
Pharmacovigilance via Baseline Regularization
with Large-Scale Longitudinal Observational Data

Zhaobin Kuang

University of Wisconsin-Madison

zkuang@wisc.edu

Peggy Peissig

Marsh�eld Clinic

Peissig.Peggy@mcrf.m�dclin.edu

Vı́tor Santos Costa

Universidade do Porto

vsc@dcc.fc.up.pt

Richard Maclin

University of Minnesota-Duluth

rmaclin@d.umn.edu

David Page

University of Wisconsin-Madison

page@biostat.wisc.edu

ABSTRACT
Several prominent public health incidents [29] that occurred at the

beginning of this century due to adverse drug events (ADEs) have

raised international awareness of governments and industries about

pharmacovigilance (PhV) [6, 7], the science and activities to moni-

tor and prevent adverse events caused by pharmaceutical products

a�er they are introduced to the market. A major data source for PhV

is large-scale longitudinal observational databases (LODs) [6] such

as electronic health records (EHRs) and medical insurance claim

databases. Inspired by the Multiple Self-Controlled Case Series

(MSCCS) model [27], arguably the leading method for ADE discov-

ery from LODs, we propose baseline regularization, a regularized

generalized linear model that leverages the diverse health pro�les

available in LODs across di�erent individuals at di�erent times. We

apply the proposed method as well as MSCCS to the Marsh�eld

Clinic EHR. Experimental results suggest that incorporating the

heterogeneity among di�erent patients and di�erent times help to

improve the performance in identifying benchmark ADEs from the

Observational Medical Outcomes Partnership ground truth [26].
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1 INTRODUCTION
Pharmacovigilance (PhV) [6, 7] is the science and activities relating

to the surveillance and prevention of adverse events caused by

pharmaceutical products a�er they are introduced to the market.

In response to several recent prominent public health hazards [29]

due to adverse drug events (ADEs), governments, industries, and

other stakeholders across the world have been building e�ective

PhV systems to safeguard admissible pro�t-risk pro�les of drug

products on the market.

Major PhV systems [3, 8, 20] nowadays leverage a network of

large-scale longitudinal observational databases (LODs) [6] such

as electronic health records (EHRs) and medical insurance claim

databases that contain individual-level time-stamped rich medical

data collected globally from hundreds of millions of individuals. All

the databases within the network are updated periodically and are

converted to the same format; various ADE discovery algorithms

can hence be run regularly on di�erent databases without any

modi�cations to achieve proactive drug safety surveillance.

An e�cient algorithm that can deliver accurate ADE identi�ca-

tion using LODs is hence of utmost importance to the performance

of PhV systems. A leading algorithm is the Multiple Self-Controlled

Case Series (MSCCS) method [27]. Using the occurrence of a con-

dition of interest from di�erent patients at di�erent times as the

response variable, and the corresponding exposure statuses of vari-

ous drugs as the features, MSCCS is a parsimonious representation

of a �xed e�ect Poisson regression model [34]. In MSCCS, each

patient acts as his or her own control, during exposed (case) or un-

exposed (control) periods of time, thus controlling even for latent

and unconsidered factors, provided they are time-invariant.
However, due to the longitudinal nature of the data, simply ad-

justing for time-invariant confounding does not su�ce to deliver

accurate modeling. For example, the occurrence rate of adverse

events such as heart a�acks usually increases as the observed indi-

vidual ages. Moreover, patients that previously had heart a�acks

will also be prone to have another one in the future. Neither of

the aforementioned time-varying occurrence rates of heart a�ack

can be modeled by adjusting for time-invariant confounding via

MSCCS.

By assuming an individual-speci�c, time-dependent occurrence

rate of adverse events, the mission of the proposed Baseline Regular-

ization (BR) method is to provide �exibility to model the temporal

nature of LODs, in the hope of delivering more e�ective ADE dis-

covery. Our contributions are three-fold:
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• BR is the �rst general-purpose ADE discovery algorithm fol-

lowing a self-controlled design that exploits the time-varying

perspective of individual pro�les in large-scale LODs.

• BR is deeply connected to and is a generalization of some of the

existing models in the literature. BR not only directly generalizes

MSCCS, it is also a generalized linear model that extends [10],

which deals with baseline regularization in a linear model se�ing.

• Experimental results suggest that incorporating the heterogene-

ity among di�erent patients and di�erent times help to improve

the performance in identifying benchmark ADEs from the Ob-

servational Medical Outcomes Partnership ground truth [26].

2 MODEL SPECIFICATION
2.1 Background
Figure 1 visualizes the EHR from a patient that has taken two

drugs and has had four heart a�acks throughout his 400 days of

observation. �e rectangular bands in di�erent colors represent

di�erent drug eras, each representing a consecutive time period

during which the patient was exposed to a particular drug. A drug

era is recorded with its start date, end date, and the name of the

drug. �e black arrows pointing downwards annotated with MI

(Myocardial Infarction) represent the date on which the patient had

a heart a�ack. �e gray dashed lines and the indices on the top of

the �gure represent di�erent intervals, a concept that we will de�ne

later in Section 2.3. In this paper, we consider the multiple-drug,
single-ADE se�ing. As an illustrative example, our task of using

the EHR from the patient presented in Figure 1 and from many
other patients is to determine whether the exposure to certain drugs

might cause the occurrence of MI as an adverse event.

Suppose there are M drugs and N patients in the EHR database.

We use Ji to represent the total number of days of observation avail-

able in the EHR of patient i , where i ∈ {1, 2, · · · ,N }. We use χi jm
to represent a binary drug exposure status of drugm on the jth day

during the observation of the ith patient, where j ∈ {1, 2, · · · , Ji },
andm ∈ {1, 2, · · · ,M}. χi jm = 1 represents exposure and χi jm = 0

represents non-exposure. We further use yi j to represent a binary

MI occurrence variable with yi j = 1 meaning that the ith patient

has an MI on the jth day during the observation, and yi j = 0 oth-

erwise. With the notation introduced above, we can consider yi j ’s
as a response variable and χi jm ’s as features. Following the con-

vention of MSCCS, we will use a Poisson regression model (instead

of a logistic regression model even though the response is binary)

to depict the relationship between the response variable and the

features, resulting in the following log-likelihood function:

logL(τ , β) =
N∑
i=1

Ji∑
j=1

yi j
(
τi j + χ

>
i jβ

)
− exp

(
τi j + χ

>
i jβ

)
, (1)

where

χi j =
[
χi j1 χi j2 · · · χi jM

]>
, β =

[
β1 β2 · · · βM

]>
,

τ =
[
τ11 τ12 · · · τ1J1 · · · τN 1 τN 2 · · · τN JN

]>
.

�e occurrence rate of MI to the ith patient on the jth day during

observation is hence given by exp

(
τi j + χ>i jβ

)
, from which we can

infer that the rate is determined by two contributing factors. �e

�rst one depends on the joint drug exposure statuses, described by

χi j , and the e�ect of each drug on the occurrence rate of MI, given

by β . If the value of a particular component of β is especially large,

then the occurrence rate of MI will increase upon the exposure of

the corresponding drug. �erefore, such a drug might potentially

cause MI as an ADE. �e second factor is the baseline parameter
τi j , which models the inherent occurrence rate of MI for the ith

patient on day j excluding the interference of the e�ects from other

covariates modeled by β .

2.2 Baseline Regularization
Baseline Parameters
�e introduction of the baseline parameters τi j ’s in (1) is strikingly

simple, and yet it o�ers tremendous �exibility to portray the hetero-

geneity of adverse event occurrence rates among di�erent patients,

and during di�erent time periods within the same patient.

For example, a person who has High Blood Pressure (HBP) might

have an inherently higher risk for heart a�ack compared with a

healthy person. �erefore, the baseline parameters for the HBP

patients might be higher compared with those of a healthy person.

Within the same individual, commonsense-supported observations

in the EHRs o�en suggest that one should vary baseline parameters

temporally: for example, the risk for heart a�ack tends to increase

in general as a person ages; a patient who has a history of heart

a�ack might also be more likely to have another heart a�ack in the

future. In both cases, a set of baseline parameters with increasing

tendency along time within the same patient might be introduced

to model such observations.

On the other hand, MSCCS makes the following more restrictive

modeling assumptions:

τi j = αi , ∀i ∈ {1, 2, · · · ,N } , ∀j ∈ {1, 2, · · · , Ji } .
�at is, MSCCS assumes that baseline parameters can only di�er

among di�erent patients. Within the same patient, baseline param-

eters do not vary across time. While this modeling assumption

is reasonable to address for time-invariant confounding such as

gender, socioeconomic status, and genetic pro�le, it easily fails to

model the aforementioned time-varying occurrence rates.

Regularization
An observant reader might have already noticed that the model-

ing �exibility introduced by baseline parameters τi j ’s in (1) comes

with the steep cost of overparameterization: the number of baseline

parameters introduced is equal to the sample size of the data! Fur-

thermore, in a typical EHR se�ing there could be thousands of drugs

available. Modeling the e�ects of all these drugs will introduce a

β whose dimension is easily on the order of thousands. �e high

dimensionality of both τ and β motivates us to reduce the degrees

of freedom of the model via sparse regularization, which results in

the baseline regularization optimization problem as follows:

arg min

τ ,β
− logL(τ , β)+λ1 ‖β ‖1+

N∑
i=1

Ji−1∑
j=1

λ2 |τi, j+1−τi j |+λ3 ‖τ ‖22 .

(2)

Here in (2) we use a lasso penalty to regularize β because we

assume that among thousands of drugs, there can only be a few
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400

Time/Day

I-1 I-2 I-3 I-4 I-5 I-6 I-7 I-8 I-9 I-10 I-11 I-12 I-13

1 21 61 91 121 141 171 201 231 281 301 321 361

MI

Drug 1

Drug 2

MIMIMI

Figure 1: Visualization of a patient’s EHR. MI: Myocardial Infarction (heart attack).

that in�uence the occurrence rate of MI. We use a fused lasso

penalty [9, 19, 31] to regularize τ . �e intuition behind using this

penalty is that we assume the change between two adjacent baseline

parameters is steady and gradual, and hence the baseline occurrence

rate should not di�er much from one day to another between two

days that are adjacent to each other.

We also use a ridge penalty to regularize τ . �e necessity for

including this penalty can be seen from the observations between

day 201 and day 230 in Figure 1. During this time period (inter-

val I-8), yi j = 0, and χi j = 0, ∀j ∈ {201, 201, · · · , 230}, where for

convenience we assume that the patient in Figure 1 is indexed by i .
�erefore, during this time period, τi j ’s will tend to be very nega-

tive in order to drive the occurrence rate exp(τi j ) to a number that

is very close to zero for a maximum likelihood interpretation of

the data. In this scenario, a very negative τi j might over�t the data.

�erefore, a ridge penalty that encourages smaller magnitudes of

τi j ’s is desirable to avoid over��ing. Furthermore, a ridge penalty

can also encourage similarity among di�erent components of τ ,

which also helps to foster the assumption that adjacent baseline

occurrence rates should not di�er much from one another. Using

a ridge penalty is a common practice in many other densely pa-

rameterized machine learning models, with the most famous and

popular example being (deep) neural networks [5, 13].

2.3 Scaling up Baseline Regularization
Even with the regularization introduced in (2), the computational

burden of solving the BR model can still be staggeringly heavy.

�is is because a typical EHR database can easily contain billions

of days of observations from all the patients; each day will require

a separate baseline parameter to describe the baseline occurrence

rate of an adverse event.

Intervals
To achieve scalability without much loss of modeling �exibility, we

learn lessons from the idea of data squashing [11, 27] that exploits

the discreteness and the sparsity of the data under consideration.

Speci�cally, within the observational history of a particular patient,

we de�ne an interval as a consecutive time period during which

the drug exposure statuses of all drugs and the cumulative number

of adverse event occurrences remain unchanged.

Based on this de�nition, Figure 1 visualizes a patient’s EHR that

is divided into thirteen intervals. Each interval is indexed by I-k
on the top of the �gure, where k ∈ {1, 2, · · · , 13}. �e start date of

each interval is passed through by a gray dashed line. �erefore,

a previous interval ends right before a dashed line. For example,

inclusively, I-1 starts from day 1 and ends at day 20 instead of day

21. Similarly, I-2 starts from day 21 and ends at day 60 instead of

day 61. An exception for the unchanged cumulative adverse event

occurrence restriction upon an interval is allowed if an adverse

event occurs at the end of the observation. For example, in Figure 1,

we consider I-13 ranges from day 361 to the end of the observation

(day 400) even if on the last day there is a new occurrence of MI.

�e reason for allowing such an exception is to avoid a short (one

day) interval at the end of an observation.

�e concept of an interval provides convenience in describing

the data concisely, and hence achieves the goal of data squashing.

In Figure 1, instead of describing the data using information from

400 days, we can now use information from only thirteen intervals.

Parameter Tying
To reduce the number of baseline parameters used for modeling,

we tie similar parameters together to the same value. Speci�cally,

we consider two parameter tying strategies.

• Interval Tying: We can consider that the baseline parameters

within the same interval are the same. In this case, within a

patient, the number of baseline parameters used is equal to the

number of intervals instead of the number of days of observation.

In Figure 1, this parameter tying strategy reduces the number of

baseline parameters from 400 to thirteen.

• Occurrence Tying: We can even further tie baseline parameters

from similar intervals together. For example, since ADEs are

usually recurrent, and the baseline risk of ge�ing a subsequent

ADE usually changes compared with ge�ing the �rst one, we can

tie intervals that have the same cumulative number of adverse

event occurrences together. In Figure 1, this parameter tying

strategy will further reduce the number of baseline parameters

from thirteen to four, partitioned as:

{{I-1, I-2} , {I-3, · · · , I-11} , {I-12} , {I-13}} .

Reformulation
We now reformulate the BR model in (2) using intervals and pa-

rameter tying. Let Ki denote the number of intervals that the EHR

of the ith patient is partitioned into. Let κi represent the number

of baseline parameters used in BR a�er parameter tying either via

interval tying or via occurrence tying. We de�ne the vector of

baseline parameters a�er tying as:

t =
[
t11 t12 · · · t1κ1

· · · tN 1 tN 2 · · · tNκN
]>
,

�en the baseline parameter for each interval can also be repre-

sented as a vector: Zt , where Z is a

(∑N
i=1

Ki
)
×

(∑N
i=1

κi
)

binary
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design matrix that maps the tied baseline parameters to the base-

line parameters for each interval. Note that if the interval tying

strategy is adopted, then κi = Ki , and Z = I, where I represents an

identity matrix. �is is because under the interval tying strategy,

each interval will have its own baseline parameter. Furthermore,

we use lik to represent the duration (time length) of the kth interval

from the ith patient, where k ∈ {1, 2, · · · ,Ki }. And we use nik to

represent the number of adverse event occurrences during the kth

interval of the ith patient. We further use an M × 1 binary vector

xik to represent the drug exposure statuses during the kth interval

of the ith patient. �e reason why we need only one exposure

vector to represent multiple days within an interval is due to the

property of unchanged drug exposure statuses of any one interval.

Stacking up lik ’s, nik ’s, and xik ’s results in their vector and matrix

representations:

l =
[
l11 l12 · · · l1K1

· · · lN 1 lN 2 · · · lNKN

]>
,

n =
[
n11 n12 · · · n1K1

· · · nN 1 nN 2 · · · nNKN

]>
,

X =
[
x11 x12 · · · x1K1

· · · xN 1 xN 2 · · · xNKN

]>
.

Using Z, t , X, β , l , andn, we can rewrite the log-likelihood function

in (1) in a matrix and vector form as follows:

logL(t , β) = n> (Zt + Xβ) − l> exp (Zt + Xβ) , (3)

where exp(·) represents a component-wise exponentiation.

A�er parameter tying, the fused lasso penalties imposed on

τ in (2) become fused lasso penalties imposed on the adjacent

components of t that are from the same patient because under

parameter tying:

N∑
i=1

Ji−1∑
j=1

λ2 |τi, j+1 − τi j | =
N∑
i=1

κi−1∑
k=1

λ2 |ti,k+1
− tik |. (4)

We de�ne Dq and D as follows:

Dq =


−1 1

−1 1

. . .

−1 1


,

(q−1)×q

D =


Dκ1

Dκ2

. . .

DκN


,

(5)

where Dq is a (q − 1) ×q �rst di�erence matrix, and D is a blockwise
�rst di�erence matrix. Note that q ∈ N+, and we de�ne D1 = 0.

With (2), (3), (4), and (5), we can reformulate the BR problem

compactly as:

arg min

t ,β
− logL(t , β) + λ1 ‖β ‖1 + λ2 ‖Dt ‖1 + λ3 ‖t ‖22 , (6)

where we impose the same strength of ridge regularization using

λ3 on all the components of t .

3 OPTIMIZATION ALGORITHM
�is section provides an optimization algorithm for solving the com-

pact BR model in (6). Following the idea of glmnet [4], we adopt

an iteratively reweighted least squares (IRLS) approach to quadrat-

ically approximate the negative log-likelihood function. Observe

that both the negative log-likelihood function and its quadratic

approximation are convex, and β and t are separable in the regular-

ization terms; we hence can perform blockwise minimization that

alternates between β and t to achieve convergence [32].

3.1 �adratic Approximation
At iteration p, the iterates t (p) and β (p) are given. We therefore can

perform a quadratic approximation of (3) centered at the current

iterates, in order to search for the next iterates that are closest to

optimality in the vicinity of the current iterates. Optimizing the

quadratic approximation is equivalent to solving a weighted least

squares problem as follows:

arg min

t ,β

1

2




z(p) − Zt − Xβ


2

W(p)
, (7)

where the working response is:

z(p) = Zt (p) + Xβ (p) +W(p)
−1

n − 1, (8)

with W(p) = LS(p). L = diag l , and S(p) = diag s(p) are diagonal

matrices constructed by the elements of l and s(p) respectively,

with s(p) = exp

(
Zt (p) + Xβ (p)

)
; 1 is a column vector of all ones,

and ‖a‖2W = a>Wa, with a being a column vector and W being a

positive diagonal matrix.

�e derivation of the quadratic approximation for (3) basically

follows from deriving the quadratic approximation of a standard

Poisson regression model and the details are provided in the Ap-

pendix.

3.2 Blockwise Minimization
With quadratic approximation, at iteration p with the iterates t (p)

and β (p) available, the next iterates can be obtained by considering

the following optimization problem:

t (p+1), β (p+1) = arg min

t ,β

1

2




z(p) − Zt − Xβ


2

W(p)

+λ1 ‖β ‖1 + λ2 ‖Dt ‖1 + λ3 ‖t ‖22 .
(9)

We will adopt a blockwise minimization strategy that �xes t and

β alternatively and solves for the other until the iterates reach the

optimality of (9). �e optimization can hence be formulated as

iterating between two steps: a β-step and a t-step.

β-Step
We �rst initialize t̃ = t (p). For each β step, we �x t = t̃ and solve

the subproblem with respect to only β for
˜β :

˜β = arg min

β

1

2




z(p) − Zt̃ − Xβ


2

W(p)
+ λ1 ‖β ‖1 , (10)

which is an L1-regularized linear regression problem that can be

solved e�ciently by existing packages.

t-Step
For each t step, we �x β = ˜β , and solve the subproblem with respect

to only t for t̃ :

t̃ = arg min

t

1

2




z(p) − X ˜β − Zt



2

W(p)
+ λ2 ‖Dt ‖1 + λ3 ‖t ‖22 . (11)
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Algorithm 1 Baseline Regularization

Require: Z, X, D, l , n, λ1, λ2, and λ3.

Ensure: ˆβ and t̂ .

1: Randomly initialize β (0) and t (0).
2: p ← 0.

3: while true do . Outer loop: quadratic approximation

4: Compute W(p) and z(p) via (8).

5: t̃ ← t (p).
6: while true do . Inner loop: blockwise minimization

7: Solve for
˜β via (10). . β-Step

8: Solve for t̃ via (12). . t-Step

9: if Inner loop stopping criteria met then
10: p ← p + 1, β (p) ← ˜β , and t (p) ← t̃ .

11: break.

12: end if
13: end while
14: if Outer loop stopping criteria met then
15:

ˆβ ← β (p), and t̂ ← t (p).
16: return ˆβ and t̂ .

17: end if
18: end while

�e problem in (11) is equivalent to:

t̃ = arg min

t

1

2




v(p) − t


2

Ω(p)
+ λ2 ‖Dt ‖1 , (12)

with

Ω(p) = Z>W(p)Z + 2λ3I, v(p) = Ω(p)
−1

(
Z>W(p)

(
z(p) − X ˜β

))
.

�e derivation from (11) to (12) is based on algebraic manipulation.

Speci�cs are presented in the Appendix. �e problem in (12) is a

blockwise weighted fused lasso signal approximator problem. E�-

cient linear time algorithms exist for solving this type of problem

[1, 2, 9, 19]. Furthermore, from (5) we notice that D is blockwise,

so the solutions to di�erent blocks are independent of each other.

�erefore, (12) can be partitioned into various independent sub-

problems that can be solved in parallel for further speedup.

3.3 Implementation
�e optimization algorithm for the BR model is summarized in

Algorithm 1. Several important implementation details follow:

• To solve the problem in Step 7, we use the glmnet [4] package

available in R. To solve the problem in Step 8, we use the func-

tions from the C library of the glmgen [19] package in R. Both

implementations are considered to be the state-of-the-art solvers

for the respective subproblems.

• To avoid the divergence issue due to an ill-conditioned W(p),
we set all the diagonal elements of W(p) that are smaller than a

certain threshold, ϵ , to that threshold. In our experiments, we

choose ϵ = 10
−5

. Our compact BR model by design helps to

alleviate the ill-conditioned issue because a diagonal element of

W(p) represents the cumulative occurrence rate of adverse events

during an entire interval. Ridge regularization over baseline

parameters also helps to avoid small diagonal elements.

Table 1: Summary statistics of the experiment cohort

Statistics Values

# patients 216,660

# condition (adverse event) records 1,982,000

# drug prescription records 9,089,238

Average observation duration 11.3 years

• Selection of the inner loop stopping criteria in Step 9 and the

outer loop stopping criteria in Step 14 is problem-speci�c. We

describe our choice in Section 4.4.

Our algorithmic framework shares similarities with that of glmnet.

Both methods in the outer loop perform a quadratic approximation

to a generalized linear model negative log-likelihood objective with

non-smooth regularization. Both methods leverage an e�cient

inner loop blockwise minimization solver for the approximated

problem. �erefore, both can be considered being in the family of

proximal Newton methods [17, 28]. Compared with �rst order meth-

ods, it is well known that the proximal Newton method shares the

same fast convergence rate as the usual Newton method in terms of

the number of (proximal) Newton’s steps needed (i.e., the number

of outer loop iterations needed). However, proximal Newton meth-

ods su�er from ine�ciency due to the expensive evaluations of the

Hessian matrix in general. �erefore, the fact that methods under

the proximal Newton framework such as glmnet can deliver solu-

tions for even large-scale problems e�ciently is counter-intuitive

at �rst glance, and yet is actually a�ainable using an e�cient inner

solver [17]. Further illustrated by the experimental results to come,

our algorithm provides yet another example demonstrating that

the proximal Newton framework, with appropriate execution, can

have the potential to handle large-scale problems e�ectively.

4 EXPERIMENTS
4.1 �e Benchmark Task
To empirically evaluate the performance of our proposed method,

we use a ground truth set of 53 drug-condition pairs generated

by a selective combination of ten di�erent drugs and nine di�er-

ent conditions proposed by the Observational Medical Outcomes

Partnership (OMOP) [26], which was a pilot project in the U.S. aim-

ing to conduct methodological research for the identi�cation of

ADEs from LODs. Among the 53 drug-condition pairs, 9 pairs are

identi�ed as positive cases (con�rmed ADEs), and the remaining

44 are identi�ed as negative controls. Distinguishing positive cases

from the negative controls in the OMOP ground truth is widely

considered to be a benchmark task for ADE discovery from LODs.

4.2 Data Source
We use the Marsh�eld Clinic EHR database as our data source.

Being a pioneer for deploying EHR systems, Marsh�eld Clinic EHR

database is one of the richest and the most historic in the United

States, with coded diagnoses recorded as early as in 1960, and other

electronic contents dating back to the 1980s [18]. We convert the

diagnosis records and the drug prescription records in the EHRs to

a format that is compliant with the vocabularies used in the OMOP

ground truth. Following the design of MSCCS, we admit a patient
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Figure 2: Overall performance of BR and MSCCS measured
by AUC among 648 di�erent experimental con�gurations.

into the cohort if he or she has at least one condition of interest

(adverse event) occurrence throughout the entire observation. We

also further restrict our a�entions to patients with at least one

OMOP ground truth drug prescription record during the entire

observation. Table 1 provides summary statistics of the cohort used

in our experiments.

4.3 Cohort Design
We consider two important cohort design choices:

• RiskWindowDesign: a risk window is a time span that follows

right a�er the end of a drug era during which the patient is still

considered under exposure. �ree types of risk windows are

considered, none, one month, and lasting. �e names of the

risk windows are suggestive of their meanings.

• MinimumDuration Design: duration is the time length of the

observation for a patient. Other than meeting the cohort admis-

sion requirement speci�ed in Section 4.2, we admit a patient only

when his or her observation duration surpasses the minimum

duration threshold. We set three di�erent minimum duration

thresholds in our experiments, none, three months, and six
months.

4.4 BR Algorithmic Design
Stopping Criteria
We denote the Euclidean norm of the di�erence of the two parame-

ter vectors from the last two inner (outer) loop iterations as δi (δo ).

We denote the number of inner (outer) loop iterations that have

run so far as ci (co ).

�e design of the inner loop stopping criteria follow a coarse-

to-�ne strategy depending on how close the current outer loop

iterate is to optimality. Speci�cally, the inner loop stopping criteria

are met if any one of the following three conditions is true: (1)

δo > 10 and δi < 0.05δo ; (2) δo ≤ 10 and δi < max

{
10
−3δo , 10

−4
}
;

(3) ci ≥ 200. �e �rst criterion is useful when the current outer

loop iterate is far from optimality (characterized by δo > 10). In

this case, a small number of inner loop iterations can decrease the

objective e�ectively such that δi < 0.05δo , but further inner loop

iterations do not yield much more progress. �erefore, this criterion

allows the �rst several iterations that make signi�cant progress,

but truncates the rest that are not as e�ective. �e second criterion

determines when the inner loop stops when the current outer loop

iterate is close to optimality (characterized by δo ≤ 10). In this case,

the inner loop estimation needs to be more accurate to ensure that

solving subsequent quadratic approximations can further decrease

the objective. �erefore, the second criterion dictates that the inner

loop will stop only when the estimation error is reasonably small.

�e outer loop stopping criteria are met if either one of the

following two conditions is true: (i) co ≥ 60; (ii) δo < 10
−4

. Note

that a�er each outer loop iteration, ci is reset to 0.

Tuning Parameters
Since there are only ten di�erent drugs available in the OMOP

ground truth, the dimension of X is low. �erefore, we decide not to

regularize β at all by simply se�ing λ1 = 0 to decrease the complex-

ity of the design choice space. Nonetheless, we still use glmnet to

solve the resultant standard weighted least squares problem due to

its matrix-vector friendly interface and high e�ciency. We choose

λ2 ∈ {0.1, 0.5, 1, 2, 4, 8}, and λ3 ∈
{
0, 10

−3, 10
−2, 10

−1, 1, 10

}
. Note

that to avoid overparameterization λ2 cannot be too small. And �-

nally, we also vary the two parameter tying strategies in Section 2.3.

�e selection of λ2, λ3, and parameter tying strategies, along

with the nine cohort design choices in Section 4.3, result in 648

di�erent experimental con�gurations. Since there are nine di�erent

types of conditions, the number of BR models that are evaluated in

our experiments is 648 × 9 = 5832.

4.5 MSCCS Algorithmic Design
An MSCCS model is an equivalent compact representation of a

�xed e�ect Poisson regression model [34]. We therefore are able to

use glmnet as a solver for MSCCS by learning the corresponding

�xed e�ect Poisson regression model directly. MSCCS is a model

that is only related to β , upon which we impose a ridge penalty in

our experiments. Since both BR and MSCCS share the same cohort

design choices, to generate 648 experimental con�gurations for

MSCCS as well, we use a list of 72 tuning parameters for the ridge

penalty by ranging the lambda option in the glmnet function in

R from 10
−10

to 10 evenly in logarithmic scale. MSCCS without a

ridge penalty is also considered. We also apply MSCCS on each of

the nine di�erent conditions, resulting in a total of 5832 di�erent

MSCCS models.

4.6 Metrics
For each of the 5832 models from both methods (BR and MSCCS), we

rank the drugs in ascending order of the corresponding coe�cients

in the learned β . For each of the two methods, among the models

that have the same experimental con�gurations, we compute the

area under curve (AUC) of receiver operating characteristics (ROC)

using the OMOP ground truth and the rankings generated in the

previous step. In this way, for both BR and MSCCS, we have 648

AUCs, each for one of the experimental con�gurations.

4.7 Results of Overall Performance
Since the deployed methods for ADE discovery from LODs usually

reported their performances on all experimental con�gurations
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[12, 16, 21–24, 30], following this protocol, we also analyze the

performances of BR and MSCCS under all of our experimental

con�gurations.

Figure 2 visualizes the distributions of AUCs of BR and MSCCS

across all 648 experimental con�gurations. �e histogram and

the box in brown represent the AUC distribution of BR and the

cyan ones represent MSCCS. Compared with the AUC distribu-

tion of MSCCS, the AUC distribution of BR shi�s signi�cantly

towards higher AUC intervals, with most experimental con�gura-

tions achieving AUCs of more than 0.6. On the other hand, most

of the experimental con�gurations for MSCCS achieve AUCs only

between 0.5 and 0.6, which is an indication that most experimental

con�gurations of MSCCS lack the discriminative power to separate

the positive cases from the negative controls. �e comparison of

the overall performances between the two methods suggests that

exploiting the time-varying nature of EHR data can potentially help

to more accurately quantify the e�ects of drugs on the occurrence

rate of adverse events.

4.8 Results of Various Cohort Design Choices
�e high-variance AUC distributions of BR and MSCCS in Figure 2

motivate us to investigate under what circumstances a model will

have be�er performance than the other. Notice that both methods

share the same cohort design choices as described in Section 4.3;

we therefore would like to see the e�ect of various cohort design

choices on the performance of the two methods. To this end, for

each of the 648 di�erent BR models, we compute the di�erence

of AUCs between the BR model and the MSCCS model that has

the median AUC among the MSCCS models with the same cohort

design choice as the BR model under consideration. We judge that

the BR model outperforms the median MSCCS model with the same

cohort design choice if the aforementioned di�erence of AUCs is

larger than zero.

Risk Window
Figure 3 visualizes the proportion of BR models that outperform

their median MSCCS counterparts with the same cohort design

choices. �e contrast visualized as bars in di�erent colors is distinc-

tive among the proportions of be�er-performing BR models with

di�erent risk window design choices.

When using no risk window at all (none) or a one-month risk

window (one month), the majority of BR models outperform their

median MSCCS counterparts, in spite of other diversi�ed experi-

mental con�gurations that have been considered in our experiments.

�e proportion of be�er performing models under these two risk

window design choices range from over 80% to an impressive 90%.

As a comparison, for each cohort design choice, exactly half of the

MSCCS models will outperform the corresponding median MSCCS

model. Furthermore, even compared with the best performer of

MSCCS models with a risk window design of none or one month,

at least half of the BR models with the same risk window design

choices will have be�er performance.

On the other hand, when the lasting risk window design choice

(lasting) is adopted, it is more challenging for BR models to out

perform their median MSCCS counterparts. A possible explanation

for this phenomenon is that using a lasting risk window results

in fewer and less time-varying intervals within a patient. In this

se�ing, the data are inherently less time-varying and lack the time-

dependent information that can be captured and leveraged by a

BR model. �erefore, a simpler model like MSCCS might be more

favorable compared to BR which might run the risk of over��ing

the baseline if not regularized properly. Furthermore, recall that in

our experiments we also use a ridge penalty to regularize the drug

e�ects β in MSCCS models, while in BR models we do not impose

any regularization over β . �e lack of time-varying intervals and

the lack of regularization upon drug e�ects for BR models in this

scenario might lead to its suboptimal performance.

Nonetheless, when being properly regularized, BR could still

deliver performance comparable to MSCCS when the lasting risk

window design is in use. For example, the top performer of BR

with lasting risk window gives an AUC of 0.755. In this model, the

baseline is heavily regularized by λ2 = 4 to reduce perturbational

time-variability. In comparison, the best performing MSCCS model

yields an AUC of 0.763.
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Figure 6: Performance of Leave-One-Condition-Out-Cross-
validation (LOCOCV) among the nine cohort design choices.

Figure 4 further illustrates the performance distinction relating

to the use of di�erent risk window designs. MSCCS bene�ts signif-

icantly from a lasting risk window design (Figure 4a), which is con-

sistent with the top performer reported in the literature [30]. How-

ever, assuming every drug having a lasting risk window might lead

to potential model misspeci�cation because ADEs can be caused

by either long-term or short-term drug exposures [25], and many

ADEs in the OMOP ground truth set are in fact acute. On the other

hand, using a non-lasting (none or one month) risk window design

might be more appropriate for the ground truth set in question. As

shown in Figure 4b, when using BR, the ADE signals can still be

e�ectively detected under non-lasting risk window designs.

Minimum Duration
In Figure 3, the proportions of be�er-performing BR models using

various minimum duration design choices are represented in di�er-

ent groups. Given a �xed risk window, the proportions generated

by the three di�erent minimum duration thresholds do not vary as

signi�cantly as using di�erent risk window choices.

4.9 Results of Parameter Tying
Figure 5 illustrates the e�ects of the two parameter tying strategies

presented in Section 2.3 on the performance of various BR models.

�e distribution generated by occurrence tying lies in a range with

higher AUCs compared with the distribution generated by interval

tying. �is phenomenon might be related to the clinical belief that

baseline recurrence rates of adverse events tend to be di�erent from

the �rst occurrence rate. While occurrence tying o�ers a principal

way to quantify this type of prior belief, interval tying might intro-

duce redundant �exibility that focuses on perturbational baseline

di�erence between every adjacent pair of intervals, resulting in the

potential tendency to over�t the data.

4.10 Model Selection and Generalization
To demonstrate how well BR can predict unseen adverse events, for

a given cohort design choice, we perform Leave-One-Condition-

Out-Cross-validation (LOCOCV): for each of the nine conditions,

we jointly and adaptively pick λ2, λ3, and the tying strategy that

perform the best on the other eight conditions. In this way, we

are able to use the top performer on the known ground truth to

predict the unknown. We �nd LOCOCV to be a reasonable model

selection strategy because, in essence, BR transforms the unsuper-

vised learning of ADEs into a supervised learning problem. During

learning, none of the ground truth label information is used. In

this scenario, using LOCOCV helps us to maximize the number of

training instances that can be used without worrying about the

over��ing issues introduced by the ADE label information.

�e AUCs of the nine di�erent cohort design choices generated

by LOCOCV are given in Figure 6. Other than under the lasting
risk window, the AUCs of LOCOCV under other con�gurations

exceed 0.7. In comparison, the best LOCOCV AUC from MSCCS

is less than 0.7, which occurs when using a lasting risk window.

Other con�gurations of MSCCS provide AUCs of around 0.5.

�e reasons why we are commi�ed to various cohort design

choices are that both BR and MSCCS share the same set of cohort

design choices, and that given a cohort design, the data (i.e., X, l ,
and n) used by the two methods are exactly the same, and hence

a fair comparison between the two methods can be achieved. Fur-

thermore, in a practical se�ing, commi�ing to a particular design

choice can also help to facilitate the comparison of performances

among multiple data sources [27].

4.11 Best Performers
In the literature of ADE discovery from LODs, it is customary to

report the best performer of a method learned from a data source

[12, 16, 22–24, 30]. �erefore, we also report our top performers of

BR and MSCCS in our experiments: the best BR model reaches an

AUC of 0.814, with a none risk window, a six months minimum

duration threshold, using occurrence tying, λ2 = 0.5, and λ3 = 0.1.

Note that some of these con�gurations are somewhat di�erent

from the best con�gurations reported in Section 4.8, which are

determined based on how well a BR model outperforms its best

SCCS counterpart with the same cohort design choices rather than

based on the absolute AUC value. �e best performer of MSCCS

reaches an AUC of 0.763, with a lasting risk window, a three
months minimum duration threshold, and lambda≈2.5e-3.
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5 DISCUSSION
We have proposed baseline regularization for ADE discovery from

LODs. We provide an e�ective algorithm from the proximal Newton

framework for solving the BR model and compare the performance

of BR with MSCCS in a set of diverse experimental con�gurations.

Future research directions include running BR on other LODs for

reproducibility, and accelerating the algorithm by incorporating

stochasticity [15, 33, 35] and parallelism [33]. Furthermore, the

current experimental con�gurations of BR do not consider imposing

regularization upon the drug e�ects. Based on the performance

gain introduced by regularizing the drug e�ects in MSCCS models,

we speculate that introducing regularization over the drug e�ects

in BR models will further improve its performance.
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APPENDIX
�adratic Approximation of (3)
Let

f (t , β) = − logL(t , β) = −n> (Zt + Xβ) + l>s,

where s = exp (Zt + Xβ). Note that s > 0 (each component of s
is strictly larger than 0) as long as Zt + Xβ is bounded. For the

ease of derivation, we also assume that

[
Z X

]
is a column full

rank matrix. In this way, an invertible Hessian of f (t , β) can be

guaranteed. �e gradient and the Hessian of f (t , β) are:

∇f (t , β) =
[
Z>

X>

]
(Ls − n) ,∇2 f (t , β) =

[
Z>

X>

]
W

[
Z X

]
, (13)

where W = LS, and S = diag s .

At iteration p, t (p) and β (p) are given. One can show that op-

timizing the quadratic approximation of f (t , β) around t (p) and

β (p) is equivalent to computing a Newton’s update. Using (13) and

following [14], a Newton’s update for t (p+1)
and β (p+1)

is given as:[
t (p+1)

β (p+1)

]
=

( [
Z>

X>

]
W(p)

[
Z X

] )−1
[
Z>

X>

]
W(p)z(p),

which is the solution to the weighted least squares problem in (7),

with z(p) de�ned in (8).

Derivation from (11) to (12)
As a preparation, we state the following two algebraic facts as

lemmas.

Lemma 1. Let y be an n × 1 vector, let X be an n × p matrix, let

β be a p × 1 vector, and let W be a positive diagonal matrix. �en:

arg min

β

1

2

‖y − Xβ ‖2W = arg min

β

1

2

(Xβ)>W (Xβ)−
(
y>W

)
(Xβ) .

Proof. �e equation obviously holds by expanding the le� hand

side of the equation and removing the quantities that are not related

to β . �

Lemma 2. Let y1 and y2 be two n × 1 vectors, let X be an n × p
matrix, let β be a p × 1 vector, and let W1, W2 be two positive

diagonal matrices. �en:

arg min

β

1

2

‖y1 − Xβ ‖2W1

+
1

2

‖y2 − Xβ ‖2W2

= arg min

β

1

2



(W1 +W2)−1 (W1y1 +W2y2) − Xβ


2

W1+W2

.

Proof. By applying Lemma 1, the quantities on both sides of

the equality can be shown to be equal to:

arg min

β

1

2

(Xβ)> (W1 +W2) (Xβ) −
(
y>

1
W1 +y

>
2
W2

)
(Xβ) .

�

We now proceed to the derivation. For convenience, we omit all

the (p) superscripts and we use ν = z(p) − X ˜β . We �rst show that:

arg min

t

1

2

‖ν − Zt ‖2W + λ2 ‖Dt ‖1

= arg min

t

1

2




(Z>WZ
)−1 Z>Wν − t




2

Z>WZ
+ λ2 ‖Dt ‖1 .

�is is true because by applying Lemma 1, the quantities on both

sides of the equality are equal to:

arg min

t
−ν>WZt +

1

2

(Zt)>W (Zt) + λ2 ‖Dt ‖1 .

It remains to show that

arg min

t

1

2




(Z>WZ
)−1 Z>Wν − t




2

Z>WZ
+ λ3 ‖t ‖22 = arg min

t

1

2

‖v − t ‖2Ω ,

which is an immediate consequence of applying Lemma 2 with the

fact that W1 = Z>WZ and W2 = 2λ3I.
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