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Abstract. The data generated by high-maturity software development process-

es, supported by modern cloud-based application lifecycle management tools, 

can be periodically mined for benchmarking purposes, namely to: compare the 

performance of an individual developer or organization with the community of 

peers, and hence identify areas of inferior performance for improvement; de-

termine factors that influence performance in the community of peers, and use 

that information, together with the specifications of derived measures, to drill 

down the performance problems of an individual developer or organization, and 

suggest and rank root causes where improvement actions should focus on. In 

this paper we present an approach for automatically ranking potential root caus-

es of performance problems, based on a cost-benefit estimate. The approach 

presented was tuned and applied for the Personal Software Process, because of 

the availability of a homogeneous data set referring to more than 30,000 fin-

ished projects, but it can be replicated in other contexts.  

Keywords: Ranking, Root causes, Performance problems, Personal Software 

Process 

1 Introduction 

Currently, according to [‎1], the top two software engineering challenges are (1) the 

increasing emphasis on rapid development and adaptability, and (2) the increasing 

software criticality and need for assurance. High-maturity software development pro-

cesses, such as the Team Software Process (TSP) and the accompanying Personal 

Software Process (PSP), can help individuals and teams improve their performance 

and produce virtually defect free software on time and budget ‎[‎2, ‎‎3]‎, addressing cur-

rent software development challenges. One of the pillars of the TSP/PSP is its meas-

urement framework: based on four simple measures - effort, schedule, size and de-

fects - it supports several quantitative methods for project management, quality man-

agement and process improvement ‎[‎4]. 
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High-maturity software development processes, such as the TSP/PSP, supported by 

modern cloud-based application lifecycle management tools, can generate large 

amounts of data from a multitude of users that can be periodically analyzed to identify 

performance problems, determine their root causes and devise improvement actions 

[‎5]. Although several tools exist to automate data collection and produce performance 

charts, tables and reports for manual analysis of TSP/PSP data [‎6, ‎7, ‎8, ‎9], practically 

no tool support exists for automating the performance analysis. There are also some 

studies that show cause-effect relationships among performance indicators [‎10, ‎11], 

but no automated root cause analysis is proposed. The manual analysis of perfor-

mance data for determining root causes of performance problems and devising im-

provement actions is problematic because of the lack of benchmarks, the amount of 

data to analyze, and the expert knowledge required to do the analysis. 

To address those shortcomings, we have been developing models and tools to au-

tomate the analysis of performance data produced in the context of the TSP/PSP and 

other high maturity processes, namely, identify performance problems, identify and 

rank their root causes and recommend improvement actions. In previous work 

[‎13, ‎14, ‎15] we developed a prototype tool and a performance model, calibrated based 

on a large PSP data set referring to more than 30,000 finished projects, to enable the 

automated identification of performance problems and root causes of individual de-

velopers. In this paper we propose a novel approach to rank the identified root causes, 

based on a cost-effect estimate, so that subsequent improvement actions can be fo-

cused on the highest-ranked root causes. 

The rest of the paper is organized as follows. Section 2 provides background in-

formation on our overall performance analysis approach and performance model. 

Section 3 presents the ranking approach, which builds upon existing sensitivity analy-

sis methods. Section 4 presents a case study to illustrate the application of the ap-

proach. Section 5 presents the conclusions and points out future work. 

2 Background: Performance Analysis Approach and Model  

2.1 Performance Analysis Approach 

An overview of the artifacts and steps involved in our approach for automated per-

formance analysis is shown in Fig. 1.  

In order to enable the automated identification of performance problems and root 

causes for individual developers or organizations, a set of performance indicators 

(PIs), recommended performance ranges for each PI, and cause-effect relationships 

between PIs have to be defined, based on specifications of performance measures, 

literature review, and analysis of existing data sets from the community of peers. That 

was the subject of our previous work. 

When multiple potential root causes are identified for a performance problem, it is 

important to rank (prioritize) the root causes, so that subsequent improvement actions 

can focus on the highest-ranked root causes. That is the subject of this paper. The 

ranking approach (to be detailed in section 3) is based on a cost-benefit estimation 
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that requires as inputs an approximate statistical distribution of each PI and sensitivity 

data between related PIs.  

To enable the automated recommendation of improvement actions for the highest-

ranked root cases, a catalogue of possible improvement actions has to be set up for 

each possible root cause, based on expert knowledge and data from the community of 

users and experts. That will be the subject of future work. 

 

Fig. 1. UML activity diagram depicting our overall performance analysis approach. 

2.2 Performance Analysis Model  

Fig. 2 and Table 1 present the performance indicators (PIs), cause-effect relationships 

between PIs and performance ranges developed in our previous work [‎15] (with mi-

nor updates and simplifications) for analyzing the performance of individual PSP 

developers, based on PSP specifications (of base and derived measures, estimation 

methods, etc.), literature review, and the analysis of a large PSP data set from the 

Software Engineering Institute (SEI) containing 31,140 data points (project submis-

sions) from 3,114 engineers that performed 10 projects each, during 295 classes of the 

classic PSP for Engineers I/II running between 1994 and 2005.  
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Fig. 2.   Performance indicators and cause-effect relationships. 

We considered the usual three top-level performance characteristics in software 

development—predictability (estimation accuracy), quality and productivity—

measured in a way specific to the PSP context.  

In the PSP, a time (effort) estimate is obtained based on a size estimate of the de-

liverable (in lines of code, function points, etc.), and a productivity estimate (in add-

ed/modified size units per time unit). So, the accuracy of the time estimate will de-

pend on the accuracy of the size and productivity estimates as shown in Fig. 2. Since 

in the PSP productivity estimates are based on historical productivity, their accuracy 

depends on the stability of the productivity, as indicated in Fig. 2. In the PSP time is 

recorded per process phase, so the logical step to follow when an overall productivity 

stability problem is encountered is to analyze the productivity stability per phase, in 

order to determine the problematic phase(s). Hence, Fig. 2 shows a set of PIs for the 

productivity stability per phase, which together affect the overall productivity stabil-

ity. It is worth noting that the scope of the PSP is the development of small programs 

or components of larger programs, reason why Requirements, High Level Design and 

System Testing phases are not included, but can be found in the more complete TSP. 

In the case of projects developed with programming languages or environments with-

out a separate Compile phase, the Compile phase may be absent. 
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Table 1.    Performance indicators and ranges. 

Indicator  Formula  
Performance Ranges 

Green* Yellow Red 

Time Estimation  

Accuracy (TimeEA) 

           

              
 

 

[0.8, 1.2] 

1 

[0.6, 0.8[ 

]1.2, 1.4] 

[0, 0.6[ 

]1.4,[ 

Size Estimation  

Accuracy (SizeEA) 

           

              
 

[0.8, 1.2] 

1 

[0.55, 0.8[ 

]1.2, 1.45] 

[0,0.55[

]1.45,[] 

Productivity  Estima-

tion Accuracy (PEA) 

                   

                      
 

[0.8, 1.2] 

1 

[0.6, 0.8[ 

]1.2 1.4] 

[0, 0.6[ 

]1.4,[ 

Productivity Stability 

(ProdS) 

                    

                         
  (*total size/total effort)  

[0.8, 1.2] 

1 

[0.6, 0.8[ 

]1.2 1.4] 

[0, 0.6[ 

]1.4,[ 

Process Quality Index 

(PQI) 

    
   

 
         

    

   
         

    

   
    

     
  

      
         

  

      
     

[0.25, 1] [0.06, 0.25[ [0, 0.06[ 

Defect Density in Unit 

Test (DDUT) 

                                       

                  
 [0, 10] ]10, 30] ]30, [ 

Defect Density in 

Compile (DDC) 

                                     

                  
 [0, 10] ]10, 40] ]40, [ 

Defects Injected (DI) 
                            

                  
 [0, 50] ]50, 100] ]100, [ 

Process Yield (PY) 
                                      

                                       
 [70,100] [50, 70[ [0, 50[ 

Design to Code Ratio 

(D2C) 

           

         
 

[0.5, 1.5] 

1 

[0.2, 0.5[  
]1.5,2.0] 

[0,0.2[   

]2.0, [ 

Design Review to 

Design Ratio (DR2D) 

                  

           
 [0.3, 0.5] 

[0.1, 0.3[ 

]0.5, 0.8] 

[0, 0.1[ 

]0.8, [ 

Code Review to Code 

Ratio (CR2C) 

                

         
 [0.3, 0.5] 

[0.1, 0.3[  
]0.5, 0.6] 

[0, 0.1[  

]0.6, [ 

Productivity (Prod) 
                 

                   
 [35, [ [20, 35[ ]0, 20[ 

Plan Productivity 

(PProd) 

                 

                
 [400, [ [200, 400[ ]0, 200[  

Design Productivity 

(DProd) 

                 

                  
 [300, [ [120, 300[  ]0, 120[  

Design Review 

Productivity (DRProd) 

                 

                           
 

[200,400] 

300 

[115,200[ 

]400,700] 

]0, 115[ 

[700,[ 

Code Productivity 

(CProd) 

                 

                 
 [120, [ [60, 120[ ]0, 60[ 

Code Review  

Productivity (CRProd) 

                 

                         
 

[150,300] 

200 

[100,150[ 

]300,500] 

]0, 100[ 

]500,[ 

Compile Productivity 

(CompProd) 

                 

                     
 [1500, [ [500, 1500[ ]0, 500[ 

Unit Test Productivity 

(UTProd) 

                 

                       
 [300, [ [100, 300[ ]0, 100[ 

Postmortem   

Productivity (PMProd) 

                 

                        
 [400, [ [200, 400[ ]0, 200[ 

* Optimal value underlined. 
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Product quality is usually measured by post-delivery defect density [‎16]. However, 

since the scope of the PSP is the development of small programs or components of 

large programs and information about post-delivery defects is often not available, we 

use the Process Quality Index (PQI) as the top-level quality performance indicator. 

According to [‎17], it constitutes an effective predictor of post-delivery defect density. 

The PQI is computed based on five factors [‎4]: the ratio of design time to coding time 

(indicator of design quality); the ratio of design review time to design time (indicator 

of design review quality); the ratio of code review time to coding time (indicator of 

code review quality); the ratio of compile defects to a size measure (indicator of code 

quality); the ratio of unit test defects to a size measure (indicator of program quality). 

In turn, the analyzed data shows that both the Defect Density in Compile and the De-

fect Density in Unit Test are significantly affected by the total density of Defects In-

jected (and found) and the percentage of defects removed before compiling and test-

ing (called Process Yield in the PSP) [‎15]. In turn, existing data shows that the Pro-

cess Yield is significantly affected by the Design Review Productivity (Rate) and the 

Code Review Productivity, measured in size units reviewed per time unit [‎10, ‎15].  

Measuring software development productivity is controversial and all the known 

productivity measures have limitations [‎16, ‎18, ‎19, ‎20, ‎21]. In the PSP, productivity is 

measured in 'size' units per hour; any size measure can be used (such as function 

points, lines of code (LOC), etc.) as long as it correlates with effort (in order to enable 

effort estimation based on size estimation) and can be objectively measured (to auto-

mate size measurement and compare actuals and estimates). In this study, we use 

LOC/hour as the productivity measure, in spite of its limitations, because LOC is the 

size measure available in the data set. Since in the PSP time is recorded per process 

phase, the logical step to follow when an overall productivity problem is encountered 

is to analyze the productivity per phase, in order to determine the problematic 

phase(s). Hence, we indicate in Fig. 2 a set of PIs for the productivity per phase, 

which together affect the overall productivity. In turn, the analyzed data shows that 

the productivity in the Compile and Unit Test phases is significantly affected by the 

Defect Density in Compile and the Defect Density in Unit Test, respectively [‎15]. 

Table 1 shows the ranges defined for classifying values of each PI into three cate-

gories: green - no performance problem; yellow - a possible performance problem;  

red - a clear performance problem. These ranges were defined based on recommended 

values from the literature and the actual distribution of the analyzed PSP data set, so 

that there is an approximately even distribution of data points by the different colors, 

in a way similar to benchmark-based software product quality evaluation [‎25]. In 

most cases, the 'green' range is located in one of the extremes of the scale, the 'red' 

range in the other extreme, and the 'yellow' range in the middle. For example, the 

'green' range for the Process Quality Index is located in the high values of the [0, 1] 

scale, whilst for the  Defect Density in Unit Test (DDUT) it is located in the low val-

ues of the [0, [ scale. For several other PIs, the 'green' range is located somewhere in 

the middle, in order to balance conflicting aspects, such as productivity and quality, as 

is the case with the Code Review Productivity. Table 1 also shows the optimal value 

considered for each PI, for ranking purposes. 
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3 Ranking Root Causes of Performance Problems 

The presented performance model allows the automated identification of perfor-

mance problems and root causes for individual engineers. However, when multiple 

root cases are identified for a performance problem, it does not provide enough in-

formation to prioritize (or rank) those root causes. For example, Table 3 identifies 5 

causes for the poor productivity in project P7— poor productivity in Plan, Design, 

Design Review, Unit Test and Postmortem phases — but does not indicate their rela-

tive importance. 

 The main idea for ranking root causes is to use a combination of a percentile rank-

ing coefficient, indicating how far a given value is from the optimal value, and a sen-

sitivity ranking coefficient, indicating the impact of a change in the affecting PI on the 

affected PI.  

3.1 Sensitivity Coefficients Between Related Performance Indicators 

In the presented performance model, several PIs are related by algebraic equations of 

the general form Y = f(X1, ..., Xn), where Y denotes the affected PI, and the Xi denote 

the affecting PIs or factors (see formulas in Table 2). The impact of changes in the 

value of a factor Xi on the value of Y, whilst keeping all the other factors unchanged, 

can be computed by the following sensitivity coefficient [‎26]: 

  
    

 
  

   
(
  

 
) (1) 

A sensitivity ranking based on this coefficient will basically compare the relative 

variations in Y,     
  

 
 ,  for equal relative variations in each of the factors,     

 
   

  
.  In fact, the implied variation in Y for a small variation in Xi will be: 

    
  

 
 

      
  

   

 
 

  

   
(
  

 
)

    

  
  

    
    

 (2) 

For example, a value           means that a 1% change of the current value of 

Xi will produce approximately a 0.5% relative change in the value of Y. For equal 

small variations     
      

, comparing the derived    reduces to comparing 

 
    

 , ...,  
    

  The factor Xi/Y makes the coefficient independent of the scales 

used. Inherent to this coefficient are the assumptions that the higher ordered partial 

derivatives are negligible for small variations and that there is no correlation between 

the input parameters (so that one independent variable can be changed at a time) [‎26]. 

In the cases where there isn't an algebraic equation, we use linear regression [‎27]. 

Table 2 shows the formulas that relate the PIs indicated in Fig. 2, and the corre-

sponding values or formulas for the sensitivity coefficient. 

For example, the sensitivity of the overall productivity on the productivity of a 

specific phase k is given by the fraction of time in phase k, implying that productivity 

improvement efforts should be directed towards the more time consuming phases. 
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Table 2. Dependencies between performance indicators and sensitivity coefficients. 

Affected Indi-

cator (Y) 

Affecting 

Indicator (X) 

Exact Formula or Regression 

Formula Y=f(X1, ..., Xn) 

Sensitivity Coefficient  

 XY = 
  

  
(
 

 
) 

Time Estimation 

Accuracy 

(TimeEA) 

Size Estimation  

Accuracy (SizeEA)         
      

   
 

  

Productivity Estimation 

Accuracy (PEA) 
-1 

Productivity 

Estimation 

Accuracy (PEA) 

Productivity Stability 

(ProdS) 
                             

     

   
 

Productivity 

Stability 

(ProdS) 

Productivity Stability in 
Phase k (ProdSk) 

      
 

∑
      
      

 

,  where 

       = historical fraction of 
time in phase k 

Fraction of time in phase 
k (in current project) 

Process Quality 

Index (PQI) 

Defect Density in Unit 

Test (DDUT) 

        (
  

      
  )  

   (
  

      
  )  

   (
   

 
  )  

   (
    

   
  )  

   (
    

   
  )

 

 
    

      
   if DDUT > 5 

0, otherwise 

Defect Density in Com-

pile (DDC) 

 
   

      
,  if DDC > 10 

0, otherwise 

Design to Code Ratio 

(D2C) 

1, if D2C < 1 

0, otherwise 

Design Review to Design 

Ratio (DR2D) 

1, if DR2D < 0.5 

0, otherwise 

Code Review to Code 

Ratio (CR2C) 

1, if CR2C < 0.5 

0, otherwise 

Defect Density 

in Unit Test 

(DDUT) 

Process Yield (PY)                            
  

    
 

Defects Injected (DI)                           
  

    
 

Defect Density 

in Compile 
(DDC) 

Process Yield (PY)                           
  

   
 

Defects Injected (DI)                          
  

   
 

Process Yield 

(PY) 

Design Review Produc-

tivity (DRProd)                       
                        

          
      

  
 

Code Review 

Productivity (CRProd)           
      

  
 

Productivity 

(Prod) 

Productivity in Phase k  

(Prodk) 
     

 

∑
 

     
 

 Fraction of time in phase 
k 

Unit Test 

Productivity 

(UTProd) 

Defect Density in Unit 

Test (DDUT) 
                          

    

      
 

Compile 

Productivity 

(CompProd) 

Defect Density in Com-

pile (DDC) 
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3.2 Percentiles and Combined Ranking Coefficient 

The sensitivity ranking approach presented so far compares the impact on Y of rela-

tive variations of equal value in the factors X1, ..., Xn, ignoring how far the value of 

each factor is from its optimal value. Intuitively, the closest a value is to the optimal 

value, in terms of percentiles, the more difficult (or costly) it is to improve it. So, we 

propose to compare variations of equal 'cost' instead of variations of equal value.  

Let x denote an actual value of Xi,  let Fi(x) denote the approximate cumulative 

distribution function of Xi,  let       
      

  
  denote the approximate probability den-

sity function of Xi, let zi denote the optimal value of Xi (as indicated in Table 1), and 

let Gi(x)= Fi(zi)-Fi(x) denote the percentile distance of x to the optimal value. 

Our base hypothesis for deriving a combined ranking coefficient is that equal rela-

tive variations in the Gi's have equals costs. Then, the combined ranking coefficient 

becomes the product of two sensitivity coefficients:  

        
     

 
    

 (3) 

with 

  
     

 
   

   
(
  

  
)  

            

      
 (4) 

The ranking based on this coefficient will basically compare the relative variations 

in Y,     
  

 
 , for equal relative variations in the percentile distance to the optimal 

value of each factor Xi,     
 

   

  
.  In fact, the implied variation in Y for a small varia-

tion in Gi will be: 

    
  

 
 

      
  

   

 
 

     
  

   
  

   
   

 
 [

   

   
(
  

  
)] [

  

   
(
  

 
)]

   

  
         

 (5) 

For equal small variations     
      

, comparing the derived    reduces to 

comparing       , ...,          

For example, a value           means that a 1% relative change of the current 

percentile distance to the optimal value of Xi, will produce approximately a 0.5% 

relative change in the value of Y.  

In order to be able to compute  
     

 for each Xi, one needs to know the approxi-

mate cumulative distribution function of each Xi. Since some of the performance indi-

cators do not fit known theoretical distributions (e.g., the Process Yield follows a 

hybrid continuous-discrete distribution with non-zero probability at both ends of the 

scale - see Appendix), we construct an approximate distribution by linear interpola-

tion between a small number of percentile values computed from the training data set 

(see Appendix). The calculation of  
     

 is illustrated in Fig. 3. 

 



10 

 

 

Fig. 3. Computing a ranking coefficient based on percentiles extracted from the data set. 

4 Case Study 

In the end of the PSP training and at regular times afterwards, developers should 

analyze their personal performance along the series of projects developed, and docu-

ment their findings and a set of prioritized and quantified process improvement pro-

posals in a Performance Analysis Report. A goal of our research is to help partially 

automating this kind of analysis. In this section we describe how the performance of 

an individual PSP developer can be analyzed based on the proposed model and rank-

ing method. We also compare the results of the model-based analysis with the results 

of the manual analysis.  

In this case, the PSP training sequence (Fundamentals and Advanced) comprised 7 

projects. The programming language was Java, without an explicit Compile phase. 

The evaluation of the 3 top-level PIs for the 7 projects, together with all 'child' PIs 

defined in our performance model, is shown in Table 3. The main top-level perfor-

mance problems occur in time estimation (projects P1, P3 and P7) and in productivity 

(projects P6 and P7). In order to illustrate and assess the applicability of the ranking 

method proposed, we computed the ranking coefficients for all pairs of related PIs in 

project P7, obtaining the results shown in Fig. 4. The child PIs are sorted by descend-

ing values of the ranking coefficient. In general, factors with a ranking coefficient 

0
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below some threshold (e.g., 1) can be ignored and hidden from the user, leaving only 

the boxes and links with thick lines.   

Table 4 compares the results of manual and model-based analysis, showing that 

similar conclusions are drawn. 

Table 3. Evaluation of the full set of PIs in the case study. 

Indicator P1 P2 P3 P4 P5 P6 P7 

Time Estimation Accuracy (TimeEA) 1.73 1.34 1.63 1.01 1.28 1.39 1.72 

Size Estimation Accuracy (SizeEA) 
 

1.04 1.51 0.96 1.08 1.08 0.98 

Productivity  Estimation Accuracy (PEA) 
 

0.78 0.93 0.95 0.85 0.78 0.57 

Productivity Stability (ProdS) 
 

0.68 0.80 1.17 0.79 0.48 0.37 

Plan Productivity Stability (PProdS) 
 

0.20 0.66 0.99 2.13 0.67 0.66 

Design Productivity Stability (DProdS) 
 

1.16 1.45 2.00 0.28 0.35 0.15 

Design Review Prod. Stability (DRProdS) 
   

1.19 0.35 0.27 0.41 

Code Productivity Stability (CProdS) 
 

1.12 1.29 1.42 1.24 0.93 0.80 

Code Review Prod. Stability (CRProdS) 
   

2.31 1.08 0.53 0.88 

Unit Test Productivity Stability (UTProdS) 
 

0.62 1.50 1.61 0.96 0.60 0.50 

Potmortem Productivity Stability (PMProdS) 
 

0.64 0.64 0.82 1.46 0.40 0.49 

Process Quality Index (PQI) 
  

0.38 0.07 0.29 0.26 0.12 

Defect Density in Unit Test (DDUT) 26 8 0 20 15 24 17 

Defects Injected (DI) 60 16 25 47 67 122 133 

Process Yield  (PY) 
  

100% 57% 78% 80% 88% 

Design to Code Ratio (D2C) 0.52 0.51 0.46 0.35 2.07 1.96 4.54 

Code Review to Code Ratio (CR2C) 
  

0.87 0.45 0.62 0.96 0.54 

Design Review to Design Ratio (DR2D) 
  

0.57 0.74 0.37 0.64 0.19 

Productivity (Prod) 33.6 22.7 21.7 29.1 20.7 11.8 8.6 

Plan Productivity (PProd) 366 73 79 102 217 77 73 

Design Productivity (DProd) 162 188 253 389 64 52 19 

Design Review Productivity (DRProd) 
  

443 526 171 82 100 

Code Productivity (CProd) 85 95 116 138 132 103 88 

Code Review Productivity (CRProd) 
  

134 308 212 107 164 

Unit Test Productivity (UTProd) 148 92 169 203 136 84 68 

Defect Density in Unit Test (DDUT) 26 8 0 20 15 24 17 

Postmortem  Productivity (PMProd) 409 261 202 218 366 107 120 
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Fig. 4. Ranked root causes of performance problems in project P7 of the case study.  

Table 4. Comparison of problems and root causes identified in manual and model-based analy-

sis. 

Manual Analysis (PAR)  Model-Based Analysis 

Poor time estimation accuracy, with time 

underestimation in P3 caused by size 

underestimation, and time underestimation in 

P7 due mainly to an inneficient and unstable 

DLD process. 

Significant time estimation problems in 3 

projects (P1, P3, P7), caused in P3 by a 

size estimation problem, and in P7 by 

productivity instability in several phases, 

notably in DLD. 

Product quality problems, with average 

DDUT well above the recommended value of 

5, caused by a high number of defects 

injected. 

No significant process (PQI) and product 

(DDUT) quality problems, as compared to 

benchmarks. 

Productivity problems, namely at DLD phase, 

caused by an inneficient DLD process (long 

design specification documents following 

PSP templates). 

Significant productivity problems in pro-

jects P6 and P7, caused by slow perfor-

mance in several process phases, notably in 

DLD. 
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5 Conclusion and Future Work 

We proposed a benchmark-based approach for identifying and ranking the root 

causes of performance problems, and showed its application in the context of the PSP.  

The case study conducted shows that the approach is able to successfully point out the 

most important root factors. 

We are currently extending our PSP PAIR (Performance Analysis and Improve-

ment Recommendation) tool [‎13] to support the ranking method presented in this 

paper. The tool analyzes performance data produced by PSP developers in their pro-

jects, and pinpoints performance problems, possible root causes and suggestions for 

remedial actions.  

As future work, we intend to build a comprehensive catalogue of improvement ac-

tions to recommend for the highest-ranked root causes, conduct further experiments, 

and extend the approach for analyzing performance data produced in the context of 

other processes (namely TSP and Scrum with TSP combinations) and tools (namely 

cloud-based application lifecycle management tools). 

Acknowledgments. The authors would like to acknowledge the SEI, in particular W. 

Nichols and J. Over, for facilitating the access to the PSP data for performing this 

study. The work of J. Faria is partly funded by FEDER (Fundo Europeu de Desenvol-

vimento Regional) through the Portuguese ON.2 Program (Programa Operacional 

Região do Norte), under project reference SI IDT - 21562/2011. The work of M. Raza 

is partially funded by the Portuguese Foundation for Science and Technology (FCT - 

Fundação para a Ciência e a Tecnologia), under research grant 

SFRH/BD/85174/2012. 

References 

1. Bohem, B.: Some Future Software Engineering Opportunities and Challenges. In: S. Nanz 

(ed.) The Future of Software Engineering, pp. 1-32, Springer (2011) 

2. Humphrey, W.: PSPsm: A Self-Improvement Process for Software Engineers. Addison-

Wesley Professional (2015) 

3. Rombach, D., Münch, J., Ocampo, A., Humphrey, W., Burton, B.: Teaching disciplined 

software development. Journal of Systems and Software 81(5): 2008, pp. 747-763, Else-

vier (2008) 

4. Pomeroy-Huff, M., Cannon, R., Chick, T., Mullaney, J., Nichols, W.: The Personal Soft-

ware ProcessSM (PSPSM) Body of Knowledge (Version 2.0). CMU/SEI-2009-SR-018 

(2009)  

5. Burton, D., Humphrey, W.: Mining PSP Data. In: TSP Symposium 2006 Proceedings 

(2006) 

6. The Software Process Dashboard Initiative,  http://www.processdash.com/   

7. Hackystat, http://code.google.com/p/hackystat/  

8. Shin, H., Choi, H., Baik, J.: Jasmine: A PSP Supporting Tool. In: Proceedings of the Inter-

national Conference on Software Process (ICSP 2007), LNCS, vol. 4470, pp. 73-83, 

Springer (2007) 



14 

 

9. Nasir, M., Yusof, A.: Automating a Modified Personal Software Process. In: Malaysian 

Journal of Computer Science, vol. 18, pp. 11–27 (2005) 

10. Kemerer, C., Paulk, M.: The Impact of Design and Code Reviews on Software Quality: An 

Empirical Study Based on PSP Data. IEEE Transactions on Software Engineering, vol. 35, 

Issue 4, pp. 534-550 (2009) 

11. Shen, W., Hsueh, N., Lee, W.: Assessing PSP effect in training disciplined software devel-

opment: A Plan–Track–Review model. Information and Software Technology 53, pp. 137–

148 (2011) 

12. Humphrey, W.: Personal Software Process (PSP). Encyclopedia of Software Engineering. 

John Wiley & Sons (2002) 

13. Duarte, C., Faria, J.P., Raza, M.: PSP PAIR: Automated Personal Software Process Per-

formance Analysis and Improvement Recommendation. In: Proceedings of the 8th Interna-

tional Conference on the Quality of Information and Communications Technology, pp. 

131-136, IEEE (2012) 

14. Raza, M., Faria, J.P., Henriques, P., Nichols, W.: Factors Affecting Productivity Perfor-

mance in PSP Training. In: TSP Symposium 2013 Proceedings, CMU/SEI-2013-SR-022, 

pp. 35-45, Carnegie Mellon University (2013) 

15. Raza, M., Faria, J.P.: A Model for Analyzing Estimation, Productivity and Quality Per-

formance in the Personal Software Process. In: 2014 International Conference of Software 

and System Process, pp. 10-19, ACM (2014) 

16. Jones, C.: Software Assessments, Benchmarks, and Best Practices. Addison Wesley (2000)  

17. Humphrey, W.: The Software Quality Profile. SEI, 

http://www.sei.cmu.edu/library/abstracts/whitepapers/qualityprofile.cfm (2009) 

18. Wagner, S., Ruhe, M.: A Systematic Review of Productivity Factors in Software Devel-

opment. In: Proceedings of 2nd International Workshop on Software Productivity Analysis 

and Cost Estimation (SPACE 2008), State Key Laboratory of Computer Science, Institute 

of Software (2008) 

19. Maxwell, K., Forselius, P.: Benchmarking Software Development Productivity. IEEE 

Software, 17(2), pp. 80-88 (2000) 

20. Goparaju, P., Farooq, A., Patnaikc, S.: Measuring Productivity of Software Development 

Teams. Serbian Journal of Management 7 (1), pp. 65-75  (2012) 

21. Card, D.: The Challenge of Productivity Measurement. In: Proceedings of the Pacific 

Northwest Software Quality Conference, Portland, OR. (2006) 

22. Scacchi, W.: Understanding Software Productivity. Software Engineering and Knowledge 

Engineering: Trends for the Next Decade. World Scientific Press (1995) 

23. Comstock, C., Jiang, Z., Naudé, P.: Strategic Software Development: Productivity Com-

parisons of General Development Programs. International Journal of Computer and Infor-

mation Engineering 1:8, pp. 486-491 (2007) 

24. Banker, R., Kauffman, R.: Reuse and Productivity in Integrated Computer-Aided Software 

Engineering: An Empirical Study. MIS Quarterly, Sept 1991, 14(3):374-401 (1991) 

25. Alves, T.: Benchmark-based Software Product Quality Evaluation. Doctoral Thesis, Uni-

versity of Minho (2012) 

26. Hamby, D.M.: A Review of Techniques for Parameter Sensitivity Analysis of Environ-

mental Models. Environmental Monitoring and Assessment, Springer, September 1994, 

Volume 32, Issue 2, pp. 135-154 (1994) 

27. Navidi, W.: Statistics for Engineers and Scientists, Third Edition. McGraw-Hill (2011) 

 



15 

 

Appendix: Cumulative Distribution Functions 
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