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Abstract—This paper proposes the use of a Gaussian window
on the array factor as an interference mitigation method, aiming
to avoid the computational complexity of the MVDR algorithm
at the cost of a slight performance reduction. We show that by
optimizing the parameters of the Gaussian window, it is possible
to effectively mitigate the interfering signal if it is received within
a certain angular range from the desired signal, while being still
effective beyond that range. Finally, we show that the effectiveness
of this approach is maintained across the full frequency reception
range of the Ka-band, and confirm its validity using 8 × 8 and
16 × 16 array sizes.

Index Terms—Antenna arrays, array pattern, digital beamform-
ing, phased arrays, uniform rectangular arrays, windowing

I. Introduction
The past few decades have been marked by a continuous

development of wireless communications, offering tremendous
possibilities for integrating technologies that were once offline.
Moreover, the economic, social, and political impact of human
connectivity technologies worldwide is undeniable today.

Therefore, global broadband coverage using satellite constel-
lations has seen several initiatives and investments, many of
them working at the Ka-band, which have a frequency range
in the downlink of 17.7 GHz to 21.2 GHz and in the uplink
of 27.5 GHz to 31.0 GHz [1]. However, due to the directive
nature of antennas, solutions are needed to allow for efficient
communications with moving satellites. Besides, the use of
millimeter-wave Ka-band for these applications makes it very
susceptible to interference and channel-fading.

In this context, electronic beam scanning using phased array
antennas has been pointed as a good solution for wireless
communications [2]. Phased array antennas consist of multiple
radiating elements that collectively form a beam in the far field
of the antenna, hence, the designation of beamforming. The
use of several elements allows the beam to be steered or shaped
electronically by providing the appropriate amplitude and phase
excitation at each of the radiating elements [3]. Digital beam
forming (DBF) consists in performing digital amplitude and
phase control directly at baseband, which requires an RF front-
end and data converter per antenna element [4]. Despite this
apparent complexity, which is overcome by the recent advances
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in silicon processes, DBF can be used to generate or receive
multiple beams at the same time, to handle wideband signals
without beam squint effects as well as to rapidly reconfigure
beam shapes and pointing directions, possibly in real time [4].

Several tasks are involved in the beamforming process. In the
receiver side, the main ones are: (i) the angle-of-arrival (AOA)
estimation, that filters the power spectrum to identify the angles
where the received signals better correlate with the expected
ones; and, after knowing the AOA, (ii) the computation of
weights for each antenna array element, which defines the
steering angle of the array and also sets minima on the direction
of interferers to mitigate their effects.

Considering the previous knowledge of the AOA, there are
several potential solutions to calculate the weights of the
array in the beamforming process. The most basic way is
to use the array factor to define the direction of the beam
to be generated or received by the antenna array [3]. The
array factor is a function of the geometry of the array, the
position of the elements and the phase of each element. While
this creates relevant sidelobes on the array radiation pattern,
windowing methods can be used to mitigate their effect by
applying different amplitudes to the elements of the array [3].
By reducing the sidelobe level of the radiation pattern, the
window also facilitates the spatial filtering of the interferers,
a feature which will be further explored in this paper.

The Capon method, commonly called Minimum Variance
Distortionless Response (MVDR), is a correlation based beam-
forming process. It takes in consideration information about
the incoming signal and interferers to generate a correlation
matrix, which can be used to maximize the signal at the desired
direction, while placing nulls in the direction of known inter-
ferers. This allows for a higher resolution but also comes with
a much higher computational cost [5]. The MVDR algorithm
depends on the inverse of the correlation matrix, which takes
much longer to be processed, both in software and hardware
implementations.

Several solutions have been proposed in the literature to
reduce the computational burden of the beamforming process
while preserving the achieved resolution and minimizing the
interferers. Some of them use hardware optimizations to accel-
erate the MVDR processing efficiency through pipelining and
mathematical strategies to avoid the matrix inversion [6], [7],
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while others propose the use of simpler methods considering
the trade-off between the quality of results and computational
cost [8].

This paper proposes the use of a Gaussian window on the
array factor as an interference mitigation method, that avoids
the computational complexity of the MVDR method at the
cost of a slight performance reduction. In particular, we study
the reception of two signals in the Ka-band, a desired signal
at boresight and an interferer at an arbitrary direction (from
boresight up to 90º). We show that by optimizing the parameters
of the gaussian window, it is possible to effectively mitigate the
interfering signal if it is received within a certain angular range.
We analyze the Q2-factor performance metric as a function of
the angle between the signal and the interferer, and confirm the
validity of this approach using 8 × 8 and 16 × 16 array sizes.
Furthermore, we show that the effectiveness of this approach
is maintained across the full frequency reception range of the
Ka-band.

The rest of this paper is organized as follows. Section II
presents some background information about the beamforming
theory and Section III presents the proposed approach. In
Section IV we discuss the obtained results, and finally, Section
V presents our conclusions about the work.

II. Beamforming array theory

Consider that two signals are arriving from two directions
(𝜃0, 𝜙0) and are received by a uniform rectangular array (URA)
composed of 𝑀×𝑁 antenna elements. The geometry of an URA
is depicted in Fig. 1. The URA is in the 𝑥𝑦-plane such that the
boresight direction is the positive 𝑧-axis. The array elements
are equally spaced and have equal amplitudes. The directions
are composed of azimuth angle 𝜙 ∈ [0, 2𝜋] and elevation angle
𝜃 ∈ [0, 𝜋/2].

Fig. 1. Geometry of an 𝑀 × 𝑁 rectangular planar array, where 𝑥1 and 𝑥2
represent the received signals, 𝜙 and 𝜃 are the azimuth and elevation angles,
respectively, and Δ𝜃 is the elevation angle between two received signals.

The received signals are given by

𝒙(𝑘) = 𝑨𝒔(𝑘) + 𝒏(𝑘), (1)

where 𝑨 is the matrix of steering vectors, 𝒔(𝑘) is the vector of
incident signals, 𝒏(𝑘) is the noise vector at each element with
zero mean and variance 𝜎2

𝑛 , and 𝑘 represents the time sample.
The steering vectors containing the response of the array

elements are calculated as follows

𝒂(𝜃0, 𝜙0) = 𝑒 𝑗 (𝑘𝑑𝑥𝑚 sin(𝜃0 ) cos(𝜙0 )+𝑘𝑑𝑦𝑛 sin(𝜃0 ) sin(𝜙0 ) ) , (2)

where 𝑘 = 2𝜋/𝜆 is the wavenumber; 𝑑𝑥 and 𝑑𝑦 represent the
element spacing in the 𝑥- and 𝑦-directions, respectively, given
in multiples of the center wavelength 𝜆𝑐; 𝑚 = [0, ..., 𝑀 − 1]
and 𝑛 = [0, ..., 𝑁 − 1] represent the elements in the 𝑥- and
𝑦-directions, respectively [3].

Thus, the matrix of steering vectors is obtained as

𝑨 = [𝒂(𝜃1, 𝜙1) 𝒂(𝜃2, 𝜙2)] . (3)

The array correlation matrix [3] is given by the approximate
time-averaged correlation

𝑹̂ ≈ 1
𝐾

𝐾∑︁
𝑘=1

𝒙(𝑘)𝒙𝐻 (𝑘). (4)

The minimum variance optimum weights [3] can be calcu-
lated as follows

𝑤 =
𝑹−1
𝑢 𝒂(𝜃0, 𝜙0)

𝒂(𝜃0, 𝜙0)𝑹−1
𝑢 𝒂(𝜃0, 𝜙0)

(5)

where 𝑹𝑢 is the undesired correlation matrix accounting for the
correlation matrices for interferers and noise and 𝒂0 is the array
steering vector containing the directions of the received signals.
For simplification purposes, it is assumed that the angles of
arrival of the two signals are known.

Then, the weighted array output is given by

𝑦(𝑘) = 𝑤𝐻𝑥(𝑘) (6)

where (.)𝐻 denotes the Hermitian transpose.
For the sake of simplicity, throughout this work, the element

spacing is 𝑑𝑥 = 𝑑𝑦 = 𝜆𝑐/2 and the antenna arrays consist of
isotropic antenna elements, which allowed us to focus on the
proposed solution.

Fig. 2 shows the performance when no MVDR beamforming
algorithm is employed, i.e., when the algorithm is not trying to
cancel the interferer, for the two different array sizes.

Also, the performance was obtained at the center frequency
𝑓𝑐 = 18.9 GHz, as well as two other frequencies corresponding
to the limits of the downlink Ka-band, 𝑓 = 17.7 GHz and
𝑓 = 20.2 GHz. The performance oscillation is due to the
maxima and minima of the sidelobes of the array factor, which
also depends on the frequency of the signal. The performance
difference at the limits of the band is due a small change in the
wavelength in the wavenumber 𝑘 , since 𝜆 ≠ 𝜆𝑐.
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Fig. 2. Performance of the 8 × 8 and 16 × 16 arrays when no MVDR is
employed, at different frequencies.

Moreover, the impact of noise was also assessed. Fig. 3 shows
the performance obtained at 𝑓𝑐 = 18.9 GHz for the 8× 8 URA,
showing the effect of different noise levels, when MVDR is
employed and when no MVDR is employed. This result shows
that when no MVDR is employed the performance varies with
Δ𝜃. Besides, it can be observed that the maxima are limited by
the same performance obtained using the MVDR algorithm.
This occurs at specific angles that cannot be controlled and
depend on the signal frequency as seen above. It is clear
that increasing the noise level leads to a reduction of the
performance oscillation when no MVDR is employed, but at
the cost of a performance decrease, since the performance is
limited by the noise. In the analysis carried out in this work, it
was assumed a noise variance 𝜎2

𝑛 = 1.
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Fig. 3. Performance for different noise levels (𝜎2
𝑛 = 0.5, 1, 2, 4), with and

without MVDR, at 𝑓𝑐 = 18.9 GHz, for the 8 × 8 URA.

III. Proposed approach
To avoid the computational complexity imposed by the

calculation of the inverse of the correlation matrix, we propose
and evaluate an alternative method to the MVDR beamform-
ing algorithm. In this method, the beamforming weights are
calculated simply resorting to the steering vectors of 𝑥1, i.e.,
𝑤 = 𝒂(𝜃𝑠 , 𝜙𝑠), and then use a Gaussian window to mitigate the
effect of the interferer.

The main advantage of using a window is that the weights
can be pre-calculated and used directly on the signal, depending
only on the window configuration. The implementation of the
window would mean one multiplication per antenna element.
Considering that each multiplication has 𝑂 (1) computational
complexity, for all elements it would have complexity 𝑂 (𝑛). On
the other hand, the MVDR method is data-dependent, therefore,
it needs techniques to calculate and invert the correlation
matrix, as seen in eq. (5). Using the same metric, the inversion
of the matrix would have complexity 𝑂 (𝑛3), considering the
Gauss–Jordan elimination method.

The coefficients of a Gaussian window are calculated as
follows

𝑤(𝑛) = 𝑒−𝑛2/2𝜎2
(7)

where 𝜎 = (𝐿−1)/(2𝛼) is the standard deviation of a Gaussian
random variable, 𝐿 is the window length, and 𝛼 is the width
factor, which is inversely proportional to the width of the
window [9].

Thus, the window width can be varied according to 𝛼, which
in turn can be used to control the angle of the first null. The
first null as a function of 𝛼 is shown in Fig. 4 and can be
approximated by the polynomial fittings shown in the same
figure, for the two array sizes.
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Fig. 4. First null in degrees versus 𝛼, for the 8 × 8 and 16 × 16 URA, and
respective polynomial approximations.

If the direction of the interferer is known and lies in the
range of 𝜃null = [14 − 25]◦ and 𝜃null = [7 − 13]◦, regarding the
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8 × 8 and 16 × 16 URAs, respectively, it can be mitigated by
obtaining the weights of a Gaussian window calculated for the
optimal 𝛼 that provides a null in the direction of the interferer.
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Fig. 5. Directivity (elevation cut, azimuth angle = 0.0◦) for the 8 × 8 URA.

Fig. 5 shows the directivity of the 8×8 URA when applying
a Gaussian window, for different values of 𝛼. It can be seen
that applying a Gaussian window greatly reduces the sidelobes,
but at the cost of a larger beamwidth and a gain reduction, in
particular for 𝛼 = 1.8. In this work, we assume a scenario where
two signals, 𝑥1 and 𝑥2, are being received by an URA, where
𝑥1 is the desired signal and 𝑥2 is an interferer, i.e., undesired
signal. In this scenario, the direction of 𝑥1 is fixed at (𝜃1, 𝜙1) =
(0◦, 90◦), while the interferer is at (𝜃2, 𝜙2) = (Δ𝜃, 90◦). This
allowed to evaluate the impact of the proximity of the two
signals by varying the direction of the interferer from Δ𝜃 = 0◦
up to Δ𝜃 = 90◦.

In these assessments, 4-QAM signals were transmitted, and
the quality of the received signals was evaluated for two
different array sizes: 8×8 and 16×16. The performance metric
used was the Q2-factor following a definition for quadrature
amplitude modulation (QAM) signals [10].

IV. Results
To assess the proposed method, we analyzed the performance

of the optimal 𝛼 calculated as described in Section III, as well
as the effect of the Gaussian window for different values of
the 𝛼 factor. For comparison, the performance of the MVDR
algorithm is also provided.

Fig. 6 shows the performance of the Gaussian window for
𝛼 = 0.6, 1.2 and 1.8, as well as 𝛼 = 0 (no window) for the 8×8
URA, at 𝑓𝑐 = 18.9 GHz. The results show that, if the interferer
is within the Δ𝜃 range discussed in the previous section, the
optimal 𝛼 can null the interferer, providing a performance close
to that of the MVDR algorithm.

Besides, the performance provided by the optimal 𝛼 is above
or the same of the performance provided for the other 𝛼 values.
For Δ𝜃 values above that range, the optimal 𝛼 is the maximum
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Fig. 6. Performance of the Gaussian window for 𝛼 = 0, 0.6, 1.2 and 1.8,
optimal 𝛼, and MVDR, at 𝑓𝑐 = 18.9 GHz, for the 8 × 8 URA. The inset
highlights the performance of using the optimal 𝛼, which lies between the
MVDR and the other 𝛼 values.

considered 𝛼 in Fig. 4 (𝛼 = 1.8 and 𝛼 = 2.0 for the 8 × 8 and
16×16 arrays, respectively), since it provides an approximately
constant performance for higher Δ𝜃 angles, with a penalty of
∼2 dB compared to that of the MVDR. This results from the
previously observed reduction of the directivity of the main
beam with the increase of 𝛼 and the system becoming noise
limited rather than interference limited. We also observe a
small increase on lowest acceptable Δ𝜃 of the interferer which
is a fundamental limitation of the pattern resulting from the
array factor (without windowing). In fact, the MVDR algorithm
can null the interferer for smaller Δ𝜃, however at the cost of
increased computational complexity. Fig. 7 shows a similar
outcome for the 16 × 16 URA.

Fig. 8 and Fig. 9 show the performance obtained for the
frequencies at the limits of the Ka-band, for the 8×8 and 16×16
URAs, respectively. These results show that the proposed
approach is effective within the operating frequency range since
it mitigates the variability and degradation of performance
resulting from the different frequencies of the signal.

V. Conclusions
We have proposed and evaluated a Gaussian window as

an alternative to the MVDR method for the mitigation of
interfering signals in Ka-band digital beamforming systems.
We have concluded that an optimal value of 𝛼 can be chosen
to cancel the interfering signal when it exists in the range
𝜃null = [14 − 25]◦ and 𝜃null = [7 − 13]◦ for the 8 × 8 and
16×16 URAs, respectively, so that the performance practically
matches that of the MVDR. However, there is an inevitable
small increase on lowest acceptable Δ𝜃 of the interferer which
is a fundamental limitation of the pattern resulting from the
array factor (without windowing). Additionally, we concluded
that for an interferer at a Δ𝜃 above that, the proposed method
is still effective in mitigating this signal at the cost of slight
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Fig. 7. Performance of the Gaussian window for 𝛼 = 0, 1.0, 1.5 and 2.0,
optimal 𝛼, and MVDR, at 𝑓𝑐 = 18.9 GHz, for the 16 × 16 URA. The inset
highlights the performance of using the optimal 𝛼, which lies between the
MVDR and the other 𝛼 values.
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Fig. 8. Performance of MVDR and Gaussian window at the limits of the band,
for the 8 × 8 URA.

reduction in the Q2-factor performance of approximately 2 dB
which results from the reduction of the directivity of the main
beam and system becoming noise limited. We have further
concluded that this approach can also mitigate the variability
and degradation of performance resulting from the different
frequencies of the signal. Future work includes evaluating this
approach under arbitrary reception angles for the desired signal,
as well as the integration of angle-of-arrival algorithms in the
analysis.
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