest maintaining two aggregation levels/layers: P and
7. An illustrative example about how this series can be calculated is presented
in Fig. @

2.3 An Incremental ARIMA Model

The ARIMA model relies on calculating the present event count using a linear
combination of previous samples. In eq. [ the ¢;(I = 1,2,...,p) and Kk, (m =
0,1,2,...,q) are the model weights. Such weights usually need to be fitted using
the entire historical time series every time we build a new prediction (i.e. an
offline learning process). This operation can represent a high computational cost
if we employ it at such a large scale as we do here.
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time 09:00 09:05 09:10 09:15 09:20 09:25 09:30 09:35 09:40 09:45 09:50 09:55
index 1 2 3 4 5 6 7 8 9 10 11 12

Yy 1 2 0 1 0 1 0 1 0 2 0

0
X a a4
4

Xk 5 4 3 4 4 ..
. =4 > Xy =X
Granularities T minutes , '
L

X4 =Xz + Yo — Yz

T Xj4=4+1-2=3
P minutes

Fig. 1. An example about how can we additively calculate one term of the series X,'m

To overcome this issue, we propose to use the delta rule to update these
weights recursively instead of re-calculating them iteratively as we did so far.
The delta rule is a gradient descent learning rule commonly used for updat-
ing weights of online learning algorithms. It was firstly introduced in [1] to
update the weights of the artificial neurons in a single-layer perceptron. This
rule consists of updating the weights by increasing/decreasing them using a di-
rect proportion of the difference between the predicted and the real output.
Consider R = {Rk1,Rk2,...,Rr+} to be a time series with the number of
services predicted for a taxi stand of interest k in the period [1,¢] and X =
{Xk.1,Xk2,..., Xt} the number of services actually emerged in the same con-
ditions. Let wy ; = {wk,¢1, Wk1,2, -, Wkt,» + e & set of z weights of a predictive
model of interest (like ¢ and  in the ARIMA one) used to calculate Ry +. The
update set Awyy = {Awg 41, ..., Awg ; } can be calculated as follows

Awy ;= B(Rit — Xit)Wh t,j (7)

where § is an user-defined proportionally constant which sets how reactive the
model should be and j € {1, ..., z}. This way, the ARIMA weights can be incre-
mentally updated.

3 Data Acquisition and Preprocessing

In case study A, we focused on the event data stream of a taxi company (which
contains 441 running vehicles) operating in Porto, Portugal between Aug. 2011
and April 2012. This Scenario 1 city is the center of a medium size area (con-
sisting of 1.3 million habitants) which contains 63 taxi stands. In case study B,
we considered the data broadcasted by the 89 vehicles of a company running in
the cities of Odivelas and Loures, Portugal from June to Dec. of 2012. These
two cities are part of outer Lisbon - the urban area surrounding the capital of
Portugal which has more than 3 million inhabitants. Two maps containing the
spatial distribution of the taxi stands of each case study are presented in Fig. Bl

In this section, we describe the data acquisition process and the preprocessing
applied to it.
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.

Fig. 2. Taxi Stand spatial distribution over the case studies A and B, respectively

3.1 Data Acquisition

The data was continuously acquired using the telematics installed in the vehicles.
These two taxi centrals usually run in one out of three 8h shifts: midnight to
8am, 8am-4pm and 4pm to midnight. Each data chunk arrives with the following
six attributes: (1) TYPE — relative to the type of event reported and has four
possible values: busy - the driver picked-up a passenger; assign — the dispatch
central assigned a service previously demanded; free — the driver dropped-off a
passenger and park - the driver parked at a taxi stand. The (2) STOP attribute is
an integer with the ID of the related taxi stand. The (3) TIMESTAMP attribute
is the date/time in seconds of the event and the (4) TAXI attribute is the
driver code; attributes (5) and (6) refer to the LATITUDE and LONGITUDE
corresponding to the acquired GPS position.

Our study only uses as input/output the services obtained directly at the
stands or those automatically dispatched to the parked vehicles (more details in
the section below). We did so because the passenger demand at each taxi stand
is the main feature to aid the taxi drivers’ decision.

3.2 Preprocessing and Data Analysis

As preprocessing, two time series of taxi demand services aggregated were built:
one with a periodicity of P-minutes and other with 7 minutes. There are three
types of accounted events: (1) busy set directly at a taxi stand; (2) assign set
directly to a taxi parked at a taxi stand and (3) busy set while a vacant taxi
is cruising. We consider both a type 1 and type 2 event as service demanded.
However, for each type 2 event, the system receives a busy event a few minutes
later — as soon as the driver effectively picked-up the passenger — this is ignored
by our system.

Table [l details the number of taxi services demanded per daily shift and day
type in the two case studies. Additionally, we could state that, in both cases,
the central service assignment is 24% of the total service (versus the 76% of
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Table 1. Taxi Services Volume (Per Daytype/Shift)

Case | Daytype ||[Total Services|Averaged Service Demand per Shift
Study Group Emerged||0am to 8am‘8am to 4pm| 4pm to Oam
Workdays 957265 935 2055 1422

A Weekends 226504 947 2411 1909
All Daytypes 1380153 1029 2023 1503
Workdays 247694 267 831 531

B Weekends 57958 275 920 674
All Daytypes 354304 270 826 559

the one demanded directly in the street) while 77% of the service demanded
directly in the street is demanded in the stand (and 23% is assigned while they
are cruising). In case study A, the average waiting time (to pick-up passengers)
of a taxi parked at a taxi stand is 42 minutes while the average time for a service
is only 11 minutes and 12 seconds. Such low ratio of busy/vacant time reflects
the current economic crisis in Portugal and the inability of the regulators to
reduce the number of taxis in Porto. It also highlights the importance of our
recommendation system, where the shortness of services could be mitigated by
getting services from the competitors. Conversely, the average waiting time in
case study B is just 21 minutes.

4 Results

4.1 Experimental Setup

We used a H-sized sliding window to measure the error of our model before each
new prediction about the service count of the next period (the metrics used to
do so are defined in section 2)). Each data chunk was transmitted and received
through a socket. The model was programmed using the R language [20].

The aggregation period of 30-minutes was maintained (P = 30) and a new
time series with an aggregation period of 5-minutes (7 = 5) was created accord-
ing the definition presented in Both the ARIMA model (p,d, g values and
seasonality) and the weight set ¢ and x were firstly set (and updated each 24h)
by learning/detecting the underlying model (i.e. autocorrelation and partial au-
tocorrelation analysis) running on the historical time series curve of each stand
during the last two weeks. To do so, we used an automatic time series function
in the [forecast] R package - auto-arima — and the arima function from the
built-in R package [stats]. The weight set is then incrementally updated for
each 24h period according with the eq. [1

The time-varying Poisson averaged models (both weighted and non-weighted)
were also updated every 24 hours. A sensibility analysis carried out with data
previous to the one used on these experiments determined the optimal values for
the parameters «, 8 and H as 0.4, 0.01 and 4 (i.e. it represents a sliding window
of 20 minutes), respectively. The hardware configuration is equivalent to the one
used in [41T].
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4.2 Evaluation Metrics

We used the data obtained from the last four and two months to evaluate our
framework of case studies A and B, respectively. A well-known error measure-
ment was employed to evaluate our output: the Symmetric Mean Percentage
Error (sMAPE) [21]. However, this metric can be too intolerant with small
magnitude errors (e.g. if two services are predicted at a given period for a taxi
stand of interest but no one actually emerges, the error measured during that
period would be 1). To produce more accurate statistics about series containing
very small numbers, we can add a Laplace estimator [22] to the previous defi-
nition of (sMAPFE) in [21]. In this case, we will do it by adding a constant ¢ to
the denominator (i.e.: originally, it was added to the numerator to estimate a
success rate [22]). Therefore, we can re-define sSM APE}, as follows

|Ryi — Xkl

t
1
MAPE;, = 3 =kt _ Zhil 8
° F T Rei t Xpa e ®)

where c is a user-defined constant. To simplify the estimator application, we will
consider its most used value: ¢ =1 [22].

This metric is focused just on one time series for a given taxi stand k. However,
the results presented below use an weighted average of the error as evaluation
measure. The weight of each stand error is the number of services emerged in
the stand during the test period.

4.3 Results

The error measured for each model in the two case studies considered is presented
in Table @2 The results are firstly presented per shift and then globally. The
overall performance is good: the maximum value of the error using the ensemble
was 25.90% during the evening shift. The sliding window ensemble is always
the best model in every shift and case study considered. The models just present

Table 2. Error Measured on the Models using sM APFE

Periods
Case Study Model
00h—08h|{08h—16h|16h—00h| 24h

Poisson Mean 27.67% | 24.29% | 25.27% |25.32%
A W. Poisson Mean|| 27.27% | 24.62% | 25.66% |25.28%

ARIMA 28.47% 24.80% 25.60% |26.21%
Ensemble 24.86% | 23.14% | 24.07% [23.77%

Poisson Mean 28.66% | 21.10% | 23.34% |23.99%
B W. Poisson Mean|| 26.27% | 22.01% | 24.32% |23.83%

ARIMA 31.88% | 21.10% | 23.63% |25.53%
Ensemble 25.90% | 19.97% | 22.09% [21.80%
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slight discrepancies within the defined shifts. Our model took - in average - 37.92
seconds to build the next prediction about the spatiotemporal distribution of the
demand by all stands.

5 Final Remarks

In this paper, we proposed a method to apply a complex learning model [4TT] to
build predictions about the taxi passenger demand in a real-time environment.
We did so by extending the typical definition of an ARIMA model [12] to an
incremental one using the delta rule - a rule firstly introduced in the perceptron
algorithm [1] which is able to update its weights step by step.

We tested this approach using two case studies with distinct scenarios in Por-
tugal: A) in the city of Porto, where the number of vehicles is larger than the
demand and B) in Odivelas and Loures, which have the opposite situation. Our
model was able to produce predictions about the spatiotemporal distribution of
the demand during the next 30 minutes P = 30 with a periodicity 7 of 5 minutes.
The results demonstrated the relevance of our contribution: we maintained the
aggregated error ratio lower than 24% and 22% in the case studies A and B,
respectively. On the other hand, we were able to reduce the typical compu-
tational time used to build each prediction by 40% (from the 99.77 seconds
firstly proposed in [4] to 37.92 seconds accomplished by the present framework).
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fic Lights” and KDUS: “Knowledge Discovery from Ubiquitous Data Streams”
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