
R

Radial Basis Function Approximation

�Radial Basis Function Networks

Radial Basis Function Networks

Martin D. Buhmann
Justus-Liebig University, Gießen, Germany

Synonyms

Kernel methods; Networks with kernel functions;
Neural networks; Quasi-interpolation; Radial ba-
sis function approximation; Radial basis function
neural networks; Regularization networks; Sup-
port vector machines

Definition

Radial basis function networks are a means of
approximation by algorithms using linear com-
binations of translates of a rotationally invariant
function, called the radial basis function. The
coefficients of these approximations usually solve
a minimization problem and can also be com-
puted by interpolation processes. Sometimes the
very useful approach of quasi-interpolation is
also applied where approximations are computed
that do not necessarily match the target functions

pointwise but satisfy certain smoothness and de-
cay conditions. The radial basis functions con-
stitute so-called reproducing kernels on certain
Hilbert spaces or – in a slightly more general
setting – semi-Hilbert spaces. In the latter case,
the aforementioned approximation also contains
an element from the null-space of the semi-
norm of the semi-Hilbert space. That is usually
a polynomial space.

Motivation and Background

Radial basis function networks are a method to
approximate functions and data in a way which is
related to the idea of neural networks and learning
with kernels. More specifically, approximations
of functions or data via algorithms that make
use of networks (or neural networks) can be in-
terpreted as either interpolation or minimization
problems using kernels of certain shapes, called
radial basis functions in the form in which we
wish to consider them in this entry. In all cases,
they are usually high-dimensional approxima-
tions, that is, the number of unknowns n in the
argument of the kernel may be very large. On
the other hand, the number of learning examples
(“data”) may be quite small. The name neural net-
works comes from the idea that this learning pro-
cess simulates the natural functioning of neurons.

At any rate, the purpose of this approach will
be the modelization of the learning process by
mathematical methods. In most practical cases of

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_100329
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_100388
http://dx.doi.org/10.1007/978-1-4899-7687-1_100389
http://dx.doi.org/10.1007/978-1-4899-7687-1_100390
http://dx.doi.org/10.1007/978-1-4899-7687-1_100403
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

1050 Radial Basis Function Networks

networks, the data from which we will learn in the
method are rare, i.e., we have few data “points.”
We will consider this learning approach as an
approximation problem in this description; essen-
tially it is a minimizing (regression) problem.

Structure of the Network/Learning
System

To begin with, let ' W RC ! R be a univariate
continuous function and k � k be the Euclidean
norm on R

n for some n 2 N, as used for ap-
proximation in the seminal paper by Schoenberg
(1938). Here, RC denotes the set of nonnegative
reals. Therefore

'.k � k/ W Rn ! R;

.x1; x2; : : : ; xn/T 7! '

�q
x2

1 C x2
2 C � � � C x2

n

�
;

is a multivariate function and here the number
n of unknowns may be very large in practice.
This function is rotationally invariant. Inciden-
tally, much of what is going to be said here will
work if we replace this function by a general, n-
variate function which needs no longer be rota-
tionally invariant, but then, strictly speaking, we
are no longer talking about radial basis functions.
Then other conditions may replace the restriction
to radiality. Nonetheless we stick to the simple
case (which is entirely sufficient for many prac-
tical applications) when the function really is
radially symmetric.

We also require for the time being that this n-
variate function be positive definite, that is, for all
finite sets Ξ of pairwise different so-called centers
or data sites � 2 Ξ � R

n, the symmetric matrix

A D f'.k� � �k/g�;�2Ξ

is a positive definite matrix. The condition of
pairwise different data in Ξ may of course
in practice not be necessarily met. For quasi-
interpolation, no linear systems need to be
solved that depend on the target data, but
other conditions that guarantee localness and

polynomial accuracy of the approximants are
required.

This property is usually obtained by requir-
ing that '.k � k/ be absolutely integrable, and its
Fourier transform – which thereby exists and is
continuous – is positive everywhere (“Bochner’s
theorem”). An example for such a useful function
is the exponential (the “Gauß-kernel”) '.r/ D

exp.�c2r2/, r � 0, where c is a positive pa-
rameter. For this the above positive definiteness
is guaranteed for all positive c and all n. Another
example is the Poisson-kernel '.r/ D exp.�cr/.
However, we may also take the non-integrable
“inverse multiquadrics” '.r/ D 1=

p
r2 C c2

which has a Fourier transform in the generalized
or distributional sense that is also positive every-
where except at zero. There it has a singularity.
Nonetheless, the aforementioned matrices of the
form A are still always positive definite for these
exponentials and the inverse multiquadrics so
long as c > 0 and n D 1; 2; : : :. Still further ex-
amples come from the so-called Dagum class of
radial basis functions '.r/ D 1� .rˇ =.1C rˇ //�

which give positive definiteness for a variety of
choices of parameters ˇ and � .

This requirement of positive definiteness guar-
antees that for all given finite sets Ξ and “data”
f� 2 R, � 2 Ξ, there is a unique linear combina-
tion:

s.x/ D
X
�2Ξ

��'.kx � �k/; x 2 R
n;

which satisfies the linear interpolation conditions:

s.�/ D f� ; 8 � 2 Ξ:

This is because the interpolation matrix which is
used to compute the coefficients �� is just the
matrix A above which is positive definite, thus
regular. The expression in the penultimate display
is the network that approximates the data given
by the user. Of course the interpolation conditions
are just what is meant by learning from examples,
the data being the jΞj examples. Here as always,
jΞj denotes the cardinality of the set Ξ. In the
learning theory, the linear space spanned by the

Radial Basis Function Networks 1051

R

above translates of '.k � k/ by � 2 Ξ is called the
feature space with ' as activation function.

Incidentally, it is straightforward to generalize
the approximation method to an approximation to
data in R

m, m 2 N, by approximating the data
f� 2 R

m componentwise by m such expressions
as the above, call them s1; s2; : : : ; sm.

Applications

Applications include classification of data,
pattern recognition, time series analysis, picture
smoothing similar to diffusion methods, and
optimization.

Theory/Solution

Returning to interpolation, the problem may also
be reinterpreted as a minimization problem. If we
define the weighted L2-integral

kgk' WD
1

.2�/n=2

sZ
Rn

1

O'.kxk/
j Og.x/j2 dx

with O' still being the above positive Fourier trans-
form, for all g W Rn ! R for which the Fourier
transform in the sense of L2.Rn/ is well defined
and for which the above integral is finite, we may
ask for the approximant to the above data – which
still must satisfy the aforementioned interpolation
conditions – that minimizes k � k' . As Duchon
noted, for example, for the thin-plate spline case
'.r/ D r2 log r in this seminal paper, this is just
the above interpolant, i.e., that linear combination
s of translates of radial basis functions, albeit in
the thin-plate spline case with a linear polynomial
added as we shall see below.

This works immediately both for the two ex-
amples of exponential functions and the inverse
multiquadrics. Note that the fact that the latter
has a Fourier transform with a singularity at the
origin does not matter since its reciprocal appears
as a weight function in the integral above. The
important requirement is that the Fourier trans-
form has no zero. It also works for the positive

definite radial basis functions of compact support,
for instance, in Buhmann (1998).

Regularization and Generalizations

Since, generally, the interpolation problem to data
may be ill conditioned or unsuitable in the face
of data errors, smoothing or regularization is
appropriate as an alternative. Indeed, the interpo-
lation problem may be replaced by a smoothing
problem which is of the form

1

jΞj

X
�2Ξ

�
s.�/ � f�

�2
C �ksk2

' D min
s

Š:

Here the L2-integral is still the one used in the
description above and � is a positive smoothing
parameter.

However, when there is only a trivial null-
space of the k � k' , i.e., g D 0 is the only g with
kgk' D 0, then it is a norm, and the solution of
this problem will have the form

s.x/ D
X
�2Ξ

��'.kx � �k/; x 2 R
n:

This is where the name regularization network
comes from, regularization and smoothing being
used synonymously. The form used in the penul-
timate display is a classical regularizing network
problem or in the spline terminology a smoothing
spline problem. For so-called support vector ma-
chines, the square of the residual term s.�/ � f�

should be replaced by another expression, for
example, the one by Vapnik (1996):

js.�/�f� j"WD

(
f� � s.�/� " if jf� � s.�/j� ";

0 otherwise;

and for the support vector machines classification
by the truncated power function . � /�

C which is a
positive power for positive argument and other-
wise zero.

In the case of a classical regularizing net-
work, the coefficients of the solution may be
found by solving a similar linear system to the

1052 Radial Basis Function Networks

standard interpolation linear system mentioned
above, namely,

.AC �I/� D f;

where f is the vector .f�/�2Ξ in R
Ξ of the data

given and � D .��/�2Ξ. The I denotes the jΞj �
jΞj identity matrix and A is still the same matrix
as above. Incidentally, also scaling mechanisms
may be introduced into the radial basis function
by replacing the simple translate '.kx � �k/ by
'.kx � �k=ı/ for a positive ı which may even
depend on � .

The ideas of regularization and smoothing are
of course not new; for instance, regularization
goes back to Tichonov and Arsenin (1977) (“Ti-
chonov regularization”) and spline smoothing to
Wahba (1985), especially when the smoothing
parameter is adjusted via cross-validation or
GCV (generalized cross-validation).

Now to the case of semi-norms k � k' with
nontrivial null-spaces: indeed, the same idea can
be carried through for other radial basis functions
as well. In particular we are thinking here of those
ones that do not provide positive definite radial
basis interpolation matrices but strictly condi-
tionally positive definite ones. We have strictly
positive definite radial basis functions of order
k C 1, k � �1, if the above interpolation
matrices A are still positive definite but only on
the subspace of those nonzero vectors � D .��/

in R
Ξ which satisfy

X
�2Ξ

��p.�/ D 0 8 p 2 P
k
n;

where Pk
n denotes the linear space of polynomials

in n variables with total degree at most k. In
other words, the quadratic form �T A� need only
be positive for such � ¤ 0. For simplicity of
the presentation, we shall let P�1

n denote f0g. In
particular, if the radial basis function is condition-
ally positive definite of order 0, its interpolation
matrices A are always positive definite, that is,
without condition. Also, we have the minimal
requirement that the sets of centers Ξ are uni-
solvent for this polynomial space, i.e., the only

polynomial p 2 P
k
n that vanishes identically on Ξ

is the zero polynomial.
The connection of this with a layered neural

network is that the approximation above is a
weighted sum (weighted by the coefficients ��)
over usually nonlinear activation functions '. The
entries in the sum are the radial basis function
neurons and there are usually many of them. The
number of nodes in the model is n. The hidden
layer of “radial basis function units” consists
of jΞj nodes, i.e., the number of centers in our
radial basis function approximation. The output
layer has m responses if the radial basis function
approximation above is generalized to m-variate
data, i.e., then we get s1; s2; : : : ; sm instead of
just s, as already described. This network here
is of the type of a nonlinear, layered, feedfor-
ward network. More than one hidden layer is
unusual. The choice of the radial basis functions
(its smoothness, for instance) and the flexibility
in the positioning of the centers in clusters, grids
(e.g., Buhmann 1990), or otherwise provide much
of the required freedom for good approximations.

The properties of conditional positive
definiteness are fulfilled now for a much larger
realm of radial basis functions which have
still nowhere vanishing generalized Fourier
transforms but with higher-order singularities
at the origin. (Remember that this creates no
problem for the well definedness of k � k' .) For
instance, the above properties are true for the
thin-plate spline function '.r/ D r2 log r , for the
shifted logarithm '.r/ D .r2 C c2/ log.r2 C c2/,
and for the multiquadric '.r/ D �

p
r2 C c2.

Here we still have a parameter c which may
now be arbitrary real. The order of the above is
one for the multiquadric and two for the thin-
plate spline. Another commonly used radial basis
function which gives rise to conditional positive
definiteness is the '.r/ D r3.

Hence the norm becomes a semi-norm with
null-space P

k
n, but it still has the same form

as a square integral with the reciprocal of the
Fourier transform of the radial basis function as a
weight.

Therefore we have to include a polynomial
from the null-space of the semi-norm to the
approximant which becomes

Radial Basis Function Networks 1053

R

s.x/ D
X
�2Ξ

��'.kx � �k/C q.x/; x 2 R
n;

where q 2 P
k
n and the side conditions on the

coefficients

X
�2Ξ

��p.�/ D 0; 8 p 2 P
k
n:

When quasi-interpolation is used, this inclu-
sion of polynomials is not because they are not
formed by interpolation condition, and the repro-
duction of polynomials (thus their presence in
the linear space) is directly guaranteed by their
construction.

If we consider the regularization network
problem with the smoothing parameter � again,
then we have to solve the linear system with a
smoothing parameter �:

.AC �I/�C P T b D f; P � D 0;

where P D .pi .�//iD1;:::;L;�2Ξ and pi form a
basis of P

k
n, bi being the components of b, and

q.x/ D
PL

iD1 bi pi .x/ is the expression of the
polynomial added to the radial basis function
sum. So in particular P is a matrix with as many
rows as the dimension L D

�
nCk

n

�
of Pk

n is and
jΞj columns.

In all cases, the radial basis functions com-
posed of the Euclidean norm can be regarded as
reproducing kernels in the semi-Hilbert spaces
defined by the set X of distributions f for which
kgk' is finite and the semi-inner product

.h; g/ D
1

.2�/n

Z
Rn

1

O'.kxk/
Oh.x/ Og.x/ dx;

h; g;2 X:

In particular, kgk2
' D .g; g/. If the evaluation

functional is continuous (bounded) on that space
X , there exists a reproducing kernel, i.e., there is
a K W X �X ! R such that

g.x/ D .g; K. � ; x//; 8 x 2 R
n; g 2 X;

See, for example, Wahba (1990). If the semi-
inner product is actually an inner product, then
the reproducing kernel is unique. The kernel gives
rise to positive definite matrices fK.�; �/g�;�2Ξ

if and only if it is a positive operator. For the
spaces X defined by our radial basis functions,
it turns out that K.x; y/ WD '.kx � yk/; see,
e.g., the overview in Buhmann (2003). Then the
matrices A are positive definite if O'.k � k/ is well
defined and positive, but if it has a singularity at
zero, the A may be only conditionally positive
definite. Note here that O'.k � k/ denotes the n-
variate Fourier transform of '.k � k/, both being
radially symmetric.

Advantages of the Approach

Why are we interested in using radial basis func-
tions for networks? The radial basis functions
have many excellent approximation properties
which make them useful as general tools for
approximation. Among them are the variety of
more or less smoothness as required (e.g., multi-
quadrics is C1 for positive c and just continuous
for c D 0), the fast evaluation and computa-
tion methods available (see, e.g., Beatson and
Powell 1994), the aforementioned nonsingularity
properties and their connection with the theory
of reproducing kernel Hilbert spaces, and finally
their excellent convergence properties (see, e.g.,
Buhmann 2003). Generally, neural networks are a
tried and tested approach to approximation, mod-
eling, and smoothing by methods from learning
theory.

Limitations

The number of applications where the radial basis
function approach has been used is vast. Also,
the solutions may be computed efficiently by far-
field expansions, approximated Lagrange func-
tions, and multipole methods. However, there
are still some limitations with these important
computational methods when the dimension n

is large. So far, most of the multipole and far-

1054 Radial Basis Function Neural Networks

field methods have been implemented only for
medium-sized dimensions.

Cross-References

�Neural Networks
�Regularization

Recommended Reading

Beatson RK, Powell MJD (1994) An iterative method
for thin plate spline interpolation that employs ap-
proximations to Lagrange functions. In: Griffiths
DF, Watson GA (eds) Numerical analysis 1993.
Longman, Burnt Mill, pp 17–39

Broomhead D, Lowe D (1988) Radial basis functions,
multi-variable functional interpolation and adaptive
networks. Complex Syst 2:321–355

Buhmann MD (1990) Multivariate cardinal-
interpolation with radial-basis functions. Construct
Approx 6:225–255

Buhmann MD (1993) On quasi-interpolation with ra-
dial basis functions. J Approx Theory 72:103–130

Buhmann MD (1998) Radial functions on compact
support. Proc Edinb Math Soc 41:33–46

Buhmann MD (2003) Radial basis functions: theory
and implementations. Cambridge University Press,
Cambridge

Buhmann MD, Porcu E, Daley D, Bevilacqua M
(2013) Radial basis functions for multivariate
geostatistics. Stoch Env Res Risk Assess 27(4):
909–922

Duchon J (1976) Interpolation des fonctions de deux
variables suivant le principe de la flexion des
plaques minces. RAIRO 10:5–12

Evgeniou T, Poggio T, Pontil M (2000) Regularization
networks and support vector machines. Adv Comput
Math 13:1–50

Hardy RL (1990) Theory and applications of the
multiquadric-biharmonic method. Comput Math
Appl 19:163–208

Micchelli CA (1986) Interpolation of scattered data:
distance matrices and conditionally positive definite
functions. Construct Approx 1:11–22

Pinkus A (1996) TDI-subpaces of C.Rd / and some
density problems from neural networks. J Approx
Theory 85:269–287

Schoenberg IJ (1938) Metric spaces and completely
monotone functions. Ann Math 39:811–841

Tichonov AN, Arsenin VY (1977) Solution of Ill-
posed problems. W.H. Winston, Washington, DC

Vapnik VN (1996) Statistical learning theory. Wiley,
New York

Wahba G (1985) A comparison of GCV and GML for
choosing the smoothing parameter in the general-
ized splines smoothing problem. Ann Stat 13:1378–
1402

Wahba G (1990) Spline models for observational
data. Series in applied mathematics, vol 59. SIAM,
Philadelphia

Radial Basis Function Neural
Networks

�Radial Basis Function Networks

Random Decision Forests

�Random Forests

Random Forests

Synonyms

Random decision forests

Definition

Random Forests is an � ensemble learning tech-
nique. It is a hybrid of the �Bagging algorithm
and the � random subspace method, and uses
� decision trees as the base classifier. Each tree
is constructed from a bootstrap sample from the
original dataset. An important point is that the
trees are not subjected to pruning after construc-
tion, enabling them to be partially overfitted to
their own sample of the data. To further diversify
the classifiers, at each branch in the tree, the
decision of which feature to split on is restricted
to a random subset of size n, from the full feature
set. The random subset is chosen anew for each
branching point. n is suggested to be log2.NC1/,
where N is the size of the whole feature set.

http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_100391
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_100392
http://dx.doi.org/10.1007/978-1-4899-7687-1_66

Rank Correlation 1055

R

Random Subspace Method

Synonyms

Random subspaces; RSM

Definition

The random subspace method is an � ensemble
learning technique. The principle is to increase
diversity between members of the ensemble by
restricting classifiers to work on different random
subsets of the full feature space. Each classifier
learns with a subset of size n, chosen uniformly
at random from the full set of size N . Empiri-
cal studies have suggested good results can be
obtained with the rule-of-thumb to choose n D

N=2 features. The method is generally found to
perform best when there are a large number of
features (large N), and the discriminative infor-
mation is spread across them. The method can un-
derperform in the converse situation, when there
are few informative features, and a large number
of noisy/irrelevant features. �Random Forests is
an algorithm combining RSM with the �Bagging
algorithm, which can provide significant gains
over each used separately.

Random Subspaces

�Random Subspace Method

Randomized Decision Rule

�Markovian Decision Rule

Randomized Experiments

�Online Controlled Experiments and A/B Test-
ing

Rank Correlation

Johannes Fürnkranz1;2 and Eyke Hüllermeier3

1Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
2Department of Information Technology,
University of Leoben, Leoben, Austria
3Department of Computer Science, Paderborn
University, Paderborn, Germany

Abstract

Rank correlation measures the correspondence
between two rankings, � and � 0, of a set of m

objects.

Method

Various proposals for such measures have been
made, especially in the field of statistics. Two
of the best-known measures are Spearman’s rank
correlation and Kendall’s tau.
Spearman’s rank correlation (Spearman 1904)
calculates the sum of squared rank distances and
is normalized such that it evaluates to �1 for re-
versed and toC1 for identical rankings. Formally,
it is defined as follows:

.�; � 0/ 7! 1 �
6
Pm

iD1.�.i/ � � 0.i//2

m.m2 � 1/
(1)

Kendall’s tau (Kendall 1938) is the number of
pairwise rank inversions between � and � 0, again
normalized to the range Œ�1;C1	:

.�; � 0/ 7! 1

�
4
ˇ̌
f.i; j / j i <j; �.i/ <�.j / ^ � 0.i/>� 0.j /g

ˇ̌
m.m � 1/

(2)

http://dx.doi.org/10.1007/978-1-4899-7687-1_100392
http://dx.doi.org/10.1007/978-1-4899-7687-1_100414
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_696
http://dx.doi.org/10.1007/978-1-4899-7687-1_518
http://dx.doi.org/10.1007/978-1-4899-7687-1_891

1056 Ratio Scale

Spearman’s rank correlation and Kendall’s tau
give equal weight to all ranking positions, which
is not desirable for all applications. For exam-
ple, ranking problems in information retrieval
are often evaluated with the (normalized) dis-
counted cumulative gain (NDCG), which assigns
more weight to the lower-ranking positions (cf.
� learning to rank).

Cross-References

�Learning to Rank
� Preference Learning
�ROC Analysis

Recommended Reading

Kendall M (1938) A new measure of rank correlation.
Biometrika 30(1):81–89

Spearman C (1904) The proof and measurement of
association between two things. Am J Psychol 15:
2–101

Ratio Scale

A ratio measurement scale possesses all the char-
acteristics of interval measurement, and there
exists a zero that, the same as arithmetic zero,
means “nil” or “nothing.” See �Measurement
Scales.

Real-Time Dynamic Programming

Real-Time Dynamic Programming (RTDP) is the
same as �Adaptive Real-Time Dynamic Pro-
gramming (ARTDP) without the system iden-
tification component. It is applicable when an
accurate model of the problem is available. It
converges to an optimal policy of a stochastic
optimal path problem under suitable conditions.
RTDP was introduced by Barto et al. (1995) in
their paper Learning to Act Using RTDP.

Recall

Recall is a measure of information retrieval
performance. Recall is the total number of
documents retrieved that are elevant/Total
number of relevant documents in the database.
See �Precision and Recall.

Cross-References

� Sensitivity

Receiver Operating Characteristic
Analysis

�ROC Analysis

Recognition

�Classification

Recommender Systems

Prem Melville and Vikas Sindhwani
IBM T. J. Watson Research Center, Yorktown
Heights, NY, USA

Definition

The goal of a recommender system is to generate
meaningful recommendations to a collection of
users for items or products that might inter-
est them. Suggestions for books on Amazon, or
movies on Netflix, are real-world examples of
the operation of industry-strength recommender
systems. The design of such recommendation
engines depends on the domain and the particular

http://dx.doi.org/10.1007/978-1-4899-7687-1_893
http://dx.doi.org/10.1007/978-1-4899-7687-1_893
http://dx.doi.org/10.1007/978-1-4899-7687-1_667
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_10
http://dx.doi.org/10.1007/978-1-4899-7687-1_659
http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_111

Recommender Systems 1057

R

characteristics of the data available. For example,
movie watchers on Netflix frequently provide
ratings on a scale of 1 (disliked) to 5 (liked). Such
a data source records the quality of interactions
between users and items. Additionally, the sys-
tem may have access to user-specific and item-
specific profile attributes such as demographics
and product descriptions, respectively. Recom-
mender systems differ in the way they analyze
these data sources to develop notions of affinity
between users and items, which can be used
to identify well-matched pairs. �Collaborative
Filtering systems analyze historical interactions
alone, while �Content-based Filtering systems
are based on profile attributes; and hybrid tech-
niques attempt to combine both of these designs.
The architecture of recommender systems and
their evaluation on real-world problems is an
active area of research.

Motivation and Background

Obtaining recommendations from trusted sources
is a critical component of the natural process of
human decision making. With burgeoning con-
sumerism buo-yed by the emergence of the web,
buyers are being presented with an increasing
range of choices while sellers are being faced
with the challenge of personalizing their adver-
tising efforts. In parallel, it has become common
for enterprises to collect large volumes of trans-
actional data that allows for deeper analysis of
how a customer base interacts with the space of
product offerings. Recommender systems have
evolved to fulfill the natural dual need of buyers
and sellers by automating the generation of rec-
ommendations based on data analysis.

The term “collaborative filtering” was
introduced in the context of the first commercial
recommender system, called Tapestry (Goldberg
et al. 1992), which was designed to recommend
documents drawn from newsgroups to a
collection of users. The motivation was to
leverage social collaboration in order to prevent
users from getting inundated by a large volume
of streaming documents. Collaborative filtering,

which analyzes usage data across users to find
well-matched user-item pairs, has since been
juxtaposed against the older methodology of
content filtering, which had its original roots
in information retrieval. In content filtering,
recommendations are not “collaborative” in
the sense that suggestions made to a user
do not explicitly utilize information across
the entire user-base. Some early successes
of collaborative filtering on related domains
included the GroupLens system (Resnick et al.
1994b).

As noted in Billsus and Pazzani (1998), initial
formulations for recommender systems were
based on straightforward correlation statistics
and predictive modeling, not engaging the wider
range of practices in statistics and machine
learning literature. The collaborative filtering
problem was mapped to classification, which
allowed dimensionality reduction techniques
to be brought into play to improve the quality
of the solutions. Concurrently, several efforts
attempted to combine content-based methods
with collaborative filtering, and to incorporate
additional domain knowledge in the architecture
of recommender systems.

Further research was spurred by the public
availability of datasets on the web, and the in-
terest generated due to direct relevance to e-
commerce. Netflix, an online streaming video
and DVD rental service, released a large-scale
dataset containing 100 million ratings given by
about half-a-million users to thousands of movie
titles, and announced an open competition for
the best collaborative filtering algorithm in this
domain. Matrix Factorization (Bell et al. 2009)
techniques rooted in numerical linear algebra and
statistical matrix analysis emerged as a state-of-
the-art technique.

Currently, recommender systems remain an
active area of research, with a dedicated ACM
conference, intersecting several subdisciplines of
statistics, machine learning, data mining, and
information retrievals. App-lications have been
pursued in diverse domains ranging from recom-
mending webpages to music, books, movies, and
other consumer products.

http://dx.doi.org/10.1007/978-1-4899-7687-1_945
http://dx.doi.org/10.1007/978-1-4899-7687-1_167

1058 Recommender Systems

Structure of Learning System

The most general setting in which recommender
systems are studied is presented in Fig. 1. Known
user preferences are represented as a matrix of
n users and m items, where each cell ru;i corre-
sponds to the rating given to item i by the user
u. This user ratings matrix is typically sparse,
as most users do not rate most items. The rec-
ommendation task is to predict what rating a
user would give to a previously unrated item.
Typically, ratings are predicted for all items that
have not been observed by a user, and the highest
rated items are presented as recommendations.
The user under current consideration for recom-
mendations is referred to as the active user.

The myriad approaches to recommender sys-
tems can be broadly categorized as:

• Collaborative Filtering (CF): In CF systems, a
user is recommended items based on the past
ratings of all users collectively.

• Content-based recommending: These ap-
proaches recommend items that are similar
in content to items the user has liked in the
past, or matched to pre-defined attributes of
the user.

• Hybrid approaches: These methods com-
bine both collaborative and content-based
approaches.

Items
1 2 ... i ... m

Users

1 5 3 1 2
2 2 4
: 5
u 3 4 2 1
: 4
n 3 2

a 3 5 ? 1

Recommender Systems, Fig. 1 User ratings matrix,
where each cell ru;i corresponds to the rating of user u
for item i . The task is to predict the missing rating ra;i

for the active user a

Collaborative Filtering
Collaborative filtering (CF) systems work by
collecting user feedback in the form of ratings
for items in a given domain and exploiting
similarities in rat-ing behavior amongst several
users in determining how to recommend an
item. CF methods can be further subdivided
into neighborhood-based and model-based
approaches. Neighborhood-based methods are
also commonly referred to as memory-based
approaches (Breese et al. 1998).

Neighborhood-Based Collaborative Filtering
In neighborhood-based techniques, a subset of
users are chosen based on their similarity to the
active user, and a weighted combination of their
ratings is used to produce predictions for this
user. Most of these approaches can be generalized
by the algorithm summarized in the following
steps:

1. Assign a weight to all users with respect to
similarity with the active user.

2. Select k users that have the highest similarity
with the active user – commonly called the
neighborhood.

3. Compute a prediction from a weighted combi-
nation of the selected neighbors’ ratings.

In step 1, the weight wa;u is a measure of sim-
ilarity between the user u and the active user a.
The most commonly used measure of similarity
is the Pearson correlation coefficient between the
ratings of the two users (Resnick et al. 1994a),
defined below:

wa;u D
Σi2I .ra;i � Nra/.ru;i � Nru/p

Σi2I .ra;i � Nra/2Σi2I .ru;i � Nru/2
(1)

where I is the set of items rated by both users,
ru;i is the rating given to item i by user u, and Nru

is the mean rating given by user u.
In step 3, predictions are generally computed

as the weighted average of deviations from the
neighbor’s mean, as in:

pa;i D Nra C
Σu2K.ru;i � Nru/ � wa;u

Σu2Kwa;u
(2)

Recommender Systems 1059

R

where pa;i is the prediction for the active user a

for item i , wa;u is the similarity between users a

and u, and K is the neighborhood or set of most
similar users.

Similarity based on Pearson correlation mea-
sures the extent to which there is a linear depen-
dence between two variables. Alternatively, one
can treat the ratings of two users as a vector in
an m-dimensional space, and compute similarity
based on the cosine of the angle between them,
given by:

Wa;u D cos.ra; ru/ D
ra � ru

krak2 � kruk2

D

Pm
iD1 ra;i ru;iq

Σm
iD1r2

a;i

q
Σm

iD1r2
u;i

(3)

When computing cosine similarity, one cannot
have negative ratings, and unrated items are
treated as having a rating of zero. Empirical
studies (Breese et al. 1998) have found that
Pearson correlation generally performs better.
There have been several other similarity measures
used in the literature, including Spearman rank
correlation, Kendall’s � correlation, mean
squared differences, entropy, and adjusted
cosine similarity (Herlocker et al. 1999; Su and
Khoshgoftaar 2009).

Several extensions to neighborhood-based CF,
which have led to improved performance are
discussed below.

Item-based Collaborative Filtering: When ap-
plied to millions of users and items, conventional
neighborhood-based CF algorithms do not scale
well, because of the computational complexity
of the search for similar users. As a alternative,
Linden et al. (2003) proposed item-to-item col-
laborative filtering where rather than matching
similar users, they match a user’s rated items
to similar items. In practice, this approach leads
to faster online systems, and often results in
improved recommendations (Linden et al. 2003;
Sarwar et al. 2001).

In this approach, similarities between pairs
of items i and j are computed off-line using
Pearson correlation, given by:

wi;j D
Σu2U .ru;i � Nri /.ru;j � Nrj /p

Σu2U .ru;i � Nri /2
p
Σu2U .ru;j � Nrj /2

(4)

where U is the set of all users who have rated
both items i and j , ru;i is the rating of user u on
item i , and j; ru;i is the average rating of the i th
item across users.

Now, the rating for item i for user a can be
predicted using a simple weighted average, as in:

pa;i D
Σj2Kra;j wi;j

Σj2K jwi;j j
(5)

where K is the neighborhood set of the k items
rated by a that are most similar to i .

For item-based collaborative filtering too, one
may use alternative similarity metrics such as ad-
justed cosine similarity. A good empirical com-
parison of variations of item-based methods can
be found in Sarwar et al. (2001).

Significance Weighting: It is common for the
active user to have highly correlated neighbors
that are based on very few co-rated (overlapping)
items. These neighbors based on a small number
of overlapping items tend to be bad predictors.
One approach to tackle this problem is to multiply
the similarity weight by a significance weighting
factor, which devalues the correlations based on
few co-rated items (Herlocker et al. 1999).

Default Voting: An alternative approach to
dealing with correlations based on very few
co-rated items is to assume a default value
for the rating for items that have not been
explicitly rated. In this way one can now compute
correlation (Eq. 1) using the union of items
rated by users being matched as opposed to the
intersection. Such a default voting strategy has
been shown to improve collaborative filtering by
Breese et al. (1998).

Inverse User Frequency: When measuring the
similarity between users, items that have been
rated by all (and universally liked or disliked)
are not as useful as less common items. To
account for this Breese et al. (1998) introduced

1060 Recommender Systems

the notion of inverse user frequency, which is
computed as fi D log n=ni , where ni is the
number of users who have rated item i out of the
total number of n users. To apply inverse user
frequency while using similarity-based CF, the
original rating is transformed for i by multiplying
it by the factor fi . The underlying assumption of
this approach is that items that are universally
loved or hated are rated more frequently than
others.

Case Amplification: In order to favor users
with high similarity to the active user, Breese
et al. (1998) introduced case amplification which
transforms the original weights in Eq. (2) to

w0a;u D wa;u � jwa;uj
��1

where
 is the amplification factor, and
 � 1.
Other notable extensions to similarity-based

collaborative filtering include weighted major-
ity prediction (Nakamura and Abe 1998) and
imputation-boosted CF (Su et al. 2008).

Model-based Collaborative Filtering: Model-
based techniques provide recommendations by
estimating parameters of statistical models for
user ratings. For example, Billsus and Pazzani
(1998) describe an early approach to map CF to a
classification problem, and build a classifier for
each active user representing items as features
over users and available ratings as labels, pos-
sibly in conjunction with dimensionality reduc-
tion techniques to overcome data sparsity issues.
Other predictive modeling techniques have also
been applied in closely related ways.

More recently, � latent factor and matrix fac-
torization models have emerged as a state-of-the-
art methodology in this class of techniques (Bell
et al. 2009). Unlike neighborhood based methods
that generate recommendations based on statis-
tical notions of similarity between users, or be-
tween items, latent factor models assume that the
similarity between users and items is simultane-
ously induced by some hidden lower-dimensional
structure in the data. For example, the rating that a
user gives to a movie might be assumed to depend
on few implicit factors such as the user’s taste

across various movie genres. Matrix factorization
techniques are a class of widely successful latent
factor models where users and items are simulta-
neously represented as unknown feature vectors
(column vectors) wu, hi 2 R

k along k latent
dimensions. These feature vectors are learnt so
that inner products wT

u hi approximate the known
preference ratings ru;i with respect to some loss
measure. The squared loss is a standard choice
for the loss function, in which case the following
objective function is minimized,

j.W; H/ D
X

.u;i/2L

.ru;i � wT
u hi /

2 (6)

where W D Œw1 : : : wn	T is an n � k matrix,
H D Œh1 : : : hm] is a k � m matrix, and L is
the set of user-item pairs for which the ratings
are known. In the impractical limit where all user-
item ratings are known, the above objective func-
tion is J.W; H/ D kR � WHk2

f ro
where R

denotes the n �m fully known user-item matrix.
The solution to this problem is given by taking the
truncated SVD of R, R = UDVT and setting W D

UKD
1
2
k

; H D D
1
2
k

V T
k

where Uk , Dk , Vk contain
the k largest singular triplets of R. However, in
the realistic setting where the majority of user-
item ratings are unknown and insufficient number
of matrix entries are observed, such a nice glob-
ally optimal solution cannot in general be directly
obtained, and one has to explicitly optimize the
non-convex objective function J.W , H/. Note
that in this case, the objective function is a par-
ticular form of weighted loss, that is, J.W; H/ D

kS ˇ .R �WH/k2
f ro

where ˇ denotes elemen-
twise products, and S is a binary matrix that
equals one over known user-item pairs L, and
0 otherwise. Therefore, weighted low-rank ap-
proximations are pertinent to this discussion (Sre-
bro and Jaakkola 2003). Standard optimization
procedures include gradient-based techniques, or
procedures like alternating least squares where H

is solved keeping W fixed and vice versa until a
convergence criterion is satisfied. Note that fixing
either W or H turns the problem of estimating the
other into a weighted � linear regression task. In
order to avoid learning a model that overfits, it is

http://dx.doi.org/10.1007/978-1-4899-7687-1_887
http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Recommender Systems 1061

R

common to minimize the objective function in the
presence of � regularization terms, J.W; H/ C

�kW k2 C �kHk2, where �; � are regulariza-
tion parameters that can be determined by cross-
validation. Once W , H are learnt, the product
WH provides an approximate reconstruction of
the rating matrix from where recommendations
can be directly read off.

Different choices of loss functions, regulariz-
ers, and additional model constraints have gener-
ated a large body of literature on matrix factor-
ization techniques. Arguably, for discrete ratings,
the squared loss is not the most natural loss
function. The maximum margin matrix factor-
ization (Rennie and Srebro 2005) approach uses
margin-based loss functions such as the hinge
loss used in �SVM classification, and its ordinal
extensions for handling multiple ordered rating
categories. For ratings that span over K values,
this reduces to finding K � 1 thresholds that
divide the real line into consecutive intervals
specifying rating bins to which the output is
mapped, with a penalty for insufficient margin
of separation. Rennie and Srebro (2005) sug-
gest a nonlinear conjugate gradient algorithm to
minimize a smoothed version of this objective
function.

Another class of techniques is the nonnega-
tive matrix factorization popularized by the work
of Lee and Seung (1999) where nonnegativity
constraints are imposed on W , H . There are
weighted extensions of NMF that can be ap-
plied to recommendation problems. The rating
behavior of each user may be viewed as being
a manifestation of different roles, for example, a
composition of prototypical behavior in clusters
of users bound by interests or community. Thus,
the ratings of each user are an additive sum
of basis vectors of ratings in the item space.
By disallowing subtractive basis, nonnegativity
constraints lend a part-based interpretation to
the model. NMF can be solved with a variety
of loss functions, but with the generalized KL-
divergence loss defined as follows,

J.W; H/ D
X

u;i2L

ru;i log
ru;i

wT
u hi

� ru;i C wT
u hi

NMF is in fact essentially equivalent to prob-
abilistic latent semantic analysis (pLSA) which
has also previously been used for collaborative
filtering tasks (Hofmann 2004).

The recently concluded million-dollar Netflix
competition has catapulted matrix factorization
techniques to the forefront of recommender tech-
nologies in collaborative filtering settings (Bell
et al. 2009). While the final winning solution was
a complex ensemble of different models, several
enhancements to basic matrix factorization mod-
els were found to lead to improvements. These
included:

1. The use of additional user-specific and item-
specific parameters to account for systematic
biases in the ratings such as popular movies re-
ceiving higher ratings on average.

2. Incorporating temporal dynamics of rating be-
havior by introducing time-dependent vari-
ables.

In many settings, only implicit preferences are
available, as opposed to explicit like–dislike rat-
ings. For example, large business organizations,
typically, meticulously record transactional de-
tails of products purchased by their clients. This
is a one-class setting since the business domain
knowledge for negative examples that a client has
no interest in buying a product ever in the future
is typically not available explicitly in corporate
databases. Moreover, such knowledge is difficult
to gather and maintain in the first place, given the
rapidly changing business environment. Another
example is recommending TV shows based on
watching habits of users, where preferences are
implicit in what the users chose to see without
any source of explicit ratings. Recently, matrix
factorization techniques have been advanced to
handle such problems (Pan and Scholz 2009) by
formulating confidence weighted objective func-
tion, J.W; H/ D Σ.u;i/cu;i .ru;i � wT

u hi /
2, under

the assumption that unobserved user-item pairs
may be taken as negative examples with a certain
degree of confidence specified via cu;i .

The problem of recovering missing values
in a matrix from a small fraction of observed
entries is also known as the Matrix Comple-

http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

1062 Recommender Systems

tion problem. Recent work by Candès and Tao
(2009) and Recht (2009) has shown that under
certain assumptions on the singular vectors of
the matrix, the matrix completion problem can be
solved exactly by a convex optimization problem
provided with a sufficient number of observed
entries. This problem involves finding among all
matrices consistent with the observed entries, the
one with the minimum nuclear norm (sum of
singular values).

Content-Based Recommending
Pure collaborative filtering recommenders only
utilize the user ratings matrix, either directly,
or to induce a collaborative model. These ap-
proaches treat all users and items as atomic units,
where predictions are made without regard to
the specifics of individual users or items. How-
ever, one can make a better personalized recom-
mendation by knowing more about a user, such
as demographic information (Pazzani 1999), or
about an item, such as the director and genre of a
movie (Melville et al. 2002). For instance, given
movie genre information, and knowing that a user
liked “Star Wars” and “Blade Runner,” one may
infer a predilection for science fiction and could
hence recommend “Twelve Monkeys.” Content-
based recommenders refer to such approaches,
that provide recommendations by comparing rep-
resentations of content describing an item to
representations of content that interests the user.
These approaches are sometimes also referred to
as content-based filtering.

Much research in this area has focused on
recommending items with associated textual
content, such as web pages, books, and movies;
where the web pages themselves or associated
content like descriptions and user reviews are
available. As such, several approaches have
treated this problem as an information retrieval
(IR) task, where the content associated with
the user’s preferences is treated as a query,
and the unrated documents are scored with
relevance/similarity to this query (Balabanovic
and Shoham 1997). In NewsWeeder (Lang 1995),
documents in each rating category are converted
into tf-idf word vectors, and then averaged to get
a prototype vector of each category for a user.

To classify a new document, it is compared with
each prototype vector and given a predicted rating
based on the cosine similarity to each category.

An alternative to IR approaches, is to treat
recommending as a classification task, where
each example represents the content of an
item, and a user’s past ratings are used as
labels for these examples. In the domain of
book recommending, Mooney and Roy (2000)
use text from fields such as the title, author,
synopses, reviews, and subject terms, to train a
multinomial naive Bayes classifier. Ratings on
a scale of 1 to k can be directly mapped to k

classes (Melville et al. 2002), or alternatively, the
numeric rating can be used to weight the training
example in a probabilistic binary classification
setting (Mooney and Roy 2000). Other
classification algorithms have also been used for
purely content-based recommending, including
k-nearest neighbor, � decision trees, and � neural
networks (Pazzani and Billsus 1997).

Hybrid Approaches
In order to leverage the strengths of content-based
and collaborative recommenders, there have been
several hybrid approaches proposed that combine
the two. One simple approach is to allow both
content-based and collaborative filtering methods
to produce separate ranked lists of recommen-
dations, and then merge their results to produce
a final list (Cotter and Smyth 2000). Claypool
et al. (1999) combine the two predictions using
an adaptive weighted average, where the weight
of the collaborative component increases as the
number of users accessing an item increases.

Melville et al. (2002) proposed a general
framework for content-boosted collaborative
filtering, where content-based predictions are
applied to convert a sparse user ratings matrix
into a full ratings matrix, and then a CF method is
used to provide recommendations. In particular,
they use a Naı̈ve Bayes classifier trained on
documents describing the rated items of each
user, and replace the unrated items by predictions
from this classifier. They use the resulting pseudo
ratings matrix to find neighbors similar to
the active user, and produce predictions using
Pearson correlation, appropriately weighted to

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_586

Recommender Systems 1063

R

account for the overlap of actually rated items,
and for the active user’s content predictions.
This approach has been shown to perform better
than pure collaborative filtering, pure content-
based systems, and a linear combination of the
two. Within this content-boosted CF framework,
Su et al. (2007) demonstrated improved results
using a stronger content-predictor, TAN-ELR,
and unweighted Pearson collaborative filtering.

Several other hybrid approaches are based on
traditional collaborative filtering, but also main-
tain a content-based profile for each user. These
content-based profiles, rather than co-rated items,
are used to find similar users. In Pazzani’s ap-
proach (Pazzani 1999), each user-profile is rep-
resented by a vector of weighted words derived
from positive training examples using the Win-
now algorithm. Predictions are made by applying
CF directly to the matrix of user-profiles (as
opposed to the user-ratings matrix). An alter-
native approach, Fab (Balabanovic and Shoham
1997), uses � relevance feedback to simultane-
ously mold a personal filter along with a commu-
nal “topic” filter. Documents are initially ranked
by the topic filter and then sent to a user’s per-
sonal filter. The user’s relevance feedback is used
to modify both the personal filter and the originat-
ing topic filter. Good et al. (1999) use collabora-
tive filtering along with a number of personalized
information filtering agents. Predictions for a user
are made by applying CF on the set of other users
and the active user’s personalized agents.

Several hybrid approaches treat recommend-
ing as a classification task, and incorporate col-
laborative elements in this task. Basu et al. (1998)
use Ripper, a � rule induction system, to learn a
function that takes a user and movie and predicts
whether the movie will be liked or disliked. They
combine collaborative and content information,
by creating features such as comedies liked by
user and users who liked movies of genre X.
In other work, Soboroff and Nicholas (1999)
multiply a term-document matrix representing
all item content with the user-ratings matrix to
produce a content-profile matrix. Using latent
semantic Indexing, a rank-k approximation of the
content-profile matrix is computed. Term vectors
of the user’s relevant documents are averaged to

produce a user’s profile. Then, new documents
are ranked against each user’s profile in the LSI
space. Some hybrid approaches attempt to di-
rectly combine content and collaborative data
under a single probabilistic framework. Popescul
et al. (2001) extended Hofmann’s aspect model
(Hofmann 1999) to incorporate a three-way co-
occurrence data among users, items, and item
content. Their generative model assumes that
users select latent topics, and documents and their
content words are generated from these topics.
Schein et al. (2002) extend this approach, and
focus on making recommendations for items that
have not been rated by any user.

Evaluation Metrics
The quality of a recommender system can be
evaluated by comparing recommendations to a
test set of known user ratings. These systems
are typical measured using predictive accuracy
metrics (Herlocker et al. 2004), where the pre-
dicted ratings are directly compared to actual user
ratings. The most commonly used metric in the
literature is �Mean Absolute Error (MAE) – de-
fined as the average absolute difference between
predicted ratings and actual ratings, given by:

MAE D
Σfu;igjPu;i � ru;i j

N
(7)

Where pu;i is the predicted rating for user u on
item i; ru;i is the actual rating, and N is the total
number of ratings in the test set.

A related commonly used metric, Root Mean
Squared Error (RMSE), puts more emphasis on
larger absolute errors, and is given by:

RMSE D

s
Σfu;ig.pu;i � ru;i /2

N
(8)

Predictive accuracy metrics treat all items
equally. However, for most recommender
systems the primary concern is accurately
predict the items a user will like. As such,
researchers often view recommending as
predicting good, that is, items with high ratings
versus bad or poorly rated items. In the context
of information retrieval (IR), identifying the

http://dx.doi.org/10.1007/978-1-4899-7687-1_724
http://dx.doi.org/10.1007/978-1-4899-7687-1_808
http://dx.doi.org/10.1007/978-1-4899-7687-1_953

1064 Recommender Systems

good from the background of bad items can
be viewed as discriminating between “relevant”
and “irrelevant” items; and as such, standard
IR measures, like �Precision, �Recall and
�Area Under the ROC Curve (AUC) can be
utilized. These, and several other measures,
such as F1-measure, Pearson’s product-moment
correlation, Kendall’s � , mean average precision,
half-life utility, and normalized distance-based
performance measure are discussed in more
detail by Herlocker et al. (2004).

Challenges and Limitations
This section, presents some of the common hur-
dles in deploying recommender systems, as well
as some research directions that address them.

Sparsity: Stated simply, most users do not rate
most items and, hence, the user ratings matrix
is typically very sparse. This is a problem for
collaborative filtering systems, since it decreases
the probability of finding a set of users with
similar ratings. This problem often occurs when
a system has a very high item-to-user ratio, or
the system is in the initial stages of use. This
issue can be mitigated by using additional do-
main information (Melville et al. 2002; Su et al.
2007) or making assumptions about the data
generation process that allows for high-quality
imputation (Su et al. 2008).

The Cold-Start Problem: New items and
new users pose a significant challenge to
recommender systems. Collectively these
problems are referred to as the cold-start
problem (Schein et al. 2002). The first of these
problems arises in collaborative filtering systems,
where an item cannot be recommended unless
some user has rated it before. This issue applies
not only to new items, but also to obscure items,
which is particularly detrimental to users with
eclectic tastes. As such the new-item problem is
also often referred to as the first-rater problem.
Since content-based approaches (Mooney and
Roy 2000; Pazzani and Billsus 1997) do not rely
on ratings from other users, they can be used to
produce recommendations for all items, provided
attributes of the items are available. In fact, the

content-based predictions of similar users can
also be used to further improve predictions for
the active user (Melville et al. 2002).

The new-user problem is difficult to tackle,
since without previous preferences of a user it
is not possible to find similar users or to build
a content-based profile. As such, research in this
area has primarily focused on effectively select-
ing items to be rated by a user so as to rapidly
improve recommendation performance with the
least user feedback. In this setting, classical tech-
niques from � active learning can be leveraged to
address the task of item selection (Harpale and
Yang 2008; Jin and Si 2004).

Fraud: As recommender systems are being in-
creasingly adopted by commercial websites, they
have started to play a significant role in affect-
ing the profitability of sellers. This has led to
many unscrupulous vendors engaging in differ-
ent forms of fraud to game recommender sys-
tems for their benefit. Typically, they attempt
to inflate the perceived desirability of their own
products (push attacks) or lower the ratings of
their competitors (nuke attacks). These types of
attack have been broadly studied as shilling at-
tacks (Lam and Riedl 2004) or profile injection
attacks (Burke et al. 2005). Such attacks usually
involve setting up dummy profiles, and assume
different amounts of knowledge about the system.
For instance, the average attack (Lam and Riedl
2004) assumes knowledge of the average rating
for each item; and the attacker assigns values
randomly distributed around this average, along
with a high rating for the item being pushed.
Studies have shown that such attacks can be quite
detrimental to predicted ratings, though item-
based collaborative filtering tends to be more
robust to these attacks (Lam and Riedl 2004).
Obviously, content-based methods, which only
rely on a users past ratings, are unaffected by
profile injection attacks.

While pure content-based methods avoid some
of the pitfalls discussed above, collaborative fil-
tering still has some key advantages over them.
Firstly, CF can perform in domains where there
is not much content associated with items, or
where the content is difficult for a computer to

http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_702
http://dx.doi.org/10.1007/978-1-4899-7687-1_918
http://dx.doi.org/10.1007/978-1-4899-7687-1_916

Recommender Systems 1065

R

analyze, such as ideas, opinions, etc. Secondly, a
CF system has the ability to provide serendipi-
tous recommendations, that is, it can recommend
items that are relevant to the user, but do not
contain content from the user’s profile.

Recommended Reading

Good surveys of the literature in the field can
be found in Adomavicius and Tuzhilin (2005),
Su (2009), Bell et al. (2009). For extensive empir-
ical comparisons on variations of Collaborative
Filtering refer to Breese et al. (1998), Herlocker
et al. (1999), and Sarwar et al. (2001).

Adomavicius G, Tuzhilin A (2005) Toward the next
generation of recommender systems: a survey of the
state-of-the-art and possible extensions. IEEE Trans
Knowl Data Eng 17(6):734–749

Balabanovic M, Shoham Y (1997) Fab: content-
based, collaborative recommendation. Commun As-
soc Comput Mach 40(3):66–72

Basu C, Hirsh H, Cohen W (July 1998) Recommenda-
tion as classification: using social and content-based
information in recommendation. In: Proceedings of
the fifteenth national conference on artificial intelli-
gence (AAAI-98), Madison, pp 714–720

Bell R, Koren Y, Volinsky C (2009) Matrix factor-
ization techniques for recommender systems. IEEE
Comput 42(8):30–37

Billsus D, Pazzani MJ (1998) Learning collabora-
tive information filters. In: Proceedings of the fif-
teenth international conference on machine learn-
ing (ICML-98), Madison. Morgan Kaufmann, San
Francisco, pp 46–54

Breese JS, Heckerman D, Kadie C (1998) Empirical
analysis of predictive algorithms for collaborative
filtering. In: Proceedings of the fourteenth confer-
ence on uncertainty in artificial intelligence, Madi-
son

Burke R, Mobasher B, Bhaumik R, Williams C (2005)
Segment-based injection attacks against collabora-
tive filtering recommender systems. In: ICDM ’05:
proceedings of the fifth IEEE international con-
ference on data mining, Houston. IEEE Computer
Society, Washington, DC, pp 577–580

Candès EJ, Tao T (2009) The power of convex relax-
ation: near-optimal matrix completion. IEEE Trans
Inf Theory 56(5):2053–2080

Claypool M, Gokhale A, Miranda T (1999) Com-
bining content-based and collaborative filters in an
online newspaper. In: Proceedings of the SIGIR-99
workshop on recommender systems: algorithms and
evaluation, Berkeley

Cotter P, Smyth B (2000) PTV: intelligent personal-
ized TV guides. In: Twelfth conference on inno-

vative applications of artificial intelligence, Austin,
pp 957–964

Goldberg D, Nichols D, Oki B, Terry D (1992).
Using collaborative filtering to weave an informa-
tion tapestry. Commun Assoc Comput Mach 35(12):
61–70

Good N, Schafer JB, Konstan JA, Borchers A, Sarwar
B, Herlocker J et al (1999) Combining collaborative
filtering with personal agents for better recommen-
dations. In: Proceedings of the sixteenth national
conference on artificial intelligence (AAAI-99), Or-
lando, pp 439–446

Harpale AS, Yang Y (2008) Personalized active learn-
ing for collaborative filtering. In: SIGIR ’08: pro-
ceedings of the 31st annual international ACM SI-
GIR conference on research and development in
information retrieval, Singapore. ACM, New York,
pp 91–98

Herlocker J, Konstan J, Borchers A, Riedl J (1999) An
algorithmic framework for performing collaborative
filtering. In: Proceedings of 22nd international ACM
SIGIR conference on research and development in
information retrieval, Berkeley. ACM, New York,
pp 230–237

Herlocker JL, Konstan JA, Terveen LG, Riedl JT
(2004) Evaluating collaborative filtering recom-
mender systems. ACM Trans Inf Syst 22(1):
5–53

Hofmann T (1999) Probabilistic latent semantic anal-
ysis. In: Proceedings of the fifteenth conference on
uncertainty in artificial intelligence, Stockholm, 30
July–1 Aug 1999. Morgan Kaufmann

Hofmann T (2004) Latent semantic analysis for col-
laborative filtering. ACM Trans Inf Syst 22(1):
89–115

Jin R, Si L (2004) A Bayesian approach toward active
learning for collaborative filtering. In: UAI ’04:
proceedings of the 20th conference on uncertainty in
artificial intelligence, Banff. AUAI Press, Arlington,
pp 278–285

Lam SK, Riedl J (2004) Shilling recommender systems
for fun and profit. In: WWW ’04: proceedings of the
13th international conference on World Wide Web,
New York. ACM, New York, pp 393–402

Lang K (1995) NewsWeeder: learning to filter net-
news. In: Proceedings of the twelfth international
conference on machine learning (ICML-95), Tahoe
City. Morgan Kaufmann, San Francisco, pp 331–
339. ISBN 1-55860-377-8.

Lee DD, Seung HS (1999) Learning the parts of
objects by non-negative matrix factorization. Nature
401:788

Linden G, Smith B, York J (2003) Amazon.com rec-
ommendations: item-to-item collaborative filtering.
IEEE Internet Comput 7(1):76–80

Melville P, Mooney RJ, Nagarajan R (2002) Content-
boosted collaborative filtering for improved recom-
mendations. In: Proceedings of the eighteenth na-
tional conference on artificial intelligence (AAAI-
02), Edmonton, pp 187–192

1066 Record Linkage

Mooney RJ, Roy L (2000) Content-based book recom-
mending using learning for text categorization. In:
Proceedings of the fifth ACM conference on digital
libraries, San Antonio, pp 195–204

Nakamura A, Abe N (1998) Collaborative filtering
using weighted majority prediction algorithms. In:
ICML ’98: proceedings of the fifteenth international
conference on machine learning, Madison. Morgan
Kaufmann, San Francisco, pp 395–403

Pan R, Scholz M (2009) Mind the gaps: weighting
the unknown in large-scale one-class collaborative
filtering. In: 15th ACM SIGKDD conference on
knowledge discovery and data mining (KDD), Paris

Pazzani MJ (1999) A framework for collaborative,
content-based and demographic filtering. Artif Intell
Rev 13(5–6):393–408

Pazzani MJ, Billsus D (1997) Learning and revising
user profiles: the identification of interesting web
sites. Mach Learn 27(3):313–331

Popescul A, Ungar L, Pennock DM, Lawrence S
(2001) Probabilistic models for unified collaborative
and content-based recommendation in sparse-data
environments. In: Proceedings of the seventeenth
conference on uncertainity in artificial intelligence.
University of Washington, Seattle

Recht B (2009, to appear) A simpler approach to
matrix completion. J Mach Learn Res

Rennie J, Srebro N (2005) Fast maximum margin
matrix factorization for collaborative prediction.
In: International conference on machine learning,
Bonn

Resnick P, Iacovou N, Sushak M, Bergstrom P, Reidl
J (1994a) GroupLens: an open architecture for
collaborative filtering of netnews. In: Proceedings
of the 1994 computer supported cooperative work
conference, New York. ACM, New York

Resnick P, Neophytos I, Bergstrom P, Mitesh S, Riedl
J (1994b) Grouplens: an open architecture for col-
laborative filtering of netnews. In: CSCW94 – con-
ference on computer supported cooperative work,
Chapel Hill. Addison-Wesley, pp 175–186

Sarwar B, Karypis G, Konstan J, Reidl J (2001) Item-
based collaborative filtering recommendation algo-
rithms. In: WWW ’01: proceedings of the tenth
international conference on World Wide Web, Hong
Kong. ACM, New York, pp 285–295

Schein AI, Popescul A, Ungar LH, Pennock DM
(2002) Methods and metrics for cold-start recom-
mendations. In: SIGIR ’02: proceedings of the 25th
annual international ACM SIGIR conference on
research and development in information retrieval,
Tampere. ACM, New York, pp 253–260

Soboroff I, Nicholas C (1999) Combining content
and collaboration in text filtering. In: Joachims T
(ed) Proceedings of the IJCAI’99 workshop on ma-
chine learning in information filtering, Stockholm,
pp 86–91

Srebro N, Jaakkola T (2003) Weighted low-rank ap-
proximations. In: International conference on ma-
chine learning (ICML), Washington, DC

Su X, Khoshgoftaar TM (2009) A survey of collab-
orative filtering techniques. Adv Artif Intell 2009:
1–20

Su X, Greiner R, Khoshgoftaar TM, Zhu X
(2007) Hybrid collaborative filtering algorithms us-
ing a mixture of experts. In: Web intelligence,
pp 645–649

Su X, Khoshgoftaar TM, Zhu X, Greiner R (2008)
Imputation-boosted collaborative filtering using ma-
chine learning classifiers. In: SAC ’08: proceedings
of the 2008 ACM symposium on applied comput-
ing. ACM, New York, pp 949–950

Record Linkage

Peter Christen1 and William E. Winkler2

1Research School of Computer Science, The
Australian National University, Canberra, ACT,
Australia
2US Census Bureau, Suitland, MD, USA

Abstract

Many data mining and machine learning
projects require information from various data
sources to be integrated and linked before
they can be used for further analysis. A crucial
task of such data integration is to identify
which records refer to the same real-world
entities across databases when no common
entity identifiers are available and when
records can contain errors and variations. This
process of record linkage therefore has to
rely upon the attributes that are available in
the databases to be linked. For databases that
contain personal information, for example,
of customers, taxpayers, or patients, these
are commonly their names, addresses, phone
numbers, and dates of birth.

To improve the scalability of the linkage
process, blocking or indexing techniques are
commonly applied to limit the comparison
of records to pairs or groups that likely
correspond to the same entity. Records are
compared using a variety of comparison
functions, most commonly approximate string
comparators that account for typographical
errors and variations in textual attributes.

Record Linkage 1067

R

The compared records are then classified
into matches, non-matches, and potential
matches, depending upon the decision model
used. If training data in the form of true
matches and non-matches are available,
supervised classification techniques can be
employed. However, in many practical record
linkage applications, no ground truth data
are available, and therefore unsupervised
approaches are required. An approach known
as probabilistic record linkage is commonly
employed. In this article we provide an
overview of record linkage with an emphasis
on the classification aspects of this process.

Synonyms

Authority control; Citation or reference matching
(when applied to bibliographic data); Co-refer-
ence resolution; Data linkage; Data matching;
Data reconciliation; Deduplication or duplicate
detection (when applied to one database only);
Entity resolution; Field scrubbing; Identity uncer-
tainty; List washing; Merge-purge; Object identi-
fication; Object matching; Reference reconcilia-
tion

Definition

Identifying and linking records that correspond
to the same real-world entity in one or more
databases is an increasingly important task in
many data mining and machine learning projects.
The aim of record linkage is to compare records
within one (known as deduplication) or across
two databases and classify the compared pairs of
records as matches (pairs where both records are
assumed to refer to the same real-world entity)
and non-matches (pairs where the two records are
assumed to refer to different entities).

Formally, let us consider two databases (or
files), A and B, and record pairs in the product
space A � B (for the deduplication of a single
database A, the product space is A � A). The
aim of record linkage is to classify these record
pairs into the classes of matches (links) and non-

matches (non-links) (Christen 2012). Depending
upon the decision model used (Fellegi and Sunter
1969; Herzog et al. 2007), a third class of po-
tential matches (potential links) might be used.
These are difficult to classify record pairs that
will need to be manually assessed and classified
as matches or non-matches in a manual clerical
review process.

Each record pair in A � B is assumed to
correspond to either a true match or a true non-
match. The space A � B is therefore partitioned
into the set M of true matches and the set U of
true non-matches. The objective of record linkage
is to correctly classify record pairs from M into
the class of matches and pairs from U into the
class of non-matches.

Motivation and Background

Increasingly, information systems and data min-
ing projects require data from multiple sources to
be integrated and linked in order to improve data
quality, enrich existing data sources, or facilitate
data analysis that is not feasible on an individ-
ual database. Compared to analyzing databases
in isolation, the analysis of data linked across
disparate sources, either within a single or be-
tween different organizations, can lead to much
improved benefits. Integrated data can also al-
low types of analyses that are not feasible on
individual databases, for example, the detection
of fraud or terrorism suspects through the anal-
ysis of certain suspicious patterns of activities
or the identification of adverse drug reactions in
particular patient groups (Christen 2012). Record
linkage has been employed in a wide range of
domains as we discuss in section “Applications”
below.

In most cases the databases to be linked (or
deduplicated) do not contain unique entity iden-
tifiers or keys. Therefore, attributes (fields) that
are common across the databases need to be
used to identify similar records that likely corre-
spond to the same entity. If the databases contain
information about people, then these common
attributes can be names, addresses, dates of birth,
and other partially identifying personal details.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100026
http://dx.doi.org/10.1007/978-1-4899-7687-1_100053
http://dx.doi.org/10.1007/978-1-4899-7687-1_100087
http://dx.doi.org/10.1007/978-1-4899-7687-1_100097
http://dx.doi.org/10.1007/978-1-4899-7687-1_100098
http://dx.doi.org/10.1007/978-1-4899-7687-1_100101
http://dx.doi.org/10.1007/978-1-4899-7687-1_100106
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_100172
http://dx.doi.org/10.1007/978-1-4899-7687-1_100203
http://dx.doi.org/10.1007/978-1-4899-7687-1_100270
http://dx.doi.org/10.1007/978-1-4899-7687-1_100299
http://dx.doi.org/10.1007/978-1-4899-7687-1_100342
http://dx.doi.org/10.1007/978-1-4899-7687-1_100343
http://dx.doi.org/10.1007/978-1-4899-7687-1_100402

1068 Record Linkage

However, often the quality of such information
is low, as personal details can be entered or
recorded wrongly, be incomplete, or be out of
date. Record linkage based on “dirty data” is
challenging as ambiguities, errors, variations, and
value changes can lead to both false matches
(record pairs wrongly classified as referring to
the same entity) and false non-matches (missed
true matching pairs of records classified as non-
matches).

The term record linkage was used in 1946
by Halbert Dunn to describe the idea of assem-
bling a book of life for all individuals in the
world (Dunn 1946). Each such book would begin
with a birth record and end with a death record
and in between would contain marriage and di-
vorce records, as well as records about a person’s
contacts with the health and social security sys-
tems. Dunn realized that having such books of
life for a full population would provide a wealth
of information that would allow governments to
improve national statistics, better plan services,
and also help to identify individuals.

The first computer-based linkage techniques
were proposed in the 1950s and early 1960s
by Howard Newcombe et al. (1959), who also
developed the basic ideas of the successful prob-
abilistic record linkage approach described in the
following section. Based on Newcombe’s ideas,
Fellegi and Sunter in 1969 published their sem-

inal paper on a theory for probabilistic record
linkage (Fellegi and Sunter 1969). They proved
that an optimal probabilistic decision rule can be
found under the assumption of independence of
the attributes used in the comparison of records.
This influential work has been the basis for many
record linkage systems and software products,
and it is still widely used today.

Theory/Solution

We now describe the steps involved in the record
linkage process, followed by a more detailed
discussion of techniques used to classify record
pairs into matches and non-matches. Note that for
the deduplication of a single database, all steps of
the record linkage process are still applicable.

The Record Linkage Process
Figure 1 provides an overview of the steps in-
volved in the general record linkage process. We
assume two databases that contain details about
the same types of entities (such as people, busi-
nesses, scientific publications, and so on). The
first step of data cleaning and standardization is
important to convert the input data into the same
format so they are more suitable for compari-
son. This step involves, for example, converting
all letters into lower or upper case, removing

Record Linkage, Fig. 1
The general process of
linking two databases (As
adapted from Christen
2012)

Non−
matches

Possible
matches

Database A

Database B

Cleaning and
standardisation

Cleaning and
standardisation

Record pair
comparison

Similarity vector
classification

Clerical
review

Evaluation

Blocking /
Indexing

Matches

Record Linkage 1069

R

certain punctuations and words, and splitting at-
tributes into specific fields (such as title, first
name, middle name, and last name for personal
names).

The second step of blocking or indexing is
aimed at reducing the number of record pairs
that need to be compared from the full pair-
wise comparison space of jAj � jBj, where j � j
is the number of records in a database. The
idea is to only compare records in detail that
likely refer to matches. This is accomplished by
splitting the databases into blocks according to
some criteria and then only comparing records
in the same block across the two databases. An
example criteria can, for example, be a post-
or zip code attribute, resulting in only records
being compared that have the same post- or zip
code value. Various such blocking or indexing
techniques have been developed in the past few
decades (Christen 2012).

In the comparison step, candidate record pairs
generated in the blocking/indexing step are then
compared in detail using a variety of attribute and
record comparison functions. As many attributes
used in record linkage to compare records con-
tain textual values (like names and addresses),
approximate string comparison functions such
as Jaro-Winkler or edit distance are commonly
used (Christen 2012). Specific comparison func-
tions have also been developed for values such as
ages, dates, or phone numbers (Christen 2012).
Generally all these comparison functions return a
numerical similarity, s, that is normalized in 0 �
s � 1, with s D 1 if two attribute values are the
same (like “geoff” and “geoff”), s D 0 if they are
completely different (like “claude” and “geoff”),
and 0 < s < 1 if they are somehow similar (like
“geoff” and “jeff”). For each compared record
pair, a similarity vector (also known as weight
vector) is formed that contains the similarities of
all compared attributes of that pair.

In the classification step (as we discuss in
more details below), each compared candidate
record pair is classified into one of the classes of
matches, non-matches, and possibly also poten-
tial matches, depending upon the decision model
used (Fellegi and Sunter 1969; Herzog et al.
2007). Various classification techniques (both su-

pervised and unsupervised) have been developed
in the past nearly five decades.

If candidate record pairs have been classi-
fied into potential matches, a manual clerical
review process is required to decide their final
match status (match or non-match). These man-
ual classifications can flow back into the classi-
fication model when an active learning approach
is employed. Several active learning approaches
have been developed for record linkage (Christen
2012).

In the final evaluation step, the complexity,
completeness, and quality of the linked records
are evaluated using a variety of measures (Chris-
ten 2012). The complexity of a linkage can be
measured by the number of candidate record pairs
generated by an indexing or blocking technique.
Measuring completeness and linkage quality re-
quires truth data in the form of known true match-
ing and non-matching record pairs. Linkage qual-
ity is generally measured using precision and
recall, while completeness is similar to recall but
measures how many of all known true matches
are included in the set of candidate record pairs
(i.e., how many true matches are not removed in
the indexing/blocking step).

Record Linkage Model of Fellegi and
Sunter
Fellegi and Sunter (1969) provided a formal
mathematical model for ideas that had been
introduced by Newcombe et al. (1959). Fellegi
and Sunter (1969) also provided ways of
estimating key parameters without training data.
Generally, training data have not been available
for most record linkage applications.

Following the notation used in section “Defini-
tion” above, Fellegi and Sunter, making rigorous
concepts introduced by Newcombe et al. (1959),
considered ratios of probabilities of the form:

R D
P.� 2 Γ jM/

P.� 2 Γ jU /
; (1)

where � is an arbitrary agreement pattern in a
comparison space Γ . For instance, Γ might consist
of eight patterns representing simple agreement
or not on the largest name component, street

1070 Record Linkage

name, and street number (Herzog et al. 2007).
Alternatively, each � 2 Γ might additionally
account for the relative frequency with which
specific values of name components such as
“Smith”, “Zabrinsky”, “AAA”, and “Capitol”

occur. The ratio R or any monotonically
increasing function of it (such as the natural log)
is referred to as a matching weight (or score). The
decision rule is given by:

If R � T�; then designate pair as a match.

If T� < R < T�; then designate pair as a possible match (2)

and hold for clerical review.

If R � T�; then designate pair as a non-match.

The cutoff thresholds T� and T� are deter-
mined by a priori error bounds on false matches
and false non-matches. The thresholds are often
called lower and upper cutoffs. Rule (2) agrees
with intuition. If � 2 Γ consists primarily of
agreements, then it is intuitive that � 2 Γ would
be more likely to occur among matches than non-
matches, and the ratio (1) would be large. On
the other hand, if � 2 Γ consists primarily of
disagreements, then the ratio (1) would be small.
Rule (2) partitions the set � 2 Γ into three
disjoint subregions. The region fT� < R < T�g

is referred to as the no-decision region or clerical
review region (Herzog et al. 2007). In some
situations, resources are available to review pairs
clerically.

Figure 2 provides an illustration of the curves
of log frequency versus log weight for matches
and non-matches, respectively. The data used in
Fig. 2 are based on information obtained while
matching name and address files from one of the
sites for the 1988 US Dress Rehearsal Census.
The clerical review region consists of individuals
within the same household that are missing both
name and age. Figure 2 shows hypothetical cutoff
thresholds that we denote with the symbols L

(lower) and U (upper) in this figure, respectively.

Learning Parameters via the Methods of
Fellegi and Sunter
Fellegi and Sunter (1969) were the first to provide
very general methods for computing the probabil-
ities in the ratio (1). As the methods are useful, we
describe what they introduced and then show how
the ideas led into more general methods that can

be used for unsupervised learning (i.e., without
training data) in a large number of situations.

Fellegi and Sunter observed several things.
Firstly,

P.S/ D P.S jM/P.M/C P.S jU /P.U / (3)

for any set S of pairs in A � B. The probability
on the left can be computed directly from the
set of pairs. In Equation (3), M and U are
restricted to S . Secondly, if sets Ax represent
simple agreement/disagreement, under the condi-
tional independence assumption (CI) (i.e., naive
Bayes), we obtain

P.Ax
1 \ Ax

2 \ Ax
3 jD/

D P.Ax
1 jD/P.Ax

2 jD/P.Ax
3 jD/: (4)

Here D is either M or U . Then (3) and (4) pro-
vide seven equations and seven unknowns (as x
represents agree or disagree) that yield quadratic
equations that they solved. Equation (or set of
equations) (4) can be expanded to K fields.

The expectation-maximization (EM) algo-
rithm (Dempster et al. 1977) can be used to
estimate the probabilities in Eqs. (3) and (4) when
there are more than K fields or when condition
(CI) may not hold.

For the 1990 US Decennial Census, Winkler
(1988) introduced an EM algorithm that found
the best naive Bayes approximation of a general
Bayes net model where interactions between
fields were accounted for. This type of EM was
necessary because “optimal” parameters were
used for each of the �500 regions into which the

Record Linkage 1071

R

Record Linkage, Fig. 2
Log frequency versus
weight, matches and
non-matches combined

8

7

6

5

4

3

2

1

0
−28 −20 −12 −4 4

o=nonmatch, *=match

cutoff “L” = 0 and cutoff “U” = 6

12 20

Weight

L
o
g

F
r
e
q
u
e
n
c
y

USA was divided, the entire matching operations
needed to be completed in less than 6 weeks to
provide estimates required under the US law, and
it was impossible to obtain training data.

Herzog et al. (2010) provide many of the
details of the EM procedures used in the 1990 US
Decennial Census production matching systems
that we do not cover here. We provide two high-
lights that were in Herzog et al. (2010). Firstly,
the EM algorithm in this particular application
was able to adapt automatically to increasing
missing data. During 1 week in one of seven
processing offices, it was discovered that the cler-
ical review region increased significantly. Upon
follow-up, it was determined that two clerks had
managed to bypass keypunch edits on the year-
of-birth field, and all records keyed by them
disagreed on the computed age. Age and first
name were the only fields that would allow dis-
tinguishing true matches within households.

Secondly, the probabilities from the un-
supervised learning yielded better matching
results than results from an iterative refinement
procedure (a type of active learning) that was

in widespread use for matching. In the iterative
refinement procedure, a subset of clerical pairs
were followed up to determine matches and non-
matches, the matching probabilities were re-
estimated, an additional set of clerical pairs were
followed up, and parameters were reestimated,
with the entire interactive learning procedure
being repeated on the order of five cycles until
the matching probabilities stabilized.

Superficially, the EM algorithm (Winkler
1988) considers different orderings of the form

P.Ax
�;1 \ � � � \ Ax

�;kjD/

D ΠK
iD1P.Ax

�;i jA
x
�;i�1; � � � ; Ax

�;1; D/; (5)

where
; i represents the i th entry in a permuta-
tion
 of the integers 1 thru K. The greater gen-
erality of (5) in comparison to (4) can yield better
fits to the data. It can be reasonably assumed that
the EM algorithm under the conditional indepen-
dence assumption (as the actual computational
methods work) simultaneously chooses the best
permutation and the best parameters.

1072 Record Linkage

Because training data are seldom available
and can be exceptionally expensive to obtain,
some authors (Larsen and Rubin 2001) recom-
mend semi-supervised learning where a small
amount of judiciously chosen training data are
combined with a large amount of unlabeled data
for which true matching status is unknown. The
semi-supervised methods generally outperform
the unsupervised methods.

Some commercial record linkage software
uses rule-based methods, which employ
strategies such as if these three fields are the same
in a pair of records, call the pair a designated
match, designated link, or possible same entity.
Ferrante and Boyd (2012), in a large comparison,
showed that one rule-based commercial package
was outperformed by one commercial package
and several shareware packages that each applied
variants of the Fellegi-Sunter model.

Applications

Record linkage has been used in a wide range of
domains (Christen 2012; Herzog et al. 2007). In
the following we briefly describe some example
applications:

• Linking personal data: Traditionally
the most common use of record linkage
is to identify and link records about
the same person across two databases.
Examples of such linkages occur in national
censuses (linking people between two census
collections), in the health domain (linking
patient records between different hospital and
healthcare providers or over time with the
aim to compile patient-oriented longitudinal
data sets for public health studies), or between
government agencies to, for example, identify
people who commit welfare fraud.

In the health domain, population informat-
ics (Kum et al. 2014), the study of populations
by linking and analyzing large databases that
contain detailed information about a large pro-
portion of individuals in a population (such
as their health, education, financial, census,
location, shopping, employment, or social net-

working records), has recently attracted in-
creasing interest.

• Deduplication of customer databases: A
common data quality problem for many busi-
nesses is that a customer might be recorded
in their databases more than once due to ad-
dress or name changes and variations. Such
duplicates can incur significant costs for a
business, for example, when sending out ad-
vertisement mail. The task of deduplicating
a single database is in principle the same as
when linking two databases. Each record in
the database potentially needs to be compared
with all others (indexing or blocking is gener-
ally also applied to speed up the deduplication
process).

• Linking historical population data: The
quantitative social sciences are currently
seeing a shift toward the use of large-scale
data collections for studying a diverse range
of aspects of the human society. Often
these are historical data such as census,
birth, death, and marriage registries that
span several decades (or even centuries)
and that need to be linked to reconstruct
historical populations (Bloothooft et al.
2015). The major challenges when linking
such data include data quality (as such data
have to be transcribed from hand-written
forms, a process that is error-prone and
labor-intensive), the dynamics of people’s
characteristics over time, and the complexity
of roles and relationships for each individual
as they change over time.

• Consumer product comparison shop-
ping: With the increasing popularity of
online comparison shopping Web sites, the
challenging task of identifying which descrip-
tions of products across diverse shopping sites
correspond to the same real-world product
has attracted interest from various domains.
Compared to personal data, such as names
and addresses, different consumer products
might only be distinguishable by a single digit
(such as the Canon 600D and Canon 650D
digital cameras). To improve linkage quality
in this domain, novel similarity calculation
functions and machine learning approaches

Record Linkage 1073

R

that learn the characteristic features that
distinguish consumer products have been
developed (Christen 2012).

• Linking bibliographic data: Research is
increasingly being published through online
databases such as Springer Link or the ACM
Digital Library. These databases facilitate a
much faster dissemination of knowledge, and
they allow government funding agencies to
calculate numerical metrics to assess the im-
pact of researchers, research groups, and even
institutions. This requires to link all records of
an individual researcher with high accuracy.
A major challenge with bibliographic data is
that there can be several researchers with the
same name details in a database, some even
working in the same research domain. Even
if full given names are provided, it can be
unclear if two publications were written by the
same individual or not. Journal and conference
names are also often abbreviated and do not
follow standardized formats.

Future Directions

Most research in record linkage in the past
decade has concentrated on improving either
the scalability of the linkage process through
the development of advanced indexing or
blocking techniques (Christen 2012) or linkage
quality by employing sophisticated classification
techniques. Most of these techniques assume
the databases to be linked are static and the
linkage can be done off-line and in batch mode.
In the following we summarize areas of ongoing
research that aim to address various practical
problems in record linkage.

• Collective classification: Traditional record
linkage techniques classify each compared
record pair individually (Herzog et al. 2007).
This can lead to violations of transitivity (if
record A is classified as a match with record
B, and record B as a match with record C, then
records A and C must also be a match). With
traditional approaches, transitivity is often
addressed in a post-linkage process (Christen
2012).

Recently developed graph-based and
collective entity resolution techniques (Bhat-
tacharya and Getoor 2007) instead aim to find
an overall optimal assignment of records to
entities. These techniques take both attribute
similarities and relationship information
into account. They generally build a graph
where nodes are records and edges connect
records that have a similarity above a certain
minimum threshold. The task then becomes
one of splitting such a graph into individual
subgraphs such that each subgraph contains
the records of one entity only, and each entity
is represented by one subgraph.

While such techniques have been shown
to achieve high linkage quality (mainly on
bibliographic data), their computational com-
plexity (quadratic or larger in the number of
records to be linked) makes the application of
these techniques to large-scale record linkage
problems challenging. Furthermore, how to
employ such collective linkage techniques in
domains where only limited relational infor-
mation is available (such as for data about
people) is an open question.

• Group linkage: Related to the previous topic
is the challenge of linking groups of records
instead of individual pairs. Groups can, for
example, represent the people in a household
or family or the coauthors of a scientific pub-
lication. Group linkage (On et al. 2007) is
generally a two-step process, where in the
first step, individual record pairs are linked,
followed by the linkage of groups using some
form of bipartite graph matching. The chal-
lenges in group linkage occur when groups
do not have the same number of members,
when group membership changes over time,
and when groups can split or merge, such as
does happen in families and households.

• Linking temporal data: Most personal de-
tails of people change over time, such as their
addresses, names, employments, and relation-
ships. If records with such details have time
stamps attached (such as the dates when the
information was recorded), then considering
such temporal information might help im-
prove linkage quality (Li et al. 2011). For ex-

1074 Record Linkage

ample, if it is known that a certain proportion
of people in a population move their address
between two census collections 5 years apart,
then less weight should be assigned to ad-
dress similarities when the overall similarities
between records are calculated. Some initial
work has investigated how such adjustment of
similarity weights can help improve overall
linkage quality for bibliographic data (assum-
ing authors change their institutions); how-
ever more research is needed to investigate
if and how such techniques can be employed
when, for example, linking census or health
data.

• Statistical analysis across multiple files:
Economists and demographers want to
analyze (X; Y) – data where multivariate X
is taken from one file A and multivariate Y is
taken from another file B. The common data
for linking the files are typically nonunique
identifiers such as name, address, and date
of birth. Lahiri and Larsen (2005) provide
such a model that can adjust certain statistical
analyses such as regression under modest
assumptions for linkage error. Others have
considered (X; Y) – data where X and Y are
each composed of discrete or continuous data
but under very strong assumptions.

• Real-time linkage: As services in the public
and private sectors move online, organizations
increasingly require real-time linkage in ap-
plications such as online identity verification
based on personal details or web and docu-
ment search where duplicates in the set of
retrieved records or documents need to be
identified. Compared to the batch linkage of
two databases, real-time linkage considers a
stream of query records that need to be linked
in sub-second time with a potentially large
database that contains entity records. Often
these databases are also dynamic, where new
records are added and existing records are
modified.

Novel indexing techniques are required that
allow the efficient and effective retrieval of

candidate records that are likely to be match-
ing with a query record (Ramadan et al. 2015),
as well as fast classification and ranking tech-
niques that are adaptive to changes in the
underlying entity database.

• Privacy-preserving record linkage: In many
application domains, record linkage relies on
personal details, such as names and addresses,
to conduct the linkage. Privacy and confi-
dentiality issues can be of great concern, es-
pecially when databases are linked between
organizations. Many countries have privacy
legislation that limits the sharing and use of
personal information. Linking records, for ex-
ample, between a private hospital and a gov-
ernment health department might therefore be
limited or even prohibited.

The past decade has seen the emergence
of research that aims to develop techniques
that allow the linking of databases across
organizations while ensuring that no sensitive
private or confidential information is being
revealed (Vatsalan et al. 2013). Using encod-
ing techniques such as one-way hashing and
Bloom filters, and cryptographic approaches
such as secure multiparty computation,
privacy-preserving record linkage techniques
encode records at the data sources in
such ways that similarity calculations and
approximate matching of string values are
feasible, while still allowing the linkage
of large databases in efficient and effective
ways.

Cross-References

�Classification
�Data Preparation
�Entity Resolution
�Expectation Maximization Clustering
�Link Mining and Link Discovery
�Link Prediction
� Similarity Measures
�Unsupervised Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_62
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_344
http://dx.doi.org/10.1007/978-1-4899-7687-1_948
http://dx.doi.org/10.1007/978-1-4899-7687-1_486
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
http://dx.doi.org/10.1007/978-1-4899-7687-1_976

Regression 1075

R

Recommended Reading

Bhattacharya I, Getoor L (2007) Collective entity reso-
lution in relational data. ACM Trans Knowl Discov
Data 1(1), 5-es, pp 1–35

Bloothooft G, Christen P, Mandemakers K, Schraa-
gen M (2015) Population reconstruction. Springer,
Cham

Christen P (2012) Data matching – concepts and
techniques for record linkage, entity resolution, and
duplicate detection. Data-centric systems and appli-
cations. Springer, Berlin/New York

Dempster AP, Laird NM, Rubin DB (1977) Maximum
likelihood from incomplete data via the EM algo-
rithm. J R Stat Soc Ser B 19:380–393

Dunn H (1946) Record linkage. Am J Publ Health
36(12):1412

Fellegi IP, Sunter AB (1969) A theory for record
linkage. J Am Stat Assoc 64(328):1183–1210

Ferrante A, Boyd J (2012) A transparent and trans-
portable methodology for evaluating data linkage
software. J Biomed Inf 45(1):165–172

Herzog TN, Scheuren FJ, Winkler WE (2007) Data
quality and record linkage techniques. Springer,
New York/London

Herzog TN, Scheuren FJ, Winkler WE (2010) Record
linkage. Wiley Interdiscip Rev Comput Stat 2(5):
535–543

Kum HC, Krishnamurthy A, Machanavajjhala A, Ahalt
SC (2014) Social genome: putting big data to work
for population informatics. IEEE Comput 47(1):56–
63

Lahiri P, Larsen M (2005) Regression analysis with
linked data. J Am Stat Assoc 100:222–230

Larsen MD, Rubin DB (2001) Iterative automated
record linkage using mixture models. J Am Stat
Assoc 96(453):32–41

Li P, Dong XL, Maurino A, Srivastava D (2011)
Linking temporal records. The VLDB conference
was in Seattle, WA. In: Proceedings of the VLDB
endowment, Seattle, vol 4, issue 11

Newcombe H, Kennedy J, Axford S, James A
(1959) Automatic linkage of vital records. Science
130(3381):954–959

On BW, Koudas N, Lee D, Srivastava D (2007) Group
linkage. In: IEEE international conference on data
engineering, Istanbul, pp 496–505

Ramadan B, Christen P, Liang H, Gayler RW (2015)
Dynamic sorted neighborhood indexing for real
time entity resolution. ACM J Data Inf Qual 6(4):15

Vatsalan D, Christen P, Verykios VS (2013) A tax-
onomy of privacy-preserving record linkage tech-
niques. Elsevier Inf Syst 38(6):946–969

Winkler WE (1988) Using the EM algorithm for
weight computation in the Fellegi-Sunter model of
record linkage. The American Statistical Associa-

tion that is located in Alexandria, VA publishes the
proceedings. In: Proceedings of the section on sur-
vey research methods, New Orleans, Washington,
pp 667–671

Recurrent Associative Memory

�Hopfield Network

Recursive Partitioning

�Divide-and-Conquer Learning

Reference Reconciliation

�Entity Resolution
�Record Linkage

Regression

Novi Quadrianto1 and Wray L. Buntine2;3

1Department of Informatics, SMiLe CLiNiC,
University of Sussex, Brighton, UK
2Statistical Machine Learning Program, NICTA,
Canberra, ACT, Australia
3Faculty of Information Technology, Monash
University, Clayton, VIC, Australia

Definition

Regression is a fundamental problem in statistics
and machine learning. In regression studies,
we are typically interested in inferring a real-
valued function (called a regression function)
whose values correspond to the mean of a
dependent (or response or output) variable
conditioned on one or more independent (or
input) variables. Many different techniques
for estimating this regression function have
been developed, including parametric, semi-
parametric, and nonparametric methods.

http://dx.doi.org/10.1007/978-1-4899-7687-1_127
http://dx.doi.org/10.1007/978-1-4899-7687-1_303
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_712

1076 Regression

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

Sinusoidal observations
Degree–1 polynomial
Degree–5 polynomial
Degree–20 polynomial

x

y

Regression, Fig. 1 Twentyfive data points (one-
dimensional input x and output y variables) with a
Gaussian-corrupted sinusoidal input–output relationship,
yD sin.2	x/ C
 where
 is the normally distributed

noise. The task is to learn the functional relationship
between x and y. Various lines show the inferred
relationship based on a linear regression model with
polynomial basis functions having various degrees

Motivation and Background

Assume that we are given a set of data points
sampled from an underlying but unknown dis-
tribution, each of which includes input x and
output y. An example is given in Fig. 1. The
task of regression is to learn a hidden functional
relationship between x and y from observed and
possibly noisy data points. In Fig. 1, the input–
output relationship is a Gaussian-corrupted sinu-
soidal relationship, that is, y D sin.2�x/ C �

where � is the normally distributed noise. Var-
ious lines show the inferred relationship based
on a linear parametric regression model with
polynomial basis functions. The higher the de-
gree of the polynomial, the more complex is
the inferred relationship, as shown in Fig. 1, as
the function tries to better fit the observed data
points.

While the most complex polynomial here is
an almost perfect reconstruction of observed
data points (it has “low bias”), it gives a very
poor representation of the true underlying
function sin.2�x/ that can change significantly

with the change of a few data points (it has
“high variance”). This phenomenon is called
the � bias-variance dilemma, and selecting a
complex model with too high a variance is
called � overfitting. Complex parametric models
(like polynomial regression) lead to low bias
estimators with a high variance, while simple
models lead to low variance estimators with
high bias. To sidestep the problem of trying
to estimate or select the model complexity
represented, for instance, by the degree of the
polynomial, so-called nonparametric methods
allow a rich variety of functions from the outset
(i.e., a function class not finitely parameterizable)
and usually provide a hyperparameter that tunes
the regularity, curvature, or complexity of the
function.

Theory/Solution

Formally, in a regression problem, we are in-
terested in recovering a functional dependency
yi Df .xi / C �i from N -observed training data

http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

Regression 1077

R

points f.xi ; yi /g
N
iD1, where yi 2R is the noisy

observed output at input location xi 2R
d . For

� linear regression, we represent the regression
function f ./ by a parameter w 2 R

H in the form
f .xi / WD h�.xi /; wi for H fixed basis functions
f�h.xi /g

H
hD1. With general basis functions such

as polynomials, exponentials, sigmoids, or even
more sophisticated Fourier or wavelets bases, we
can obtain a regression function which is non-
linear with regard to the input variables although
still linear with regard to the parameters.

In regression, many more methods are pos-
sible. Some variations on these standard linear
models are piecewise linear models, trees, and
splines (roughly, piecewise polynomial models
joined up smoothly) (Hastie et al. 2003). These
are called semi-parametric models, because they
have a linear parametric component as well as a
nonparametric component.

Fitting
In general, regression fits a model to data using an
objective function or quality criterion in a form
such as

E.f / D

NX
iD1

�.yi ; f .xi // ;

where smaller E.f / implies better quality. This
might be derived as an error/loss function or as
a negative log likelihood or log probability. The
squared error function is the most convenient
(leading to a least squares calculation), but many
possibilities exist. In general, methods are distin-
guished by three aspects: (1) the representation
of the function f ./, (2) the form of the term
�.yi ; f .xi //, and (3) the penalty term discussed
next.

Regularized/Penalized Fitting
The issue of overfitting, as mentioned already
in the section Motivation and Background, is
usually addressed by introducing a regulariza-
tion or penalty term to the objective function.
The regularized objective function is now in the
form of:

Ereg D E.f /C �R.f /: (1)

Here, E.f / measures the quality of the solu-
tion for f ./ on the observed data points, R.f /

penalizes complexity of f ./, and � is called
the regularization parameter which controls the
relative importance between the two. Measures
of function curvature, for instance, can be used
for R.f /. In standard � support vector machines,
the term E.f / measures the hinge loss, and
penalty R.f / is the sum of squares of the param-
eters, also used in ridge regression (Hastie et al.
2003).

Bias-Variance Dilemma
As we have seen in the previous section, the
introduction of the regularization term can help
avoid overfitting. However, this raises the ques-
tion of determining an optimal value for the
regularization parameter �. The specific choice
of � controls the bias-variance tradeoff (Geman
et al. 1992).

Recall that we try to infer a latent regression
function f .x/ based on N -observed training data
points D D f.xi ; yi /g

N
iD1. The notation f .xID/

explicitly shows the dependence of f on the
data D. The mean squared error (MSE) which
measures the effectiveness of f as a predictor of
y is

EŒ.y � f .xID//2jx;D	

D EŒ.y � EŒyjx	/2jx;D	C .f .xID/ � EŒyjx	/2

(2)

where EŒ:	 means expectation with respect to a
conditional distribution p.yjx/. The first term
of (2) does not depend on f .xID/, and it rep-
resents the intrinsic noise on the data. The MSE
of f as an estimator of the regression EŒyjx	 is

EDŒ.f .xID/ � EŒyjx	/2	 (3)

where ED means expectation with respect to the
training set D. The estimation error in (3) can
be decomposed into a bias and a variance terms,
that is,

http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

1078 Regression

EDŒ.f .xID/ � EŒyjx	/2	 D EDŒ.f .xID/

� EDŒf .xID/	C EDŒf .xID/	 � EŒyjx	/2	

D EDŒ.f .xID/ � EDŒf .xID/	/2	

C .EDŒf .xID/	 � EŒyjx	/2 C 2EDŒ.f .xID/

� EDŒf .xID/	/	.EDŒf .xID/	 � EŒyjx	/

D EDŒ.f .xID/ � EDŒf .xID/	/2	

C .EDŒf .xID/	 � EŒyjx	/2

D varianceC bias2:

The bias term measures the difference between
the average predictor over all datasets and the
desired regression function. The variance term
measures the adaptability of the predictor to a
particular dataset. There is a tradeoff between the
bias and variance contributions to the estimation
error, with very flexible models having low bias
but high variance (overfitting) and relatively rigid
models having low variance but high bias (un-
derfitting). Typically, variance is reduced through
“smoothing,” that is, an introduction of the regu-
larization term. This, however, will introduce bias
as peaks and valleys of the regression function
will be blurred. To achieve an optimal predictive
capability, an estimator with the best balance
between bias and variance is chosen by varying
the regularization parameter �. It is crucial to
note that bias-variance decomposition albeit pow-
erful is based on averages of datasets; however,
in practice only a single dataset is observed.
In this regard, a Bayesian treatment of regres-
sion, such as Gaussian process regression which
will avoid overfitting problem of maximum like-
lihood and which will also lead to automatic
methods of determining model complexity using
the training data alone, could be an attractive
alternative.

Nonparametric Regression
In the parametric approach, an assumption on
the mathematical form of the functional rela-
tionship between input x and output y such as
linear, polynomial, exponential, or combination
of them needs to be chosen a priori. Subsequently,
parameters are placed on each of the chosen

forms and the optimal values learned from the
observed data. This is restrictive both in the fixed
functional form and in the ability to vary the
model complexity. Nonparametric approaches try
to derive the functional relationship directly from
the data, that is, they do not parameterize the
regression function.

�Gaussian Processes for regression, for in-
stance, are well developed. Another approach is
the kernel method, of which a rich variety exists
(Hastie et al. 2003). These can be viewed as a re-
gression variant of nearest neighbor classification
where the function is made up of a local element
for each data point:

f .x/ D

P
i yi K�.xi ; x/P

i K�.xi ; x/
;

where the function K�.xi ; / is a nonnegative
“bump” in x space centered at its first argument
with diameter approximately given by �. Thus,
the function has a variable contribution from
each data point and � controls the bias-variance
tradeoff.

Generalized Linear Models
The previous discussion about regression focuses
on continuous output/dependent variables. While
this type of regression problem is ubiquitous,
there are however some interests in cases of
restricted output variables:

1. The output variable consists of two categories
(called binomial regression).

2. The output variable consists of more than two
categories (called multinomial regression).

3. The output variable consists of more than two
categories which can be ordered in a meaning-
ful way (called ordinal regression). and

4. The output variable is a count of the repetition
of the occurrence of an event (called poisson
regression).

Nelder and Wedderburn (1972) introduced the
generalized linear model (GLM) by allowing the
linear model to be related to the output vari-
ables via a link function. This is a way to unify
different cases of response variables under one

http://dx.doi.org/10.1007/978-1-4899-7687-1_100178

Regression 1079

R

Regression, Table 1 A table of various link functions
associated with the assumed distribution on the output
variable

Distribution of
dependent variable

Name Link function

Gaussian Identity link g.�/ D �

Poisson Log link g.�/ D log.�/

Binomial
multinomial

Logit link g.�/ D log
�

�

1��

�

Exponential
gamma

Inverse link g.�/ D ��1

Inverse Gaussian Inverse
squared link

g.�/ D ��2

framework, each only differs in the choice of the
link function. Specifically, in GLM, each output
variable is assumed to be generated from the
exponential family of distributions. The mean of
this distribution depends on the input variables
through

EŒy	 D g.�/ D w0Cw1�1.xi /C: : :CwD�D.xi /;

(4)
where g.�/ is the link function (Table 1). The pa-
rameters of the generalized linear model can then
be estimated by the maximum likelihood method,
which can be found by iterative reweighted least
squares (IRLS), an instance of the expectation
maximization (EM) algorithm.

Other Variants of Regression
So far, we have focused on the problem of pre-
dicting a single output variable y from an input
variable x. Some studies look at predicting multi-
ple output variables simultaneously. The simplest
approach for the multiple outputs problem would
be to model each output variable with a different
set of basis functions. The more common ap-
proach uses the same set of basis functions to
model all of the output variables. Not surpris-
ingly, the solution to the multiple outputs problem
decouples into independent regression problems
with shared basis functions.

For some other studies, the focus of regres-
sion is on computing several regression functions
corresponding to various percentage points or
quantiles (instead of the mean) of the conditional
distribution of the dependent variable given the

independent variables. This type of regression is
called quantile regression (Koenker 2005). The
sum of tilted absolute loss (called pinball loss)
is being optimized for this type of regression.
Quantile regression has many important appli-
cations within econometrics, data mining, social
sciences, and ecology, among other domains.

Instead of inferring one regression function
corresponding to the mean of a response variable,
k regression functions can be computed with
the assumption that the response variable is
generated by a mixture of k components. This
is called the mixture of regressions problem
(Gaffney and Smyth 1999). Applications include
trajectory clustering, robot planning, and motion
segmentation.

Another important variant is the heteroscedas-
tic regression model where the noise variance
on the data is a function of the input variable
x. The Gaussian process framework can be used
conveniently to model this noise-dependent case
by introducing a second Gaussian process to
model the dependency of noise variance on the
input variable (Goldberg et al. 1998). There are
also attempts to make the regression model more
robust to the presence of a few problematic data
points called outliers. The sum of absolute loss
(instead of the sum of squared loss) or student’s
t-distribution (instead of Gaussian distribution)
can be used for robust regression.

Cross-References

�Gaussian Processes
�Linear Regression
� Support Vector Machines

Recommended Reading

Machine learning textbooks such as Bishop
(2006), among others, introduce different
regression models. For a more statistical
introduction including an extensive overview
of the many different semi-parametric methods
and non-parametric methods such as kernel
methods, see Hastie et al. (2003). For a coverage

http://dx.doi.org/10.1007/978-1-4899-7687-1_100178
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_810

1080 Regression Trees

of key statistical issues including nonlinear
regression, identifiability, measures of curvature,
autocorrelation, and such, see Seber and Wild
(1989). For a large variety of built-in regression
techniques, refer to R (http://www.r-project.org/).

Bishop C (2006) Pattern recognition and machine
learning. Springer, New York

Gaffney S, Smyth P (1999) Trajectory clustering with
mixtures of regression models. In: ACM SIGKDD,
vol 62. ACM, New York, pp 63–72

Geman S, Bienenstock E, Doursat R (1992) Neural
networks and the bias/variance dilemma. Neural
Comput 4:1–58

Goldberg P, Williams C, Bishop C (1998) Regression
with input-dependent noise: a Gaussian process
treatment. In: Neural information processing sys-
tems, vol 10. MIT

Hastie T, Tibshirani R, Friedman J (Corrected
ed) (2003) The elements of statistical learning:
data mining, inference, and prediction. Springer,
New York

Koenker R (2005) Quantile regression. Cambridge
University Press, Cambridge

Nelder JA, Wedderburn RWM (1972) General-
ized linear models. J R Stat Soc: Ser A 135:
370–384

Seber G, Wild C (1989) Nonlinear regression. Wiley,
New York

Regression Trees

Luı́s Torgo
University of Porto, Porto, Portugal

Synonyms

Decision trees for regression; Piecewise constant
models; Tree-based regression

Definition

Regression trees are supervised learning methods
that address multiple regression problems. They
provide a tree-based approximation Of , of an
unknown regression function Y D f .x/C " with
Y 2 < and " 	 N.0;
2/, based on a given
sample of data D D fhx1

i ; � � � ; x
p
i ; yi ig

n
iD1. The

obtained models consist of a hierarchy of logical
tests on the values of any of the p predictor vari-

ables. The terminal nodes of these trees, known
as the leaves, contain the numerical predictions
of the model for the target variable Y .

Motivation and Background

Work on regression trees goes back to the
AID system by Morgan and Sonquist (1963).
Nonetheless, the seminal work is the book
Classification and Regression Trees by Breiman
and colleagues (1984). This book has established
several standards in many theoretical aspects
of tree-based regression, including over-fitting
avoidance by post-pruning, the notion of
surrogate splits for handling unknown variable,
and estimating variable importance.

Regression trees have several features that
make them a very interesting approach to several
multiple regression problems. Namely, regression
trees provide (i) automatic variable selection
making them highly insensitive to irrelevant
variables, (ii) computational efficiency that
allows addressing large problems, (iii) handling
of unknown variable values, (iv) handling of
both numerical and nominal predictor variables,
(v) insensitivity to predictors’ scales, and (vi)
interpretable models for most domains. In spite
of all these advantages, regression trees have poor
prediction accuracy in several domains because
of the piecewise constant approximation they
provide, and they are also unstable with respect
to small changes on the training data.

Structure of Learning System

The most common regression trees are binary
with logical tests in each node (an example is
given on the left graph of Fig. 1). Tests on nu-
merical variables usually take the form xi < ˛,
with ˛ 2 <, while tests on nominal variables
have the form xj 2 fv1; � � � ; vmg. Each path
from the root (top) node to a leaf can be seen
as a logical assertion defining a region on the
predictors’ space. Any regression tree provides a
full mutually exclusive partition of the predictor
space into L regions with boundaries that are

http://www.r-project.org/
http://dx.doi.org/10.1007/978-1-4899-7687-1_100103
http://dx.doi.org/10.1007/978-1-4899-7687-1_100360
http://dx.doi.org/10.1007/978-1-4899-7687-1_100489

Regression Trees 1081

R

Example of a Regression Tree

x2 < 3.1

x1 < 3.4

x2 < 6.1

x1 >= 6.6

x2 >= 3.1

x1 >= 3.4

x2 >= 6.1

x1 < 6.6

y = 3.6
n=20 100%

y = 0.75
n=2 10%

y = 4
n=18 90%

y = 2.2
n=6 30%

y = 4.8
n=12 60%

y = 3.8
n=7 35%

y = 2.3
n=3 15%

y = 4.9
n=4 20%

y = 6.3
n=5 25%

y = 0.75

y = 2.2

y = 2.3y = 4.9

y = 6.3

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●
4

6

8

2 4 6 8
x1

x2

Partitioning of the Predictors' Space

Regression Trees, Fig. 1 A regression tree and the partitioning it provides

parallel to the predictors’ axes due to the form
of the tests. Figure 1 illustrates these ideas with
a tree and the respective partitioning on the right
side of the graph.

Using a regression tree for obtaining predic-
tions for new observations is straightforward. For
each new observation, we follow a path from the
root node to a leaf selecting the branches accord-
ing to the variable values of the observation. All
observations falling in a partition are predicted
with the same constant value, and that is the rea-
son for regression trees sometimes being referred
to as piecewise constant models. In effect, the
approximation provided by a regression tree is
given by

Y D
X

l 2 L
kl � I.Pl / (1)

where L is the set of L leaves, the ks are the
constants at each leaf, I./ is an indicator func-
tion, and Pi is a logical assertion formed by the
conjunction of conditions from the root node till
the leaf i . For instance, the rightmost leaf of the
tree in Fig. 1 is described by the logical assertion
x2 � 3:1 ^ x1 � 3:4 ^ x2 � 6:1, which is
equivalent to x1 � 3:4 ^ x2 � 6:1.

Learning a Regression Tree
A binary regression tree is obtained by a very ef-
ficient algorithm known as recursive partitioning
(Algorithm 1).

If the termination criterion is not met by the
input sample D, the algorithm selects the best
logical test on one of the predictor variables
according to some criterion. This test divides the
current sample in two partitions: the one with
the cases satisfying the test and the remaining.
The algorithm proceeds by recursively apply-
ing the same method to these two partitions to
obtain the left and right branches of the node.
Algorithm 1 has three main components that
characterize the type of regression tree we are
obtaining: (i) the termination criterion, (ii) the
constant k, and (iii) the method to find the best
test on one of the predictors. The choices for
these components are related to the preference
criteria that are used to build the trees. The most
common criterion is the minimization of the sum
of the square errors, known as the least squares
(LS) criterion. Using this criterion it can be eas-
ily proven (e.g., Breiman et al. 1984) that the
constant k should be the average target variable
value of the cases in the leaf. With respect to

1082 Regression Trees

Algorithm 1 Recursive partitioning
1: function RECURSIVEPARTITIONING(D)

Input W D, a sample of cases, fhx1
i
; � � � ; x

p

i
; yi ig

Output W t , a tree node

2: if <TERMINATION CRITERION> then
3: Return a leaf node with <CONSTANT K>
4: else
5: t new tree node
6: t:split <FIND THE BEST TEST ON ONE OF THE VARIABLES>
7: t:lef tNode RecursivePartitioning(fx 2D W x � t:splitg)
8: t:rightNode RecursivePartitioning(fx 2D W x ² t:splitg)
9: Return the node t

10: end if
11: end function

the termination criterion, usually very relaxed
settings are selected so that an overly large tree
is grown. The reasoning is that the trees will
be pruned afterward with the goal of overcom-
ing the problem of over-fitting of the training
data.

According to the LS criterion, the error in a
given node is given by

Err.t/ D
1

nt

X
hxi ;yi i2Dt

.yi � kt /
2 (2)

where Dt is the sample of cases in node t , nt is
the cardinality of this set, and kt is the average
target variable value of the cases in Dt .

Any logical test s divides the cases in Dt

in two partitions, DtL and DtR . The resulting
pooled error is given by

Err.t; s/ D
ntL

nt

�Err.tL/C
ntR

nt

�Err.tR/

(3)
where ntL=nt (ntR =nt) is the proportion of cases
going to the left (right) branch of t .

In this context, we can estimate the value of
the split s by the respective error reduction, and
this can be used to evaluate all candidate splits
test for a node:

Δ.s; t/ D Err.t/ �Err.t; s/ (4)

Finding the best split test for a node t in-
volves evaluating all possible tests for this node
using Eq. 4. For each predictor of the problem,

one needs to evaluate all possible splits in that
variable. For continuous variables, this requires
a sorting operation on the values of this variable
occurring in the node. After this sorting, a fast
incremental algorithm can be used to find the best
cut point value for the test (e.g., Torgo 1999).
With respect to nominal variables, Breiman and
colleagues (1984) have proved a theorem that
avoids trying all possible combinations of values,
reducing the computational complexity of this
task from O.2v�1 � 1/ to O.v � 1/, where v

is the number of values of the nominal vari-
able.

Departures from the standard learning pro-
cedure described above include, among others,
the use of multivariate split nodes (e.g., Breiman
et al. 1984, Li et al. 2000, and Gama 2004) to
overcome the axis parallel representation limita-
tion of partitions, the use of different criteria to
find the best split node (e.g., Robnik-Sikonja and
Kononenko 1996, Buja and Lee 2001, and Loh
2002), the use of different preference criteria to
guide the tree growth (e.g., Breiman et al. 1984,
Torgo 1999, Buja and Lee 2001, and Torgo and
Ribeiro 2003), and the use of both regression
and split nodes (e.g., Lubinsky 1995 and Malerba
et al. 2004).

Pruning Regression Trees
As most nonparametric modeling techniques, re-
gression trees may over-fit the training data which
will inevitably lead to poor out of the sample

Regression Trees 1083

R

predictive performance. The standard procedure
to fight this undesirable effect is to grow an overly
large tree and then to use some reliable error
estimation procedure to find the “best” sub-tree
of this large model. This procedure is known as
post-pruning a tree (Breiman et al. 1984). An
alternative is to stop tree growth sooner in a
process known as pre-pruning which again needs
to be guided by reliable error estimation to known
when over-fitting is starting to occur. Although
more efficient in computational terms, this latter
alternative may lead to stop tree growth too soon
even with look-ahead mechanisms.

Post-pruning is usually carried out in a three-
stage procedure: (i) a set of sub-trees of the initial
tree is generated, (ii) some reliable error esti-
mation procedure is used to obtain estimates for
each member of this set, and (iii) some method
based on these estimates is used to select one
of these trees as the final tree model. Different
methods exist for each of these steps. A common
setup (e.g., Breiman et al. 1984) is to use error-
complexity pruning to generate a sequence of
nested sub-trees, whose error is then estimated by
cross validation. The final tree is selected using
the x-SE rule which starts with the lowest esti-
mated error sub-tree and then selects the smallest
tree within the interval of x standard errors of the
lowest estimated error tree (a frequent setting is
to use 1 standard error).

Variations on the subject of pruning regression
trees include, among others, pre-pruning
alternatives (e.g., Breiman and Meisel 1976
and Friedman 1979), the use of different tree error
estimators (see Torgo (1998) for a comparative
study and references to different alternatives),
and the use of the MDL principle to guide
the pruning (Robnik-Sikonja and Kononenko
1998).

Cross-References

�Model Trees
�Random Forests
�Regression
� Supervised Learning

Recommended Reading

Breiman L, Friedman J, Olshen R, Stone C
(1984) Classification and regression trees.
Statistics/probability series. Wadsworth &
Brooks/Cole Advanced Books & Software,
Belmont

Breiman L, Meisel WS (1976) General estimates of the
intrinsic variability of data in nonlinear regression
models. J Am Stat Assoc 71:301–307

Buja A, Lee Y-S (2001) Data mining criteria for tree-
based regression and classification. In: Proceed-
ings of ACM SIGKDD international conference on
knowledge discovery and data mining, San Fran-
cisco, pp 27–36

Friedman JH (1979) A tree-structured approach to
nonparametric multiple regression. In: Gasser T,
Rosenblatt M (eds) Smoothing techniques for curve
estimation. Lecture notes in mathematics, vol 757.
Springer, Berlin/New York, pp 5–22

Gama J (2004) Functional trees. Mach Learn
55(3):219–250

Li KC, Lue H, Chen C (2000) Interactive tree-
structured regression via principal Hessians direc-
tion. J Am Stat Assoc 95:547–560

Loh W (2002) Regression trees with unbiased variable
selection and interaction detection. Stat Sin 12:
361–386

Lubinsky D (1995) Tree structured interpretable re-
gression. In: Proceedings of the workshop on AI &
statistics, Key West

Malerba D, Esposito F, Ceci M, Appice A (2004)
Top-down induction of model trees with regression
and splitting nodes. IEEE Trans Pattern Anal Mach
Intell 26(5):612–625

Morgan JN, Sonquist JA (1963) Problems in the anal-
ysis of survey data, and a proposal. J Am Stat Assoc
58(302):415–434

Robnik-Sikonja M, Kononenko I (1996) Context-
sensitive attribute estimation in regression. In: Pro-
ceedings of the ICML-96 workshop on learning in
context-sensitive domains, Bari

Robnik-Sikonja M, Kononenko I (1998) Pruning re-
gression trees with MDL. In: Proceedings of ECAI-
98, Brighton

Torgo L (1998) Error estimates for pruning regression
trees. In: Nedellec C, Rouveirol C (eds) Proceedings
of the 10th European conference on machine learn-
ing, Chemnitz. LNAI, vol 1398. Springer

Torgo L (1999) Inductive learning of tree-based re-
gression models. PhD thesis, Faculty of Sciences,
Department of Computer Science, University of
Porto

Torgo L, Ribeiro R (2003) Predicting outliers.
In: Lavrac N, Gamberger D, Todorovski L,
Blockeel H (eds) Proceedings of principles of
data mining and knowledge discovery (PKDD’03),
Cavtat/Dubronik. LNAI, vol 2838. Springer,
pp 447–458

http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_803

1084 Regularization

Regularization

Xinhua Zhang
NICTA, Australian National University,
Canberra, ACT, Australia
School of Computer Science, Australian
National University, Canberra, ACT, Australia
NICTA London Circuit, Canberra, ACT,
Australia

Abstract

Regularization plays a key role in many ma-
chine learning algorithms. Exactly fitting a
model to the training data is generally undesir-
able, because it will fit the noise in the training
examples (� overfitting), and is doomed to
predict (generalize) poorly on unseen data. In
contrast, a simple model that fits the training
data well is more likely to capture the reg-
ularities in it and generalize well. A number
of regularizers have been proposed for various
applications, and theoretical tools that charac-
terize their complexity are also available.

Definition

In general, a regularizer a quantifier of the com-
plexity of a model, and many successful machine
learning algorithms fall in the framework of reg-
ularized risk minimization:

.How well the model fits the training data/

(1)

C� � .complexity/regularization of the model/;
(2)

where the positive real number � controls the
trade-off.

There is a variety of regularizers, which yield
different statistical and computational properties.
In general, there is no universally best regularizer,
and a regularization approach must be chosen
depending on the dataset.

Motivation and Background

The main goal of machine learning is to induce a
model from the observed data and use this model
to make predictions and decisions. This is also
largely the goal of general natural science and
is commonly called inverse problems (“forward
problem” means using the model to generate
observations). Therefore, it is no surprise that
regularization had been well studied before the
emergence of machine learning.

Inverse problems are typically ill posed, e.g.,
having only a finite number of samples drawn
from an uncountable space or having a finite
number of measurements in an infinite dimen-
sional space. In machine learning, we often need
to induce a classifier for the whole feature-label
space, while only a finite number of feature-label
pairs are available for training. In practice, the set
of candidate models is often flexible enough to
precisely fit all the training examples. However,
this can lead to significant overfitting when the
training data is noisy, and the real challenge is
how to generalize well on the unseen data in the
whole feature-label space.

Many techniques have been proposed to tackle
ill-posed inverse problems. Almost all of them
introduce an additional measure on how much a
model is preferred a priori (i.e., without observ-
ing the training data). This extra belief on the
desirable form of the model reflects the external
knowledge of the model designer. It cannot be
replaced by the data itself according to the “no
free lunch theorem,” which states that if there
is no assumption on the mechanism of labeling,
then it is impossible to generalize, and any model
can be inferior to another on some distribution of
the feature-label pair (Devroye et al. 1996).

A commonly used prior is the so-called
�Occam’s razor, which prefers “simple” models.
It asserts that among all the models which fit
the training data well, the simplest one is more
likely to capture the “regularities” in it and hence
has a larger chance to generalize well to the
unseen data. Then an immediate question is
how to quantify the complexity of a model,
which is often called a regularizer. Intuitively,
a regularizer can encode preference for a sparse

http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_614

Regularization 1085

R

model (few features are relevant for prediction),
a large margin model (two classes have a wide
margin), or a smooth model with weak high-
frequency components. A general framework of
regularization was given by Tikhonov (1943).

Theory

Suppose n feature-label pairs f.xi ; yi /g
n
iD1 are

drawn iid from a certain joint distribution P

on X � Y , where X and Y are the spaces of
feature and label, respectively. Let the marginal
distribution on X and Y be Px and Py respec-
tively. For convenience, let X be R

p (Euclidean
space). Denote X WD .x1; : : : ; xn/ and y WD
.y1; : : : ; yn/>.

An Illustrative Example: Ridge Regression
Ridge regression is illustrative of the use
of regularization. It tries to fit the label y

by a linear model hw; xi (inner product).
So we need to solve a system of linear
equations in w: .x1; : : : ; xn/>w D y, which
is equivalent to a linear least square problem:
minw2Rp

��X>w � y
��2

. If the rank of X is less
than the dimension of w, then it is overdetermined
and the solution is not unique.

To approach this ill-posed problem, one
needs to introduce additional assumptions on
what models are preferred, i.e., the regularizer.
One choice is to pick a matrix Γ and
regularize w by kΓwk2. As a result we solve
minw2Rp

��X>w � y
��2
C �

��Γ>w
��2

, and the
solution has a closed form w� D .XX> C

�ΓΓ>/Xy. Γ can be simply the identity matrix
which encodes our preference for small norm
models.

The use of regularization can also be justified
from a Bayesian point of view. Treating w as a
multivariate random variable and the likelihood
as exp

�
�
��X>w � y

��2
�

, then the minimizer of��X>w � y
��2

is just a maximum likelihood es-
timate of w. However, we may also assume a
prior distribution over w, e.g., a Gaussian prior

p.w/ � exp
�
��

��Γ>w
��2
�

. Then the solution

of the ridge regression is simply the maximum
a posterior estimate of w.

Examples of Regularization
A common approach to regularization is to penal-
ize a model by its complexity measured by some
real-valued function, e.g., a certain “norm” of w.
We list some examples below.

L1 regularization L1 regularizer, kwk1 WDP
i jwi j, is a popular approach to finding sparse

models, i.e., only a few components of w are
nonzero, and only a corresponding small number
of features are relevant to the prediction. A
well-known example is the LASSO algorithm
(Tibshirani 1996), which uses a L1-regularized
least square:

min
w2Rp

��X>w � y
��2
C � kwk1 :

L2 regularization The L2 regularizer, kwk2 WDqP
i jwi j

2, is popular due to its self-dual proper-
ties. In all Lp spaces, only the L2 space is Hilber-
tian and self-adjoint, so it affords much conve-
nience in studying and exploiting the dual proper-
ties of the L2-regularized models. A well-known
example is the support vector machines (SVMs),
which minimize the L2-regularized hinge loss:

1

n

nX
iD1

max f0; 1 � hw; xi ig C � kwk2
2 :

Lp regularization In general, all Lp norms

kwkp WD
�P

i jwi j
p
�1=p

(p � 1) can be used

for regularization. When p < 1,
�P

i jwi j
p
�1=p

is
no longer convex. A specially interesting case is
when p D 0, and kwk0 is defined as the number
of nonzero elements in w (the sparseness of w).
But explicitly optimizing the L0 norm leads to a
combinatorial problem which is hard to solve. In
some cases, the L1 regularizer can approximately
recover the solution of L0 regularization (Candes
and Tao 2005).

Lp;q regularizer The Lp;q regularizer is pop-
ular in the context of multitask learning (Tropp
2006). Suppose there are T tasks, and each train-
ing example xi has a label vector yi 2 R

T

with each component corresponding to a task.

1086 Regularization

For each task t , we seek for a linear regressor
hwt ; xi such that for each training example xi ,
hwt ; xi i fits the t -th component of yi . Of course,
the wt could be determined independently from
each other. But in many applications, the T tasks
are somehow related, and it will be advantageous
to learn them as a whole. Stack wt ’s into a
matrix W WD .w1; : : : ; wT / where each column
corresponds to a task and each row corresponds to
a feature. Then the intuition of multitask learning
can be concretized by regularizing W with the
Lp;q compositional norm (p; q � 1):

kW kp;q WD

0
@X

i

 X
t

jwit j
p

! q
p

1
A

1
q

;

where wit is the i -th component of wt . When
q D 1, it becomes the L1 norm of the Lp norm
of the rows, and the sparse inducing property of
L1 norm encourages the rows to have Lp norm 0,
i.e., the corresponding feature is not used by any
task. Other choices of p and q are also possible.

Entropy regularizer The entropy regularizer is
useful in boosting, and it works in a slightly dif-
ferent way from the above regularizers. Boosting
aims to find a convex combination of hypotheses,
such that the training data is accurately classified
by the ensemble. At each step, the boosting al-
gorithm maintains a distribution d (di > 0 andP

i di D 1) over the training examples, feeds d
to an oracle which returns a new hypothesis, and
then updates d and go on. As a “simple” ensem-
ble means a small number of weak hypotheses,
the boosting algorithm is expected to find an
accurate ensemble by taking as few steps as
possible. This can be achieved by exponentiated
gradient descent (Kivinen and Warmuth 1997),
which stems from the relative entropy regularizerP

i di log di

1=n
applied at each step. It also attracts

d toward the uniform distribution, which helps
avoid overfitting the noise, i.e., trying hard to
match the (incorrect) label of a few training
examples.

Miscellaneous Instead of using a function that
directly measures the complexity of the model w,
regularization can also be achieved by penalizing
the complexity of the output of the model on the
training data. This is called value regularization
(Rifkin and Lippert 2007). It not only yields neat
derivations of standard algorithms but also pro-
vides much convenience in studying the learning
theory and optimization.

Furthermore, the regularized risk minimiza-
tion framework in (1) is not the only approach
to regularization. For example, in online learning
where the model is updated iteratively, early stop-
ping is an effective form of regularization, and it
has been widely used in training neural networks.
Suppose the available dataset is divided into a
training set and a validation set and the model
is learned online from the training set, then the
algorithm terminates when the performance of
the model on the validation set stops improving.

Measuring the Capacity of Model Class
Besides penalizing the complexity of the model,
we can restrict the complexity of the model class
F in the first place. For example linear regression
is intrinsically “simpler” than quadratic regres-
sion. Decision stumps are “simpler” than linear
classifiers. In other words, regularization can be
achieved by restricting the capacity of the model
class, and the key question is how to quantify this
capacity. Some commonly used measures in the
context of binary classification are the following:

VC dimension The Vapnik-Chervonenkis
dimension (�VC dimension) quantifies how
many data points can be arbitrarily labeled
by using the functions in F (Vapnik and
Chervonenkis 1971). F is said to shatter a set
of data points x1; : : : ; xn if, for any assignment
of labels to these points, there exists a function
f 2 F which yields this labeling. The VC
dimension of F is the maximum n such that any
n data points can be shattered by F . For example,
decision stumps have VC dimension 2, and linear
classifiers (with bias) in a p dimensional space
have VC dimension p C 1.

http://dx.doi.org/10.1007/978-1-4899-7687-1_881

Regularization 1087

R

Covering number The idea of covering number
(Guo et al. 1999) is to characterize the inherent
“dimension” of F , in a way that follows the
standard concept of vector dimension. Given n

data points x1; : : : ; xn, we may endow the model
class F with the following metric:

dn.f; g/ WD
1

n

nX
iD1

ı.f .xi / ¤ g.xi //; 8f; g 2 F ;

where ı. � / D 1 if � is true and 0 otherwise. A set
of functions f1; : : : ; fm is said to be a cover of F
at radius � if, for any function f 2 F , there exists
an fi such that dn.f; fi / < �. Then the covering
number of F at radius � > 0 with respect to dn is
the minimum size of a cover of radius �.

To understand the motivation of the definition,
consider the unit ball in R

p . To cover it by � ra-
dius balls, one needs order N.�; p/ D ��p balls.
Then the dimension p can be estimated from
the rate of growth of log N.�; p/ D �p log �

with respect to �. The covering number is an
analogy of N.�; p/, and the dimension of F can
be estimated in the same spirit.

Rademacher average The Rademacher average
is a soft variant of the VC dimension. Instead
of requiring the model class to shatter n data
points, it allows that the labels be violated at
some cost. Let
i 2 f�1; 1g be an arbitrary
assignment of the labels, and assume all functions
in F range in f�1; 1g (this restriction can be
relaxed). Then a model f 2 F is considered
as the most consistent with f
ig if it maximizes
1
n

Pn
iD1
i f .xi /. This term equals 1 if F does

contain a model consistent with f
ig. Then we
take an average over all possible assignments of

i , i.e., treating
i as a binary random variable
with P.
i D 1/ D P.
i D �1/ D 0:5 and
calculating the expectation over f
ig:

Rn.F/ D E
�

"
sup
f 2F

1

n

nX
iD1

i f .xi /

#
:

Furthermore, we may take expectation over the
samples x1; : : : ; xn:

R.F/ D E
xi�Px

E
�

"
sup
f 2F

1

n

nX
iD1

i f .xi /

#
:

Therefore, similar to VC dimension, the
Rademacher average is high if the model class
F is “rich” and can match most assignments of
f
ig.

Applications

In many applications such as bioinformatics, the
training examples are expensive and the number
of features p is much higher than the number of
labeled examples n. In such cases, regularization
is crucial, e.g., Zhang et al. (2008).

L1 regularization has gained much popularity
recently in the field of compressed sensing, and
it has been widely used in imaging for radar,
astronomy, medical diagnosis, and geophysics.
See an ensemble of publications at http://dsp.rice.
edu/cs.

The main spirit of regularization, namely, a
preference for models with lower complexity,
has been used by some �model evaluation tech-
niques. Examples include Akaike information
criterion (AIC), Bayesian information criterion
(BIC), �minimum description length (MDL),
and the minimum message length (MML).

Cross-References

�Minimum Description Length Principle
�Model Evaluation
�Occam’s Razor
�Overfitting
� Support Vector Machines
�VC Dimension

Recommended Reading

Regularization lies at the heart of statistical
machine learning, and it is indispensable in
almost every learning algorithm. A comprehen-
sive statistical analysis from the computational

http://dsp.rice.edu/cs
http://dsp.rice.edu/cs
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_614
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_881

1088 Regularization Networks

learning theory perspective can be found in
Bousquet et al. (2005) and Vapnik (1998). Abun-
dant resources on compressed sensing including
both theory and applications are available at
http://dsp.rice.edu/cs. Regularizations related to
SVMs and kernel methods are discussed in
detail by Schölkopf and Smola (2002) and
Shawe-Taylor and Cristianini (2004). Anthony
and Bartlett (1999) provide in-depth theoretical
analysis for neural networks.

Anthony M, Bartlett PL (1999) Neural network learn-
ing: theoretical foundations. Cambridge University
Press, Cambridge

Bousquet O, Boucheron S, Lugosi G (2005) Theory of
classification: a survey of recent advances. ESAIM:
Probab Stat 9:323–375

Candes E, Tao T (2005) Decoding by linear
programming. IEEE Trans Inf Theory 51(12):
4203–4215

Devroye L, Györfi L, Lugosi G (1996) A probabilistic
theory of pattern recognition. Applications of math-
ematics, vol 31. Springer, New York

Guo Y, Bartlett PL, Shawe-Taylor J, Williamson RC
(1999) Covering numbers for support vector ma-
chines. In: Proceedings annual conference compu-
tational learning theory. Montreal, Canada

Kivinen J, Warmuth MK (1997) Exponentiated gradi-
ent versus gradient descent for linear predictors. Inf
Comput 132(1):1–64

Rifkin RM, Lippert RA (2007) Value regulariza-
tion and Fenchel duality. J Mach Learn Res 8:
441–479

Schölkopf B, Smola A (2002) Learning with kernels.
MIT Press, Cambridge

Shawe-Taylor J, Cristianini N (2004) Kernel methods
for pattern analysis. Cambridge University Press,
Cambridge

Tibshirani R (1996) Regression shrinkage and selec-
tion via the LASSO. J R Stat Soc Ser B Stat
Methodol 58:267–288

Tikhonov AN (1943) On the stability of inverse prob-
lems. Dokl Akad Nauk SSSR 39(5):195–198

Tropp JA (2006) Algorithms for simultaneous sparse
approximation, Part II: convex relaxation. Signal
Process 86(3):589C–602

Vapnik V (1998) Statistical learning theory. Wiley,
New York

Vapnik V, Chervonenkis A (1971) On the uniform
convergence of relative frequencies of events to
their probabilities. Theory Probab Appl 16(2):
264–281

Zhang M, Zhang D, Wells MT (2008) Variable se-
lection for large p small n regression models with
incomplete data: mapping Qtl with epistases. BMC
Bioinf 9:251

Regularization Networks

�Radial Basis Function Networks

Reinforcement Learning

Peter Stone
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Abstract

This entry provides an overview of Reinforce-
ment Learning (RL), with cross-references to
specific RL algorithms.

Reinforcement learning describes a large class of
learning problems characteristic of autonomous
agents interacting in an environment: sequential
decision-making problems with delayed reward.
Reinforcement-learning algorithms seek to learn
a policy (mapping from states to actions) that
maximizes the reward received over time.

Unlike in � supervised learning problems, in
reinforcement-learning problems, there are no
labeled examples of correct and incorrect be-
havior. However, unlike � unsupervised learning
problems, a reward signal can be perceived.

Many different algorithms for solving
reinforcement-learning problems are covered
in other entries. This entry provides just a brief
high-level classification of the algorithms.

Perhaps the most well-known approach to
solving reinforcement-learning problems, as
covered in detail by Sutton and Barto (1998),
is based on learning a value function, which
represents the long-term expected reward of each
state the agent may encounter, given a particular
policy. This approach typically assumes that
the environment is a �Markov decision process
in which rewards are discounted over time,
though it is also possible to optimize for average
reward per time step as in � average-reward
reinforcement learning. If a complete model
of the environment is available, � dynamic
programming, or specifically � value iteration,

http://dsp.rice.edu/cs
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_976
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_100410

Reinforcement Learning 1089

R

can be used to compute an optimal value function,
from which an optimal policy can be derived.

If a model is not available, an optimal
value function can be learned from experience
via model-free techniques such as � temporal
difference learning, which combine elements
of dynamic programming with Monte Carlo
estimation. Partly due to Watkins’ elegant proof
that �Q-learning converges to the optimal value
function (Watkins 1989), temporal difference
methods are currently among the most commonly
used approaches for reinforcement-learning
problems.

Watkins’ convergence proof relies on execut-
ing a policy that visits every state infinitely often.
In practice, Q-learning does converge in small,
discrete domains. However in larger and partic-
ularly in continuous domains, the learning algo-
rithm must generalize the value function across
states, a process known as � value function ap-
proximation. Examples include � instance-based
reinforcement learning, �Gaussian process re-
inforcement learning, and � relational reinforce-
ment learning.

Even when combined with value function
approximation, the most basic value-free
methods, such as Q-learning and SARSA, are
very inefficient with respect to experience:
they are not sample-efficient. With the view
that experience is often more costly than
computation, much research has been devoted
to making more efficient use of experience,
for instance, via � hierarchical reinforcement
learning, � reward shaping, or �model-based
reinforcement learning in which the experience
is used to learn a domain model, which can then
be solved via dynamic programming.

Though these methods make efficient use of
the experience that is presented to them, the goal
of optimizing sample efficiency also motivates
the study of � efficient exploration in reinforce-
ment learning. The study of exploration meth-
ods can be isolated from the full reinforcement-
learning problem by removing the notion of tem-
porally delayed reward as is done in � associative
reinforcement learning or by removing the notion
of states altogether as is done in � k-armed ban-
dits. k-Armed bandit algorithms focus entirely

on the exploration versus exploitation challenge,
without having to worry about generalization
across states or delayed rewards. Back in the
context of the full RL problem, �Bayesian re-
inforcement learning enables optimal exploration
given prior distributions over the parameters of
the learning problem. However, its computational
complexity has limited its use so far to very small
domains.

Although most of the methods above revolve
around learning a value function, reinforcement-
learning problems can also be solved without
learning value functions, by directly searching
the space of potential policies via policy search.
Effective ways of conducting such a search in-
clude � policy gradient reinforcement learning,
� least squares reinforcement-learning methods,
and evolutionary reinforcement learning.

As typically formulated, the goal of a
reinforcement-learning algorithm is to learn an
optimal (or high-performing) policy based on
knowledge of, or experience of, a reward function
(and state transition function). However, it is also
possible to take the opposite perspective that
of trying to learn the reward function based on
observation of the optimal policy. This problem
formulation is known as � inverse reinforcement
learning.

Leveraging this large body of theory and
algorithms, a current focus in the field is
deploying large-scale, successful applications of
reinforcement learning. Two such applications
treated herein are � autonomous helicopter
flight using reinforcement learning and � robot
learning.

Cross-References

�Associative Reinforcement Learning
�Autonomous Helicopter Flight Using Rein-

forcement Learning
�Average-Reward Reinforcement Learning
�Bayesian Reinforcement Learning
�Dynamic Programming
�Efficient Exploration in Reinforcement Learn-

ing
�Gaussian Process Reinforcement Learning
�Hierarchical Reinforcement Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_410
http://dx.doi.org/10.1007/978-1-4899-7687-1_109
http://dx.doi.org/10.1007/978-1-4899-7687-1_726
http://dx.doi.org/10.1007/978-1-4899-7687-1_363
http://dx.doi.org/10.1007/978-1-4899-7687-1_966
http://dx.doi.org/10.1007/978-1-4899-7687-1_561
http://dx.doi.org/10.1007/978-1-4899-7687-1_244
http://dx.doi.org/10.1007/978-1-4899-7687-1_40
http://dx.doi.org/10.1007/978-1-4899-7687-1_424
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_646
http://dx.doi.org/10.1007/978-1-4899-7687-1_473
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_16
http://dx.doi.org/10.1007/978-1-4899-7687-1_738
http://dx.doi.org/10.1007/978-1-4899-7687-1_40
http://dx.doi.org/10.1007/978-1-4899-7687-1_16
http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_244
http://dx.doi.org/10.1007/978-1-4899-7687-1_109
http://dx.doi.org/10.1007/978-1-4899-7687-1_363

1090 Reinforcement Learning in Structured Domains

� Instance-Based Reinforcement Learning
� Inverse Reinforcement Learning
�Least-Squares Reinforcement Learning Meth-

ods
�Model-Based Reinforcement Learning
� Policy Gradient Methods
�Q-Learning
�Relational Reinforcement Learning
�Reward Shaping
� Symbolic Dynamic Programming
�Temporal Difference Learning
�Value Function Approximation

Recommended Reading

Sutton RS, Barto AG (1998) Reinforcement learning:
an introduction. MIT, Cambridge

Watkins CJCH (1989) Learning from delayed rewards.
PhD thesis, King’s College, Cambridge

Reinforcement Learning in
Structured Domains

�Relational Reinforcement Learning

Relational Data Mining

� Inductive Logic Programming

Relational Dynamic Programming

� Symbolic Dynamic Programming

Relational Learning

Jan Struyf1 and Hendrik Blockeel1;2

1Katholieke Universiteit Leuven, Leuven,
Heverlee, Leuven, Belgium
2Leiden Institute of Advanced Computer
Science, Heverlee, Belgium

Problem Definition

Relational learning refers to learning in a context
where there may be relationships between learn-

ing examples, or where these examples may have
a complex internal structure (i.e., consist of mul-
tiple components and there may be relationships
between these components). In other words, the
“relational” may refer to both an internal or exter-
nal relational structure describing the examples.
In fact, there is no essential difference between
these two cases, as it depends on the definition
of an example whether relations are internal or
external to it. Most methods, however, are clearly
set in one of these two contexts.

Learning from Examples with External
Relationships
This setting considers learning from a set of ex-
amples where each example itself has a relatively
simple description, for instance in the attribute-
value format, and relationships may be present
among these examples.

Example 1 Consider the task of web-page clas-
sification. Each web-page is described by a fixed
set of attributes, such as a bag of words repre-
sentation of the page. Web-pages may be related
through hyperlinks, and the class label of a given
page typically depends on the labels of the pages
to which it links.

Example 2 Consider the Internet Movie
Database (www.imdb.com). Each movie is
described by a fixed set of attributes, such as
its title and genre. Movies are related to other
entity types, such as Studio, Director, Producer,
and Actor, each of which is in turn described by
a different set of attributes. Note that two movies
can be related through the other entity types. For
example, they can be made by the same studio or
star the same well-known actor. The learning task
in this domain could be, for instance, predicting
the opening weekend box office receipts of the
movies.

If relationships are present among examples,
then the examples may not be independent and
identically distributed (i.i.d.), an assumption
made by many learning algorithms. Relational
data that violates this assumption can be
detrimental to learning performance as Jensen
and Neville (2002) show. Relationships among

http://dx.doi.org/10.1007/978-1-4899-7687-1_410
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_473
http://dx.doi.org/10.1007/978-1-4899-7687-1_561
http://dx.doi.org/10.1007/978-1-4899-7687-1_646
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_726
http://dx.doi.org/10.1007/978-1-4899-7687-1_966
http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_817
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_726
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://www.imdb.com

Relational Learning 1091

R

examples can, on the other hand, also be
exploited by the learning algorithm. �Collective
classification techniques (Jensen et al. 2004),
for example, take the class labels of related
examples into account when classifying a new
instance.

Learning from Examples with a Complex
Internal Structure
In this setting, each example may have a complex
internal structure, but no relationships exist
that relate different examples to one another.
Learning algorithms typically use individual-
centered representations in this setting, such as
logical interpretations or strongly typed terms
(Lloyd 2003), which store together all data of
a given example. An important advantage of
individual-centered representations is that they
scale better to large datasets. Special cases
of this setting include applications where the
examples can be represented as graphs, trees, or
sequences.

Example 3 Consider a database of candidate
chemical compounds to be used in drugs. The
molecular structure of each compound can be
represented as a graph where the vertices are
atoms and the edges are bonds. Each atom is
labeled with its element type and the bonds
can be single, double, triple, or aromatic bonds.
Compounds are classified as active or inactive
with regard to a given disease and the goal
is to build models that are able to distinguish
active from inactive compounds based on
their molecular structure. Such models can,
for instance, be used to gain insight in the
common substructures, such as binding sites,
that determine a compound’s activity.

Approaches to Relational Learning

Many different kinds of learning tasks have been
defined in relational learning, and an even larger
number of approaches have been proposed for
tackling these tasks. We give an overview of
different learning settings that can be considered
instances of relational learning.

Inductive Logic Programming
In � inductive logic programming (ILP), the in-
put and output knowledge of a learner are de-
scribed in (variants of) first-order predicate logic.
Languages based on first-order logic are highly
expressive from the point of view of knowledge
representation, and indeed, a language such as
Prolog (Bratko 1986) can be used without adap-
tations to represent objects and the relationships
between them, as well as background knowledge
that one may have about the domain.

Example 4 This example is based on the work
by Finn et al. (1998). Consider a data set that
describes chemical compounds. The active com-
pounds in the set are ACE inhibitors, which are
used in treatments for hypertension. The molecu-
lar structure of the compounds is represented as a
set of Prolog facts, such as: atom(m1, a1, o).

atom(m1, a2, c).
. . .
bond(m1, a1, a2, 1).
. . .
coord(m1, a1, 5.91, – 2.44, 1.79).
coord(m1, a2, 0.57, – 2.77, 0.33).
. . .

which states that molecule m1 includes an oxy-
gen atom a1 and a carbon atom a2 that are
single bonded. The coord/5 predicate lists the
3D coordinates of the atoms in the given con-
former. Background knowledge, such as the con-
cepts zinc site, hydrogen donor, and the distance
between atoms, are defined by means of Pro-
log clauses. Figure 1 shows a clause learned by
the inductive logic programming system Progol
(Džeroski and Lavraè 2001, Ch. 7) that makes use
of these background knowledge predicates. This
clause is the description of a pharmacophore, that
is, a submolecular structure that causes a certain
observable property of a molecule.

More details on the theory of inductive logic
programming and descriptions of algorithms
can be found in the entry on � Inductive
Logic Programming in this encyclopedia, or in
references (De Raedt 2008; Džeroski and Lavraè
2001).

http://dx.doi.org/10.1007/978-1-4899-7687-1_44
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

1092 Relational Learning

ACE_inhibitor(A) :-
zincsite(A, B),
hacc(A, C),
dist(A, B, C, 7.9, 1.0),
hacc(A, D),
dist(A, B, D, 8.5, 1.0),
dist(A, C, D, 2.1, 1.0),
hacc(A, E),
dist(A, B, E, 4.9, 1.0),
dist(A, C, E, 3.1, 1.0),
dist(A, D, E, 3.8, 1.0).

Molecule A is an ACE inhibitor if:
molecule A can bind to zinc at site B, and
molecule A contains a hydrogen acceptor C, and
the distance between B and C is 7.9 1.0Å, and
molecule A contains a hydrogen acceptor D, and
the distance between B and D is 8.5 1.0Å, and
the distance between C and D is 2.1 1.0Å, and
molecule A contains a hydrogen acceptor E, and
the distance between B and E is 4.9 1.0Å, and
the distance between C and E is 3.1 1.0Å, and
the distance between D and E is 3.8 1.0Å.

a

b

c

Relational Learning, Fig. 1 (a) Prolog clause model-
ing the concept of an ACE inhibitor in terms of the
background knowledge predicates zincsite/2, hacc/2, and
dist/5. (b) The inductive logic programming system Pro-

gol automatically translates (a) into the “Sternberg En-
glish” rule, which can be easily read by human experts.
(c) A molecule with the active site indicated by the atoms
B, C, D, and E (Image courtesy of Finn et al. 1998)

Learning from Graphs
A graph is a mathematical structure consisting
of a set of nodes V and a set of edges E
V 2

between those nodes. The set of edges is by def-
inition a binary relation defined over the nodes.
Hence, for any learning problem where the re-
lationships between examples can be described
using a single binary relation, the training set can
be represented straightforwardly as a graph. This
setting covers a wide range of relational learning
tasks, for example, web mining (the set of links
between pages is a binary relation), social net-
work analysis, etc. Non-binary relationships can
be represented as hypergraphs; in a hypergraph,
edges are defined as subsets of V of arbitrary size,
rather than elements of V 2.

In graph-based learning systems, there is a
clear distinction between approaches that learn
from examples with external relationships, where
the whole data set is represented as a single graph
and each node is an example, and individual-
centered approaches, where each example by

itself is a graph. In the first kind of approaches,
the goal is often to predict properties of existing
nodes or edges, to predict the existence or non-
existence of edges (“link discovery”), to predict
whether two nodes actually refer to the same
object (“node identification”), detection of sub-
graphs that frequently occur in the graph, etc.
When learning from multiple graphs, a typical
goal is to learn a model for classifying the graphs,
to find frequent substructures (where frequency
is defined as the number of graphs a subgraphs
occurs in), etc.

Compared to other methods for relational
learning, graph-based methods typically focus
more on the structure of the graph, and less on
properties of single nodes. They may take node
and edge labels into account, but typically do
not allow for more elaborate information to be
associated with each node.

�Graph mining methods are often more
efficient than other relational mining methods
because they avoid certain kinds of overhead,

http://dx.doi.org/10.1007/978-1-4899-7687-1_350

Relational Learning 1093

R

but are typically still NP-complete, as they
generally rely on subgraph isomorphism testing.
Nevertheless, researchers have been able to
significantly improve efficiency or even avoid
NP-completeness by looking only for linear or
tree-shaped patterns, or by restricting the graphs
analyzed to a relatively broad subclass. As an
example, Horváth et al. (2006) show that a large
majority of molecules belong to the class of
outerplanar graphs, and propose an efficient
algorithm for subgraph isomorphism testing in
this class.

More information about mining graph data
can be found in the � graph mining entry in this
encyclopedia, or in Cook and Holder (2007) and
Washio and Motoda (2003).

Multi-relational Data Mining
Multi-relational data mining approaches rela-
tional learning from the relational database point
of view. The term “multi-relational” refers to
the fact that from the database perspective, one
learns from information spread over multiple
tables or relations, as opposed to � attribute-value
learning, where one learns from a single table.

Multi-relational data mining systems tightly
integrate with relational databases. Mainly rule
and decision tree learners have been developed
in this setting. Because practical relational
databases may be huge, most of these systems
pay much attention to efficiency and scalability,
and use techniques such as sampling and pre-
computation (e.g., materializing views). An
example of a scalable and efficient multi-
relational rule learning system is CrossMine (Yin
et al. 2006).

An alternative approach to relational learning
and multi-relational data mining is � proposi-
tionalization. Propositionalization consists of
automatically converting the relational represen-
tation into an attribute-value representation and
then using attribute-value data mining algorithms
on the resulting representation. An important line
of research within multi-relational data mining
investigates how database approaches can be
used to this end. Database oriented proposition-
alization creates a view in which each example
is represented by precisely one row. Information

from related entities is incorporated into this
row by adding derived attributes, computed by
means of aggregation. In the movie database
(Example 2), the view representing movies could
include aggregated attributes such as the number
of actors starring in the movie. A comparison of
propositionalization approaches is presented by
Krogel et al. (2003), and a discussion of them is
also included in this volume.

Finally, note that most inductive logic
programming systems are directly applicable
to multi-relational data mining by representing
each relational table as a predicate. This is
possible because the relational representation is
essentially a subset of first-order logic (known as
datalog). Much research on multi-relational data
mining was developed within the ILP community
(Džeroski and Lavraè 2001).

Statistical Relational
Learning/Probabilistic Logic Learning
Research on relational learning, especially in the
beginning, has largely focused on how to handle
the relational structure of the data, and ignored
aspects such as uncertainty. Indeed, the databases
handled in multi-relational data mining, or the
knowledge assumed given in inductive logic pro-
gramming, are typically assumed to be deter-
ministic. With the rise of probabilistic repre-
sentations and algorithms within machine learn-
ing has come an increased interest in enabling
relational learners to cope with uncertainty in
the input data. This goal has been approached
from at least two different directions: statistical
learning approaches have been extended toward
the relational setting, giving rise to the area of
� statistical relational learning, whereas inductive
logic programming researchers have investigated
how to extend their knowledge representation
and learning algorithms to cater for probabilis-
tic information, referring to this research area
as probabilistic logic learning. While there are
some differences in terminology and approaches,
both research areas essentially address the same
research question, namely how to integrate rela-
tional and probabilistic learning.

Among the best known approaches for statis-
tical relational learning is the learning of prob-

http://dx.doi.org/10.1007/978-1-4899-7687-1_350
http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_686
http://dx.doi.org/10.1007/978-1-4899-7687-1_786

1094 Relational Learning

abilistic relational models (PRMs, Džeroski and
Lavraè 2001, Chap. 13). PRMs extend Bayesian
networks to the relational representation used in
relational databases. PRMs model the joint prob-
ability distribution over the non-key attributes in
a relational database schema. Similar to Bayesian
networks, PRMs are � graphical models. Each
attribute corresponds to a node and direct de-
pendencies are modeled by directed edges. Such
edges can connect attributes from different en-
tity types that are (indirectly) related (such a
relationship is called a “slot chain”). Inference
in PRMs occurs by constructing a �Bayesian
network by instantiating the PRM with the data in
the database and performing the inference in the
latter. To handle 1:N relationships in the Bayesian
network, PRMs make use of aggregation, similar
to the propositionalization techniques mentioned
above.

Bayesian logic programs (BLPs) (Kersting
2006) aim at combining the inference power of
Bayesian networks with that of first-order logic
reasoning. Similar to PRMs, the semantics of a
BLP is defined by translating it to a Bayesian
network. Using this network, the probability of
a given interpretation or the probability that a
given query yields a particular answer can be
computed.

The acyclicity requirement of Bayesian
networks carries over to representations such as
PRMs and BLPs. Markov logic networks (MLNs)
(Richardson and Domingos 2006) upgrade
�Markov networks to first-order logic and allow
networks with cycles. MLNs are defined as sets
of weighted first-order logic formulas. These
are viewed as “soft” constraints on logical
interpretations: the fewer formulas a given
interpretation violates, the higher its probability.
The weight determines the contribution of a
given formula: the higher its weight, the greater
the difference in log probability between an
interpretation that satisfies the formula and
one that does not, other things being equal.
The Alchemy system implements structure and
parameter learning for MLNs.

More specific statistical learning techniques
such as Naı̈ve Bayes and Hidden Markov Mod-
els have also been upgraded to the relational

setting. More information about such algorithms
and about statistical relational learning in general
can be found in Getoor and Taskar (2007) and
Kersting (2006).

In probabilistic logic learning, two types of se-
mantics are distinguished (De Raedt and Kersting
2003): the model theoretic semantics and the
proof theoretic semantics. Approaches that are
based on the model theoretic semantics define a
probability distribution over interpretations and
extend probabilistic attribute-value techniques,
such as Bayesian networks and Markov networks,
while proof theoretic semantics approaches de-
fine a probability distribution over proofs and
upgrade, e.g., stochastic context free grammars.

Example 5 Consider the case where each exam-
ple is a sentence in natural language. In this ex-
ample, a model theoretic approach would define a
probability distribution directly over sentences. A
proof theoretic approach would define a probabil-
ity distribution over “proofs,” in this case possible
parse trees of the sentence (each sentence may
have several possible parses). Note that the proof
theoretic view is more general in the sense that
the distribution over sentences can be computed
from the distribution over proofs.

Stochastic logic programs (SLPs) (Muggleton
1996) follow most closely the proof theoretic
view and upgrade stochastic context free gram-
mars to first-order logic. SLPs are logic programs
with probabilities attached to the clauses such
that the probabilities of clauses with the same
head sum to 1.0. The probability of a proof is
then computed as the product of the probabilities
of the clauses that are used in the proof. PRISM
(Sato and Kameya 1997) follows a related ap-
proach where the probabilities are defined on
ground facts.

Like with standard graphical models, learning
algorithms may include both parameter learning
(estimating the probabilities) and structure learn-
ing (learning the program). For most frameworks
mentioned above, such techniques have been or
are being developed.

For a more detailed treatment of statistical re-
lational learning and probabilistic logic learning,
we refer to the entry on statistical relational learn-

http://dx.doi.org/10.1007/978-1-4899-7687-1_119
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_515

Relational Learning 1095

R

ing in this volume, and to several reference works
(De Raedt and Kersting 2003; Getoor and Taskar
2007; Kersting 2006; De Raedt et al. 2008).

Relational Reinforcement Learning

Relational reinforcement learning (RRL)
(Džeroski et al. 2001; Tadepalli et al. 2004)
is reinforcement learning upgraded to the
relational setting. Reinforcement learning is
concerned with how an agent should act in a
given environment to maximize its accumulated
reward. In RRL, both the state of the environment
and the actions are represented using a relational
representation, typically in the form of a logic
program.

Much research in RRL focuses on Q-learning,
which represents the knowledge of the agent
by means of a Q-function mapping state–action
pairs to real values. During exploration, the agent
selects in each state the action that is ranked
highest by the Q-function. The Q-function is
typically represented using a relational regression
technique. Several techniques, such as relational
regression trees, relational instance based learn-
ing, and relational kernel based regression have
been considered in this context. Note that the
regression algorithms must be able to learn in-
crementally: each time the agent receives a new
reward, the Q-function must be incrementally
updated for the episode (sequence of state-action
pairs) that led to the reward. Due to the use of
relational regression techniques, the agent is able
to generalize over states: it will perform similar
actions in similar states and therefore scales bet-
ter to large application domains.

More recent topics in RRL include how expert
knowledge can be provided to the agent in the
form of guidance, and how learned knowledge
can be transferred to related domains (“transfer
learning”). More details on these techniques and
more specific information on the topic of rela-
tional reinforcement learning can be found in its
corresponding encyclopedia entry and in the re-
lated entry on � symbolic dynamic programming,
as well as in references Džeroski et al. (2001) and
Tadepalli et al. (2004).

Cross-References

� Inductive Logic Programming
�Multi-relational Data Mining
�Relational Reinforcement Learning

Recommended Reading

Most of the topics covered in this entry have more
detailed entries in this encyclopedia, namely “In-
ductive Logic Programming,” “Graph Mining,”
“Relational Data Mining,” and “Relational Re-
inforcement Learning.” These entries provide a
brief introduction to these more specific topics
and appropriate references for further reading.
Direct relevant references to the literature include
the following. A comprehensive introduction to
ILP can be found in De Raedt’s book (De Raedt
2008) on logical and relational learning, or in the
collection edited by Džeroski and Lavraè (2001)
on relational data mining. Learning from graphs
is covered by Cook and Holder (2007). Džeroski
and Lavraè (2001) is also a good starting point
for reading about multi-relational data mining,
together with research papers on multi-relational
data mining systems, for instance, Yin et al.
(2006), who present a detailed description of the
CrossMine system. Statistical relational learning
in general is covered in the collection edited
by Getoor and Taskar (2007), while De Raedt
and Kersting (2003) and De Raedt et al. (2008)
present overviews of approaches originating in
logic-based learning. An overview of relational
reinforcement learning can be found in Tadepalli
et al. (2004).

Bratko I (2000) Prolog programming for artificial in-
telligence, 3rd edn. Addison-Wesley, Reading

Cook DJ, Holder LB (2007) Mining graph data. Wiley,
Hoboken

De Raedt L (2008) Logical and relational learning.
Springer, Berlin

De Raedt L, Kersting K (2003) Probabilistic logic
learning. SIGKDD Explor 5(1):31–48

De Raedt L, Frasconi P, Kersting K, Muggleton S
(2008) Probabilistic inductive logic programming.
Springer, Berlin

Džeroski S, De Raedt L, Driessens K (2001) Relational
reinforcement learning. Mach Learn 43:7–52

Džeroski S, Lavraè N (eds) (2001) Relational data
mining. Springer, Berlin

http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_573
http://dx.doi.org/10.1007/978-1-4899-7687-1_726

1096 Relational Regression Tree

Finn P, Muggleton S, Page D, Srinivasan A (1998)
Pharmacophore discovery using the inductive
logic programming system PROGOL. Mach Learn
30:241–270

Getoor L, Taskar B (2007) Introduction to statistical
relational learning. MIT Press, Cambridge

Horváth T, Ramon J, Wrobel S (2006) Frequent sub-
graph mining in outerplanar graphs. In: Proceedings
of the 12th ACM SIGKDD international conference
on knowledge discovery and data mining. ACM,
New York, pp 197–206

Jensen D, Neville J (2002) Linkage and autocorrelation
cause feature selection bias in relational learning.
In: Proceeding of the 19th international conference
on machine learning, University of New South
Wales, Sydney. Morgan Kaufmann, San Francisco,
pp 259–266

Jensen D, Neville J, Gallagher B (2004) Why col-
lective inference improves relational classification.
In: Proceedings of the 10th ACM SIGKDD in-
ternational conference on knowledge discovery
and data mining, Philadelphia. ACM, New York,
pp 593–598

Kersting K (2006) An inductive logic programming
approach to statistical relational learning. IOS Press,
Amsterdam

Krogel M-A, Rawles S, Železný F, Flach P, Lavraè
N, Wrobel S (2003) Comparative evaluation of
approaches to propositionalization. In: Proceedings
of the 13th international conference on induc-
tive logic programming, Szeged. Springer, Berlin,
pp 194–217

Lloyd JW (2003) Logic for learning. Springer, Berlin
Muggleton S (1996) Stochastic logic programs. In: De

Raedt L (ed) Advances in inductive logic program-
ming. IOS Press, Amsterdam, pp 254–264

Richardson M, Domingos P (2006) Markov logic net-
works. Mach Learn 62(1–2):107–136

Sato T, Kameya Y (1997) PRISM: a symbolic-
statistical modeling language. In: Proceedings of the
15th international joint conference on artificial in-
telligence (IJCAI 97), Nagoya. Morgan Kaufmann,
San Francisco, pp 1330–1335

Tadepalli P, Givan R, Driessens K (2004) Relational
reinforcement learning: an overview. In: Proceeding
of the ICML’04 workshop on relational reinforce-
ment learning, Banff, pp 1–9

Washio T, Motoda H (2003) State of the art of graph-
based data mining. SIGKDD Explor 5(1):59–68

Yin X, Han J, Yang J, Yu PS (2006) Efficient classi-
fication across multiple database relations: a Cross-
Mine approach. IEEE Trans Knowl Data Eng 18(6):
770–783

Relational Regression Tree

� First-Order Regression Tree

Relational Reinforcement Learning

Kurt Driessens
Maastricht University, Maastricht, The
Netherlands

Synonyms

Learning in worlds with objects; Reinforcement
learning in structured domains

Definition

Relational reinforcement learning is concerned
with learning behavior or control policies based
on a numerical feedback signal, much like stan-
dard reinforcement learning, in complex domains
where states (and actions) are largely charac-
terized by the presence of objects, their prop-
erties, and the existing relations between those
objects. Relational reinforcement learning uses
approaches similar to those used for standard
reinforcement learning, but extends these with
methods that can abstract over specific object
identities and exploit the structural information
available in the environment.

Motivation and Background

�Reinforcement learning is a very attractive ma-
chine learning framework, as it tackles, in a
sense, the whole artificial intelligence problem at
a small scale: an agent acts in an unknown envi-
ronment and has to learn how to behave optimally
by reinforcement, i.e., through rewards and pun-
ishment. Reinforcement learning has produced
some impressive and promising results. However,
the applicability of reinforcement learning has
been greatly limited by its difficulty in dealing
with large problem spaces and its inability to
generalize the learned knowledge to new but
related problem domains.

http://dx.doi.org/10.1007/978-1-4899-7687-1_314
http://dx.doi.org/10.1007/978-1-4899-7687-1_100258
http://dx.doi.org/10.1007/978-1-4899-7687-1_100404
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Relational Reinforcement Learning 1097

R

Relational
Reinforcement Learning,
Fig. 1 Structure of the
RRL system

While standard reinforcement learning meth-
ods represent the learning environment as a set of
unrelated states or, when using � attribute-value
representations, as a vector space consisting of a
fixed number of independent dimensions, humans
tend to think about their environment in terms
of objects, their properties, and the relations be-
tween them. Examples of objects in everyday
life are chairs, people, streets, trees, etc. This
representation allows people to treat or use most
of the new objects that they encounter correctly,
without requiring training time to learn (again)
how to use them. For example, people are able to
drink their coffee from any cup that will hold it,
even if they have never encountered that specific
cup before, because they already have experience
with drinking their coffee from other cup-type
objects. Standard reinforcement learning agents
do not have this ability. Their state and action rep-
resentations do not allow them to abstract away
from specific object identities and recognize them
as a type of object they are already accustomed to.

Relational reinforcement learning tries to
overcome this problem by representing states
of the learning agent’s environment as sets of
objects, their properties, and the relationships
between them, similar to the approaches used
in � relational learning and � inductive logic
programming. These structural representations
make it possible for the relational reinforcement
learning agent to abstract away from specific
identities of objects and often also from the
amount of objects present, the exact learning
environment, or even the specific task to be
performed.

The term “relational reinforcement learning”
was introduced by Džeroski et al. (1998) when
they first teamed the Q-learning algorithm with
a first-order regression algorithm. From then on,
relational reinforcement learning gained a large
amount of interest.

Structure of the Learning System

In principle, the structure of a relational
reinforcement learning system is very similar to
that of standard reinforcement learning systems
(Fig. 1). At a high level, the learning agent
interacts with an environment by performing
actions that influence that environment, and
the environment provides the learning agent
with a description of its current state and a
numerical feedback of the performance of the
agent. The goal of the agent is to maximize some
cumulative form of this feedback signal. The
major difference between standard reinforcement
learning and relational reinforcement learning
is the representation of the state–action–space.
Relational reinforcement learning works on
�Markov decision processes where states and
actions have been relationally factored, so-called
relational Markov decision processes (RMDPs).

An RMDP can be defined as follows:

Definition 1 (Relational Markov Decision Pro-
cess) Let PS be a set of state-related predicates,
PA a set of action-related predicates, and C a
set of constants in a logic Λ. Let B be a theory
defined in that logic.

An RMDP is defined as < S; A; T; R >,
where S � fs � H PS[C js ˆ Bg represents
the set of states; A � fa � H PA[C ja ˆ Bg
represents the set of actions, in which H X is the
set of facts that can be constructed given the sym-
bols in X ; and T and R represent the transition
probabilities and reward function, respectively:
T W S � A � S ! Œ0; 1	 and R W S ! R.

In less formal language, this means that the
states and actions in an RMDP are represented
using a set of constants C and a set of predicates
PS and PA, respectively, and constrained by a
background theory B. This means that the back-
ground theory B defines which states are possible

http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

1098 Relational Reinforcement Learning

move(BlockA ,BlockB), height(BlockB,HB),height(BlockC,HC), HC > HB

non-optimal optimal

yes no

Relational Reinforcement Learning, Fig. 2 Example state–action pairs in the blocks world

in the domain and which actions can be executed
in which states.

The following example illustrates these con-
cepts. Consider the blocks world depicted in
Fig. 2. To represent this environment in first-order
logic, one could use:

• State-related predicates: PS D fon/2, clear/1g
• Action-related predicate: PA D fmove/2g
• Constants: C D f1,2,3,4,floorg

The set of facts H PS[C would then include, for
example, on.1; 2/, on.4; f loor/, and clear.2/

but also on.3; 3/ and on. f loor; 2/. To constrain
the possible states to those that actually make
sense in a standard, i.e., real-world view of the
blocks world, the theory B can include rules
to make states that include these kinds of facts
impossible. For example, to make sure that a
block cannot be on top of itself, B could include
the following constraint:

false on.X; X/:

One can also include more extensive rules to
define the exact physics of the blocks world that
one is interested in. For example, by including

false on.Y; X/; on.Z; X/; X ¤ f loor;

Y ¤ Z

as part of the theory B, one can exclude states
where two blocks are on top of the same block.
The action space given by H PA[C consists of
facts such as move.3; 2/ and move. f loor; 1/

and can be constrained by rules such as

false move. f loor; X/;

which makes sure that the floor cannot be placed
on top of a block.

The leftmost state–action pair of Fig. 2 can
be fully specified by the following set of facts
(state description on the left, action on the right):

on(2,floor). clear(3).
on(1,2). clear(4).
on(3,1). clear(floor).
on(4,floor). move(3,floor).

One can easily generalize over specific states
and create abstract states (or state–action pairs)
that represent sets of states (or state–action pairs)
by using variables instead of constants and by
listing only those parts of states and actions that
hold for each element of the abstract state (or
state–action pair). For example, the abstract state
“on.1; 2/; on.2; f loor/” represents all states in
which block 1 is on top of block 2, which in
turn is on the floor. The abstract state does not
specify the locations of any other blocks. Of the
three states depicted in Fig. 2, the set of states
represented by the abstract state would include
the left and middle states. Abstract states can also
be represented by using variables when one does
not want to specify the location of any specific
block, but wants to focus on structural aspects of
the states and actions. The abstract state–action
pair “move.X; Y /; on.Y; f loor/” represents all
state–action pairs where a block is moved on top
of another block that is on the floor, for example,
the middle and right state–action pairs of Fig. 2.

Benefits of Relational Reinforcement
Learning
We already stated that the real world is made of
interacting objects or at least that humans often
think about the real world as such. Relational re-
inforcement learning allows this same representa-
tion to be used by reinforcement learning agents,
which in turn leads to more human-interpretable
learning results.

Relational Reinforcement Learning 1099

R

Reward

Environment

State

Action

Examples

Relational
Policy

Learning

Relational

Algorithm
Learning

Relational Reinforcement
Learning Agent

Relational Reinforcement Learning, Fig. 3 Simple relational policy for stacking any number of blocks

As a consequence of the used logical or rela-
tional representation of states and actions, the re-
sults learned by a relational reinforcement learn-
ing agent can be reused more easily when some
of the parameters of the learning task change.
Because relational reinforcement learning algo-
rithms try to solve the problem at hand at an
abstract level, the solutions will often carry over
to different instantiations of that abstract prob-
lem. For example, the resulting policies learned
by the RRL system (Driessens 2004) discussed
below, a very simple example of which is shown
in Fig. 3, often generalize over domains with a
varying number of objects. If only actions which
lead to the optimal leaf are executed, the shown
policy tree will organize any number of blocks
into a single stack.

As another example of this, the relational
approximate policy iteration approach, also dis-
cussed below, is able to learn task-specific control
knowledge from random walks in the environ-
ment. By treating the resulting state of such a
random walk as a goal state and generalizing
over the specifics of that goal (and the rest of
the random walk), relational approximate pol-
icy iteration can learn domain-specific, but goal-
independent, policies. This generalization of the
policy is accomplished by parameterization of

the goal and focusing on the relations between
objects in the goal, states, and actions when
representing the learned policy.

Another practical benefit of relational rein-
forcement learning lies in the field of inductive
transfer. Transfer learning is concerned with the
added benefits of having experience with a re-
lated task when being confronted with a new
one. Because of the structural representation of
learned results, the transfer of knowledge learned
by relational reinforcement learning agents can
be accomplished by recycling those parts of the
results that still hold valid information for the
new task. Depending on the relation between
the two tasks, this can yield substantial benefits
concerning the required training experience.

The use of first-order logic as a represen-
tational language in relational reinforcement
learning also allows the integration of reasoning
methods with traditional reinforcement learning
approaches. One example of this is � symbolic
dynamic programming, which uses logical
regression to compute necessary preconditions
that allow an agent to reach certain goals. This
same integration allows the use of search or
planning knowledge as background information
to extend the normal description of states and
actions.

http://dx.doi.org/10.1007/978-1-4899-7687-1_806

1100 Relational Reinforcement Learning

Example Relational Reinforcement
Learning Approaches

Relational Q-Learning
Relational reinforcement learning was introduced
with the development of the RRL system
(Džeroski et al. 1998). This is a Q-learning
system that employs a relational regression
algorithm to generalize the Q-table used by
standard Q-learning algorithms into a Q-function.
The differences with a standard Q-learning agent
are mostly located inside the learning agent. One
important difference is the agent’s representation
of the current state. In relational reinforcement
learning, this representation contains structural
or relational information about the environment.

Inside the learning agent, the information con-
sisting of encountered states, chosen actions, and
the associated rewards is translated into learning
examples. These examples are then processed by
a relational learning system that produces a rela-
tional Q-function and/or policy as a result. The
relational representation of the Q-function allows
the RRL system to use the structural properties
of states and actions when assigning a Q-value to
them.

Several relational regression approaches have
been developed and applied in this context. While
the original approach used an off-the-shelf re-
lational regression algorithm that processed the
learning examples in batch and had to be restarted
to be able to process newly available learning
experiences, a number of incremental algorithms
have been developed for use in relational rein-
forcement learning since then. These include an
incremental first-order regression tree algorithm,
incremental relational instance-based regression,
kernel-based regression that uses Gaussian pro-
cesses, and graph kernels and algorithms that
include combinations of the above (Driessens
2004).

It is possible to translate the learned Q-func-
tion approximations into a function that directly
represents its policy. Using the values predicted
by the learned Q-function, one can generate
learning examples that represent state–action
pairs and label them as either part of the
learned policy or not. This results in a binary

classification problem that can be handled by
a supervised relational learning algorithm such
as TILDE (Blockeel and De Raedt 1998), as
used to produce first-order decision tree policies
in the original work. This technique is known
as P-learning. It exhibits better generalization
performance across related learning problems
than the Q-learning approach described above.
Other than the aforementioned first-order
decision trees, rule-based learners have also been
applied to this kind of policy learning.

Nonparametric Policy Gradients
Nonparametric policy gradients (Kersting and
Driessens 2008), also a model-free approach,
apply Friedmann’s gradient boosting (Friedman
2001) in an otherwise standard policy gradient
approach for reinforcement learning. To avoid
having to represent policies using a fixed num-
ber of parameters, policies are represented as a
weighted sum of regression models grown in a
stage-wise optimization. (This allows the number
of parameters to grow as the experience of the
learner increases, hence the name nonparamet-
ric.) While this does not make nonparametric
policy gradients a technique specifically designed
for relational reinforcement learning, it allows,
like the relational Q-learning approach described
above, the use of relational regression models and
is not constrained to the attribute-value setting of
standard policy gradients.

The idea behind the approach is that instead
of finding a single, highly accurate policy, it is
easier to find many rough rules of thumb of how
to change the way the agent currently acts. The
learned policy is represented as

�.s; a/ D
eΨ.s;a/P
b eΨ.s;b/

;

where instead of assuming a linear parameteriza-
tion for Ψ as is done in standard policy gradients,
it is assumed that Ψ will be represented by a
linear combination of functions. Specifically, one
starts with some initial function Ψ0, e.g., based on
the zero potential, and iteratively adds corrections
Ψm D Ψ0 C Δ1 C � � � C Δm. In contrast to the
standard gradient approach, Δm here denotes the

Relational Reinforcement Learning 1101

R

so-called functional gradient, which is sampled
during interaction with the environment and then
generalized by an off-the-shelf regression algo-
rithm.

The advantages of policy gradients over value-
function techniques are that they can learn non-
deterministic policies and that convergence of
the learning process can be guaranteed, even
when using function approximation (Sutton et al.
2000). Experimental results show that nonpara-
metric policy gradients have the potential to sig-
nificantly outperform relational Q-learning (Ker-
sting and Driessens 2008).

Relational Approximate Policy Iteration
A different approach, which also directly learns
a policy, is taken in relational approximate policy
iteration (Fern et al. 2006). Like standard policy
iteration (Sutton and Barto 1998), the approach
iteratively improves its policy through interleav-
ing evaluation and improvement steps. In contrast
to standard policy iteration, it uses a policy lan-
guage bias and a generalizing policy function.

Instead of building a value-function approxi-
mation for each policy evaluation step, relational
approximate policy iteration evaluates the current
policy and its closely related neighbors by sam-
pling the state–action–space through a technique
called policy rollout. This technique generates a
set of trajectories from a given state, by executing
every possible action in that state and following
the current policy for a number of steps afterward.
(It is also possible to improve convergence speed
by following the next policy.) These trajectories
and their associated costs result in a number of
learning examples – one for each possible action
in each selected state – that can be used, together
with the policy language bias to generate the next,
improved policy.

Because every possible action in each sam-
pled state needs to be evaluated, this approach
does require a model or a resettable simulator
of the environment. However, relational approx-
imate policy iteration has been shown to work
well for learning domain-specific control knowl-
edge and performs very well on planning compe-
tition problems.

Relational Cross Entropy Policy Search
The most recent addition to direct relational pol-
icy search uses the cross entropy method to eval-
uate, select, expand, and combine those pieces of
a modular policy that lead to high-performance
behavior (Sarjant et al. 2014). The policy pieces
are singular condition-action rules. The rules are
constructed and adapted automatically using a
partial model of the environment inferred from
interactions with that environment. The model
defines the minimal conditions needed to take
an action, the possible specialization conditions
per rule, and a set of simplification rules to re-
move redundant and illegal rule conditions. Rule
construction and specialization follow a prin-
cipled approach toward exploration of the rule
space by beginning with the relative least general
generalization (RLGG) rules and then exploring
incremental specializations of interesting rules.

The cross entropy method (CEM) (Rubinstein
1997) is used to find these interesting rules.
CEM tunes the selection probabilities of the rules
according to the performance of policies that they
participate in. Rules with high selection proba-
bilities also become candidates for specialization,
possibly giving rise to even better rules.

The resulting systems can learn behavior that
is competitive to specialized approaches on com-
plex tasks, while the built-in simplification of
the rules and CEM bias toward compact policies
result in comprehensive and effective relational
policies.

Symbolic Dynamic Programming
In contrast to the previous techniques, � symbolic
dynamic programming (SDP) does not learn a
policy through exploration of the environment.
Instead, it is a model-based approach that
uses knowledge about preconditions and
consequences of actions to compute the fastest
way to reach a given goal. Like other dynamic
programming techniques, SDP starts from the
goal the agent wants to reach and reasons
backward to find the policy that is needed to
reach that goal. In contrast to other dynamic
programming techniques, it does not solve
specific instantiations of the problem domain, but
instead solves the problem at an abstract level,

http://dx.doi.org/10.1007/978-1-4899-7687-1_806

1102 Relational Reinforcement Learning

thereby solving it for all possible instantiations
of the problem at once.

SDP treats the required goal conditions as an
abstract state definition. Because pre- and post-
conditions of actions are known, SDP can com-
pute the necessary conditions that allow actions
to reach the abstract goal state. These conditions
define abstract states from which it is possible to
reach a goal state in one step. Starting from these
abstract states, the same approach can be used to
discover abstract states that allow the goal to be
reached in two steps and so on.

This approach was first proposed by Boutilier
et al. (2001), implemented as a working system
by Kersting et al. (2004), and later improved
upon by Sanner and Boutilier (2005). This last
approach won second place in the probabilistic
programming competition at ICAPS in 2006.

Cross-References

�Hierarchical Reinforcement Learning
� Inductive Logic Programming
�Model-Based Reinforcement Learning
� Policy Search
�Q-Learning
�Reinforcement Learning
�Relational Learning
� Symbolic Dynamic Programming
�Temporal Difference Learning

Further Information

The field of relational reinforcement learning has
given rise to a number of PhD dissertations in the
last few years (Croonenborghs 2009; Driessens
2004; van Otterlo 2008; Sanner 2008). The dis-
sertation of Martijn van Otterlo resulted in a book
(van Otterlo 2009) which provides a recent and
reasonably complete overview of the relational
reinforcement learning research field. Other pub-
lications that present an overview of relational
reinforcement learning research include the pro-
ceedings of the two workshops on representa-
tional issues in (relational) reinforcement learn-
ing at the International Conferences on Machine

Learning in 2004 and 2005 (Driessens et al. 2005;
Tadepalli et al. 2004).

Recommended Reading

Blockeel H, De Raedt L (1998) Top-down induction of
first order logical decision trees. Artif Intell 101(1–
2):285–297

Boutilier C, Reiter R, Price B (2001) Symbolic dy-
namic programming for first-order MDPs. In: Pro-
ceedings of the 17th international joint confer-
ence on artificial intelligence (IJCAI-2001), Seattle,
pp 690–700

Croonenborghs T (2009) Model-assisted approaches
for relational reinforcement learning. Ph.D. thesis,
Department of Compute Science, Katholieke Uni-
versiteit Leuven

Driessens K (2004) Relational reinforcement learn-
ing. Ph.D. thesis, Department of Computer Science,
Katholieke Universiteit Leuven

Driessens K, Fern A, van Otterlo M (eds) (2005)
Proceedings of ICML-2005 workshop on rich rep-
resentation for reinforcement learning, Bonn

Džeroski S, De Raedt L, Blockeel H (1998) Rela-
tional reinforcement learning. In: Proceedings of the
15th international conference on machine learning
(ICML-1998), San Francisco. Morgan Kaufmann,
Madison, pp 136–143

Džeroski S, De Raedt L, Driessens K (2001) Relational
reinforcement learning. Mach Learn 43:7–52

Fern A, Yoon S, Givan R (2006) Approximate policy
iteration with a policy language bias: solving rela-
tional Markov decision processes. J Artif Intell Res
25:85–118

Friedman J (2001) Greedy function approximation: a
gradient boosting machine. Ann Stat 29:1189–1232

Kersting K, Driessens K (2008) Non-parametric pol-
icy gradients: a unified treatment of propositional
and relational domains. In: McAllum A, Roweis S
(eds) Proceedings of the 25th international confer-
ence on machine learning (ICML 2008), Helsinki,
pp 456–463

Kersting K, van Otterlo M, De Raedt L (2004) Bell-
man goes relational. In: Proceedings of the twenty-
first international conference on machine learning
(ICML-2004), Banff, pp 465–472

Rubinstein RY (1997) Optimization of computer sim-
ulation models with rare events. Eur J Oper Res
99(1):89–112

Sanner S (2008) First-order decision-theoretic plan-
ning in structured relational environments. Ph.D.
thesis, Department of Compute Science, University
of Toronto

Sanner S, Boutilier C (2005) Approximate linear pro-
gramming for first-order MDPs. In: Proceedings of
the 21st conference on Uncertainty in AI (UAI),
Edinburgh

http://dx.doi.org/10.1007/978-1-4899-7687-1_363
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_561
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_817

Reservoir Computing 1103

R

Sarjant S (2013) Policy search based relational rein-
forcement learning using the cross-entropy method.
Ph.D. thesis, Department of Computer Science, Uni-
versity of Waikato

Sarjant S, Pfahringer B, Driessens K, Smith T (2014)
A Direct Policy-Search Algorithm for Relational
Reinforcement Learning. In: Proceedings of the
25th international conference on inductive logic
programming (ILP 2013), Rio de Janeiro, pp 76–92

Sutton RS, Barto AG (1998) Reinforcement learning:
an introduction. MIT, Cambridge

Sutton RS, McAllester D, Singh S, Mansour Y (2000)
Policy gradient methods for reinforcement learning
with function approximation. In: Advances in neural
information processing systems, vol 12. MIT, Cam-
bridge, pp 1057–1063

Tadepalli P, Givan R, Driessens K (eds) (2004) Pro-
ceedings of the ICML-2004 workshop on relational
reinforcement learning, Banff

van Otterlo M (2008) The logic of adaptive learning.
Ph.D. thesis, Centre for Telematics and Information
Technology, University of Twente

van Otterlo M (2009) The logic of adaptive behavior:
knowledge representation and algorithms for adap-
tive sequential decision making under uncertainty
in first-order and relational domains. IOS Press,
Amsterdam

Relational Value Iteration

� Symbolic Dynamic Programming

Relationship Extraction

�Link Prediction

Relevance Feedback

Relevance feedback provides a measure of the
extent to which the results of a search match
the expectations of the user who initiated the
query. Explicit feedback require users to assess
relevance by choosing one out of a number of
choices, or to rank documents to reflect their
perceived degree of relevance. Implicit feedback
is obtained by monitoring user’s behavior such
as time spent browsing a document, amount of
scrolling performed while browsing a document,

number of times a document is visited, etc. Rel-
evance feedback is one the techniques used to
support query reformulation and turn the search
into an iterative and interactive process.

Cross-References

� Search Engines: Applications of ML

Representation Language

�Hypothesis Language

Reservoir Computing

Risto Miikkulainen
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Synonyms

Echo state network; Liquid state machine

Definition

Reservoir computing is an approach to sequential
processing where recurrency is separated from
the output mapping (Jaeger 2003; Maass et al.
2002). The input sequence activates neurons in
a recurrent neural network (a reservoir, where
activity propagates as in a liquid). The recurrent
network is large, nonlinear, randomly connected,
and fixed. A linear output network receives acti-
vation from the recurrent network and generates
the output of the entire machine. The idea is
that if the recurrent network is large and com-
plex enough, the desired outputs can likely be
learned as linear transformations of its activation.
Moreover, because the output transformation is
linear, it is fast to train. Reservoir computing
has been successful in particular in speech and
language processing and vision and cognitive
neuroscience.

http://dx.doi.org/10.1007/978-1-4899-7687-1_806
http://dx.doi.org/10.1007/978-1-4899-7687-1_486
http://dx.doi.org/10.1007/978-1-4899-7687-1_750
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_100130
http://dx.doi.org/10.1007/978-1-4899-7687-1_100269

1104 Resubstitution Estimate

Recommended Reading

Jaeger H (2003) Adaptive nonlinear system identifica-
tion with echo state networks. In: Becker S, Thrun
S, Obermayer K (eds) Advances in neural informa-
tion processing systems, vol 15. MIT, Cambridge,
pp 593–600

Maass W, Natschlaeger T, Markram H (2002) Real-
time computing without stable states: a new frame-
work for neural computation based on perturbations.
Neural Comput 14:2531–2560

Resubstitution Estimate

Resubstitution estimates are estimates that are
derived by applying a model to the � training
data from which it was learned. For example,
resubstitution error is the error of a model on the
training data.

Cross-References

�Model Evaluation

Reward

In most Markov decision process applications,
the decision-maker receives a reward each pe-
riod. This reward can depend on the current state,
the action taken, and the next state and is denoted
by rt .s; a; s0/.

Reward Selection

�Reward Shaping

Reward Shaping

Eric Wiewiora
University of California, Sydney, NSW,
Australia

Synonyms

Heuristic rewards; Reward selection

Definition

Reward shaping is a technique inspired by an-
imal training where supplemental rewards are
provided to make a problem easier to learn. There
is usually an obvious natural reward for any
problem. For games, this is usually a win or
loss. For financial problems, the reward is usu-
ally profit. Reward shaping augments the natural
reward signal by adding additional rewards for
making progress toward a good solution.

Motivation and Background

Reward shaping is a method for engineering a
reward function in order to provide more frequent
feedback on appropriate behaviors. It is most
often discussed in the � reinforcement learning
framework. Providing feedback is crucial during
early learning so that promising behaviors are
tried early. This is necessary in large domains,
where reinforcement signals may be few and far
between.

A good example of such a problem is chess.
The objective of chess is to win a match, and
an appropriate reinforcement signal should be
based on this. If an agent were to learn chess
without prior knowledge, it would have to search
for a great deal of time before stumbling onto a
winning strategy. We can speed up this process
by rewarding the agent more frequently. One
possibility is to reward the learner for capturing
enemy pieces, and punish the learner for losing
pieces. This new reward creates a much richer
learning environment, but also runs the risk of
distracting the agent from the true goal (winning
the game).

Another domain where feedback is extremely
important is in robotics and other real-world
applications. In the real world, learning requires
a large amount of interaction time, and may be
quite expensive. Mataric noted that in order to
mitigate “thrashing” (repeatedly trying ineffec-
tive actions) rewards should be supplied as often
as possible (Mataric 1994).

If a problem is inherently described by sparse
rewards, it may be difficult to change the re-

http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_966
http://dx.doi.org/10.1007/978-1-4899-7687-1_100197
http://dx.doi.org/10.1007/978-1-4899-7687-1_100413
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Reward Shaping 1105

R

ward structure without disrupting progress to the
original goal. The behavior that is optimal with
a richer reward function may be quite different
from the intended behavior, even if relatively
small shaping rewards are added. A classic ex-
ample of this is found in Randlov and Alstrom
(1998). While training an agent to control a bicy-
cle simulation, they rewarded an agent whenever
it moved toward a target destination. In response
to this reward, the agent learned to ride in a tight
circle, receiving reward whenever it moved in the
direction of the goal.

Theory

We assume a reinforcement learning framework.
For every time step t , the learner observes state st ,
takes action at , and receives reward rt . The goal
of reinforcement learning is to find a policy �.s/

that produces actions that optimize some long-
term measurement of reward. We define the value
function for every state as the expected infinite
horizon discounted reward

V.s/ D max
	

E

"
1X

tD0

� t rt js0 D s; at D �.st /

#
;

where � is the discount rate. A reinforcement
learner’s goal is to learn a good estimate of V (s/,
and to use this estimate to choose a good policy.

A natural reward source should be fairly obvi-
ous from the problem at hand. Financial problems
should use net monetary gain or loss as reward.
Games and goal-directed problems should reward
winning the game or reaching the goal. It is usu-
ally advantageous to augment this natural reward
with a shaping reward ft . We define the aug-
mented value function V 0 for the reinforcement
learning problem with shaping rewards

V 0.s/ D max
	 0

E

	 1X
tD0

� t .rt C ft /js0

D s; at D � 0.st /

:

Ideally, the policy that optimizes the augmented
value function will differ much from the previous
optimal policy.

Constructing an appropriate shaping reward
system is inherently a problem-dependent task,
though a line of research aids in the imple-
mentation of these reward signals. Potential-
based shaping provides a formal framework
for translating imperfect knowledge of the
relative value of states and actions into a shaping
reward.

Potential-Based Shaping

Ng et al. proposed a method for adding shaping
rewards in a way that guarantees the optimal
policy maintains its optimality (Ng et al. 1999).
They define a potential function Φ() over the
states. The shaping reward f for transitioning
from state s to s0 is defined as the discounted
change in this state potential:

f .s; s0/ D �Φ.s0/ �Φ.s/:

This potential-based shaping reward is added to
the natural reward for every state transition the
learner experiences. Call the augmented reward
r 0t D rt C f .st , stC1/, and the value function
based on this reward V 0.s/. The potential-based
shaping concept can also be applied to actions
as well as states. See Wiewiora et al. (2003) for
details.

It can be shown that the augmented value
function is closely related to the original:

V 0.s/ D V.s/ �Φ.s/:

An obvious choice for the potential function
is Φ.s/ 	 V.s/, making V 0() close to zero.
This intuition is strengthened by results presented
by Wiewiora (2003). This paper shows that for
most reinforcement learning systems, the poten-
tial function acts as an initial estimate of the
natural value function V ().

1106 Robot Learning

However, even if the potential function used
for shaping is very close to the true natural value
function, learning may still be difficult. Koenig
et al. have shown that initial estimates of the
value function have a large influence on the
efficiency of reinforcement learning (Koenig and
Simmons 1996). With an initial estimate of the
value function set below the optimal value, many
reinforcement learning algorithms could require
learning time exponential in the state and action
space in order to find a highly rewarding state. On
the other hand, in nonrandom environments, an
optimistic initialization the value function creates
learning time that is polynomial in the state-
action space before a goal is found.

Cross-References

�Reinforcement Learning

Recommended Reading

Koenig S, Simmons RG (1996) The effect of rep-
resentation and knowledge on goal directed ex-
ploration with reinforcement-learning algorithms.
Mach Learn 22(1–3):227–250

Mataric MJ (1994) Reward functions for accelerated
learning. In: International conference on machine
learning, New Brunswick. Morgan Kaufmann, San
Francisco, pp 181–189

Ng AY, Harada D, Russell S (1999) Policy invari-
ance under reward transformations: theory and ap-
plication to reward shaping. In: Machine learn-
ing, proceedings of the sixteenth international con-
ference, Bled. Morgan Kaufmann, San Francisco,
pp 278–287

Randlov J, Alstrom P (1998) Learning to drive a bi-
cycle using reinforcement learning and shaping. In:
Proceedings of the fifteenth international conference
on machine learning, Madison. Morgan Kaufmann,
San Francisco

Wiewiora E (2003) Potential-based shaping and Q-
value initialization are equivalent. J Artif Intell Res
19: 205–208

Wiewiora E, Cottrell G, Elkan C (2003) Principled
methods for advising reinforcement learning agents.
In: Machine learning, proceedings of the twen-
tieth international conference, Washington, DC.
AAAI Press, Menlo Park, pp 792–799

Robot Learning

Jan Peters1;2;3, Russ Tedrake4, Nick Roy4, and
Jun Morimoto5

1Max Planck Institute for Biological
Cybernetics, Tübingen, Germany
2Intelligent Autonomous Systems, Computer
Science Department, Technische Universität
Darmstadt, Darmstadt, Hessen, Germany
3Department of Empirical Inference,
Max-Planck Institute for Intelligent Systems,
Tübingen, Germany
4Massachusetts Institute of Technology,
Cambridge, MA, USA
5Advanced Telecommunication Research
Institute International (ATR), Kyoto, Japan

Definition

�Robot learning consists of a multitude of
machine learning approaches, particularly
� reinforcement learning, � inverse reinforce-
ment learning, and � regression methods, that
have been adapted sufficiently to domain so that
they allow learning in complex robot systems
such as helicopters, flapping-wing flight, legged
robots, anthropomorphic arms, and humanoid
robots. While classical artificial intelligence-
based robotics approaches have often attempted
to manually generate a set of rules and models
that allows the robot systems to sense and act in
the real world, � robot learning centers around
the idea that it is unlikely that we can foresee
all interesting real-world situations sufficiently
accurate. Hence, the field of � robot learning
assumes that future robots need to be able to
adapt to the real world, and domain-appropriate
machine learning might offer the most approach
in this direction.

Robot Learning Systems

As learning has found many backdoor entrances
to robotics, this section can only scratch the
surface. However, robot learning has clearly been

http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_738
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_738
http://dx.doi.org/10.1007/978-1-4899-7687-1_738

Robot Learning 1107

R

successful in several areas: (i) model learning, (ii)
imitation and apprenticeship learning, and (iii)
reinforcement learning as well as in various other
topics.

Model Learning
Model learning is the machine learning counter-
part to classical system identification (Farrell and
Polycarpou 2006; Schaal et al. 2002). However,
while the classical approaches heavily rely on
the structure of physically based models, speci-
fication of the relevant state variables, and hand-
tuned approximations of unknown nonlinearities,
model learning approaches avoid many of these
labor-intensive steps and the entire process to
be more easily automated. Machine learning and
system identification approaches often assume an
observable state of the system to estimate the
mapping from inputs to outputs of the system.
However, a learning system is often able to learn
this mapping including the statistics needed to
cope with unidentified state variables and can
hence cope with a larger class of systems. Two
types of models are commonly learned, i.e., for-
ward and inverse models.

Forward models predict the behavior of the
system based either on the current state or a
history of preceding observations. They can be
viewed as “learned simulators” that may be used
for optimizing a policy or for predicting future
information. Examples of the application of such
learned simulators range from the early work in
the late 1980s by Atkeson and Schaal in robot
arm-based cart pole swing-ups to Ng’s recent
extensions for stabilizing an inverted helicopter.
Most forward models can directly be learned by
� regression.

Conversely, inverse models attempt to predict
the input to a system in order to achieve a desired
output in the next step, i.e., it uses the model
of the system to directly generate control sig-
nals. In traditional control, these are often called
approximation-based control systems (Farrell and
Polycarpou 2006). Inverse model learning can
be straightforwardly by � regression when the
system dynamics can be inverted uniquely, e.g.,

as in inverse dynamic learning for a fully actuated
system. However, for underactuated or redun-
dantly actuated systems (Tedrake 2009), opera-
tional space control (Peters and Schaal 2008a),
etc., such unique inverses do not exist and addi-
tional optimization is needed.

Imitation and Apprenticeship Learning
A key problem in robotics is to ease the problem
of programming a complex behavior. Traditional
robot programming approaches rely on accurate,
manual modeling of the task and removal of all
uncertainties so that they work well. In contrast
to classical robot programming, learning from
demonstration approaches aims at recovering the
instructions directly from a human demonstra-
tion. Numerous unsolved problems exist in this
context such as discovering the intent of the
teacher or determining the mapping from the
teacher’s kinematics to the robot’s kinematics
(often called the correspondence problem). Two
different approaches are common in this area,
i.e., direct imitation learning and apprenticeship
learning.

In imitation learning (Schaal et al. 2003),
also known as � behavioral cloning, the robot
system directly estimates a policy from a teachers
presentation, and, subsequently, the robot sys-
tem reproduces the task using this policy. A
key advantage of this approach is that it can
often learn a task successfully from few demon-
strations. In areas where human demonstrations
are straightforward to obtain, e.g., for learning
racket sports, manipulation, drumming on an-
thropomorphic systems, direct imitation learning
often proved to be an appropriate approach. Its
major shortcomings are that it cannot explain
why the derived policy is a good one, and it
may struggle with learning from noisy demon-
strations.

Hence, apprenticeship learning (Coates et al.
2009) has been proposed as an alternative where
a reward function is used as explanation of the
teachers’ behavior. Here, the reward function is
chosen under which the teacher appears to act
optimally, and the optimal policy for this reward

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_69

1108 Robot Learning

function is subsequently computed as a solution.
This approach transforms the problem of learning
from demonstrations onto the harder problem
of approximate optimal control or reinforcement
learning; hence it is also known as inverse opti-
mal control or � inverse reinforcement learning.
As a result, it is limited to problems that can be
solved by current reinforcement learning meth-
ods. Additionally, it often has a hard time dealing
with tasks where only few demonstrations with
low variance exist. Hence, inverse reinforcement
learning has been particularly successful in areas
where it is hard for a human to demonstrate the
desired behavior such as for helicopter acrobatics
or in robot locomotion.

Further information on learning by demonstra-
tion may be found in Coates et al. (2009) and
Schaal et al. (2003).

Robot Reinforcement Learning
The ability to self-improve with respect to an
arbitrary reward function, i.e., � reinforcement
learning, is essential for robot systems to become
more autonomous. Here, the system learns about
its policy by interacting with its environment
and receiving scores (i.e., rewards or costs) for
the quality of its performance. Unlike supervised
learning approaches used in model learning or
imitation learning, reinforcement learning can
still be considered to be in its infancy. Few off-
the-shelf reinforcement learning methods scale
into the domain of robotics both in terms of
dimensionality and the number of trials needed to
obtain an interesting behavior. Three different but
overlapping styles of reinforcement learning can
be found in robotics, i.e., model-based reinforce-
ment learning, � value function approximation
methods, and direct � policy search.

Model-based reinforcement learning relies
upon a learned forward model used for
simulation-based optimization as discussed
before. While often highly efficient, it frequently
suffers from the fact that learned models are
imperfect, and hence, the optimization method
can be guaranteed to be biased by the errors in the
model. To date, a full Bayesian treatment of the
model uncertainty appears to be a promising way

for alleviating this shortcoming of this otherwise
powerful approach.

Value function approximation methods have
been the core approach used in reinforcement
learning during the 1990s. These techniques rely
upon approximating the expected rewards for
every possible action in every visited state. Sub-
sequently, the controller chooses the actions in
accordance to this value. Such approximation re-
quires a globally consistent value function where
the quality of the policy is determined by the
largest error of the value function at any possible
state. As a result, these methods have been prob-
lematic for anthropomorphic robotics as the high-
dimensional domains often defy learning such
a global construct. However, it has been highly
successful in low-dimensional domains such as
mobile vehicle control and robot soccer, as well
as on well-understood test domains such as cart-
pole systems.

Unlike the previous two approaches, policy
search attempts to directly learn the optimal pol-
icy from experience without solving intermediary
learning problems. Policies often have signifi-
cantly fewer parameters than models or value
functions. For example, for balancing a ball on
a plate (where the plate is mounted on a robot
end effector) optimally with respect to a quadratic
reward function, the number of policy parameters
grows linearly in the number state dimensions,
while it grows quadratically for both model and
value function for this analytically tractable prob-
lem (in general cases, the number of parameters
of value functions grows exponentially in the
number of states which is known as the “curse
of dimensionality”). This insight has given rise
to policy search methods, particularly, � policy
gradient methods and probabilistic approaches
to policy search such as the reward-weighted
regression or PoWER. To date, application results
of direct policy search approaches range from
gait optimization in locomotion to various mo-
tor learning examples (e.g., Kendama, T-Ball, or
throwing darts).

Further information on reinforcement learning
for robotics may be found in Tedrake et al.
(2004), Peters and Schaal (2008b), and Ried-
miller et al. (2009).

http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364
http://dx.doi.org/10.1007/978-1-4899-7687-1_646

ROC Analysis 1109

R

Application Domains

The possible application domains for robot learn-
ing have not been fully explored, one could even
aggressively state that we have barely started to
bring learning into robotics. Nevertheless, robot
learning has been successful in several applica-
tion domains.

For accurate execution of desired trajectories,
model learning has scaled to learning the full
inverse dynamics for a humanoid robot in real
time more accurately than achievable with physi-
cal models. Current work focusses mainly on im-
proving the concurrent execution of tasks as well
as control of redundant or underactuated systems.

Various approaches have been successful
in task learning. Learning by demonstration
approaches is moving increasingly toward
industrial grade solutions where fast training
of complex tasks becomes possible. Skills
ranging from motor toys, e.g., basic movements,
paddling a ball, etc., to complex tasks such as
cooking a complete meal, basic table tennis
strokes, helicopter acrobatics, or foot placement
in locomotion have been learned from human
teachers. Reinforcement learning has yielded
better gaits in locomotion, jumping behaviors
for legged robots, perching with fixed wing
flight robots, forehands in table tennis, as well
as various applications to learning of motor toys.

Cross-References

�Behavioral Cloning
� Inverse Reinforcement Learning
� Policy Search
�Reinforcement Learning
�Value Function Approximation

Recommended Reading

Coates A, Abbeel P, Ng AY (2009) Apprenticeship
learning for helicopter control. Commun ACM
52(7):97–105

Farrell JA, Polycarpou MM (2006) Adaptive approx-
imation based control. Adaptive and learning sys-
tems for signal processing, communications and
control series. Wiley, Hoboken

Peters J, Schaal S (2008a) Learning to control in
operational space. Int J Robot Res 27:197–212

Peters J, Schaal S (2008b) Reinforcement learning
of motor skills with policy gradients. Neural Netw
21(4):682–697

Riedmiller M, Gabel T, Hafner R, Lange S (2009) Re-
inforcement learning for robot soccer. Auton Robot
27(1):55–73

Schaal S, Atkeson CG, Vijayakumar S (2002) Scalable
techniques from nonparameteric statistics for real-
time robot learning. Appl Intell 17(1):49–60

Schaal S, Ijspeert A, Billard A (2003) Computational
approaches to motor learning by imitation. Philos
Trans R Soc Lond: Ser B Biol Sci 358(1431):
537–547

Tedrake R (2009) Underactuated robotics: learning,
planning, and control for efficient and agile ma-
chines. Course notes for MIT 6.832, MIT 32-380,
Cambridge

Tedrake R, Zhang TW, Seung HS (2004) Stochastic
policy gradient reinforcement learning on a simple
3d biped. In: Proceedings of the IEEE interna-
tional conference on intelligent robots and systems
(IROS), Sendai, pp 2849–2854

ROC Analysis

Peter A. Flach
Department of Computer Science, University of
Bristol, Bristol, UK

Synonyms

Receiver operating characteristic analysis

Definition

ROC analysis investigates and employs the rela-
tionship between � sensitivity and � specificity
of a binary classifier. Sensitivity or � true pos-
itive rate measures the proportion of positives
correctly classified; specificity or � true negative
rate measures the proportion of negatives cor-
rectly classified. Conventionally, the true positive
rate tpr is plotted against the � false positive
rate fpr, which is one minus true negative rate.
If a classifier outputs a score proportional to
its belief that an instance belongs to the posi-
tive class, decreasing the � decision threshold –
above which an instance is deemed to belong
to the positive class – will increase both true

http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_100396
http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_770
http://dx.doi.org/10.1007/978-1-4899-7687-1_855
http://dx.doi.org/10.1007/978-1-4899-7687-1_853
http://dx.doi.org/10.1007/978-1-4899-7687-1_300
http://dx.doi.org/10.1007/978-1-4899-7687-1_203

1110 ROC Analysis

0
0

10

20

30

40

50

T
P

 R
at

e 60

70

80

90

100

10 20 30 40 50

FP Rate

60 70 80 90 100

Class Score
+ 0.98
+ 0.93
+ 0.87
+ 0.84
– 0.79
+ 0.73
+ 0.67
– 0.62
+ 0.57
– 0.54
– 0.48
+ 0.43
– 0.37
+ 0.34
– 0.28
– 0.24
+ 0.18
– 0.12
– 0.09
– 0.03

ROC Analysis, Fig. 1 The table on the left gives the
scores assigned by a classifier to 10 positive and 10
negative examples. Each threshold on the classifier’s score
results in particular true and false positive rates, e.g.,
thresholding the score at 0:5 results in three misclassified
positives (tpr D 0:7) and three misclassified negatives

(fpr D 0:3); thresholding at 0:65 yields tpr D 0:6 and
fpr D 0:1. Considering all possible thresholds gives the
ROC curve on the right; this curve can also be constructed
without explicit reference to scores, by going down the
examples sorted on decreasing score and making a step up
(to the right) if the example is positive (negative)

and false positive rates. Varying the decision
threshold from its maximal to its minimal value
results in a piecewise linear curve from .0; 0/ to
.1; 1/, such that each segment has a nonnegative
slope (Fig. 1). This ROC curve is the main tool
used in ROC analysis. It can be used to address
a range of problems, including: (1) determining
a decision threshold that minimizes � error rate
or misclassification cost under given class and
cost distributions; (2) identifying regions where
one classifier outperforms another; (3) identify-
ing regions where a classifier performs worse
than chance; (4) obtaining calibrated estimates of
the class posterior.

Motivation and Background

ROC analysis has its origins in signal detection
theory (Egan 1975). In its simplest form, a de-
tection problem involves determining the value

of a binary signal contaminated with random
noise. In the absence of any other information,
the most sensible decision threshold would be
halfway between the two signal values. If the
noise distribution is zero centered and symmetric,
sensitivity and specificity at this threshold have
the same expected value, which means that the
corresponding operating point on the ROC curve
is located at the intersection with the descending
diagonal tpr C fpr D 1. However, we may wish
to choose different operating points, for instance,
because false negatives and false positives have
different costs. In that case, we need to estimate
the noise distribution.

A slight reformulation of the signal detec-
tion scenario clarifies its relevance in a machine
learning setting. Instead of superimposing ran-
dom noise on a deterministic signal, we can
view the resulting noisy signal as coming from a
�mixture distribution consisting of two compo-

http://dx.doi.org/10.1007/978-1-4899-7687-1_85
http://dx.doi.org/10.1007/978-1-4899-7687-1_100304

ROC Analysis 1111

R

–4 –3 –2 –1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

Score

 R
el

at
iv

e
F

re
qu

en
cy

, P
ro

ba
bi

lit
y

D
en

si
ty

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP rate
T

P
 r

at
e

Raw scores ROC curve
Histogram ROC curve
Theoretical ROC curve

ROC Analysis, Fig. 2 (left) Artificial classifier “scores”
for two classes were obtained by sampling 25 points each
from two �Gaussian distributions with mean 0 and 2 and
unit variance. The figure shows the raw scores on the
x-axis and normalized histograms obtained by uniform

five-bin discretization (right) The jagged ROC curve was
obtained by thresholding the raw scores as before. The
histogram gives rise to a smoothed ROC curve with only
five segments. The dotted line is the theoretical curve
obtained from the true Gaussian distributions

nent distributions with different means. The de-
tection problem is now to decide, given a received
value, from which component distribution it was
drawn. This is essentially what happens in a
binary � classification scenario, where the scores
assigned by a trained classifier follow a mixture
distribution with one component for each class.
The random variations in the data are translated
by the classifier into random variations in the
scores, and the classifier’s performance depends
on how well the per-class score distributions
are separated. Figure 2 illustrates this for both
discrete and continuous distributions. In practice,
empirical ROC curves and distributions obtained
from a test set are discrete because of the finite
resolution supplied by the test set. This resolution
is further reduced if the classifier only assigns
a limited number of different scores, as is the
case with � decision trees; the histogram example
illustrates this.

Solutions

For convenience, we will assume henceforth that
score distributions are discrete and that deci-
sion thresholds always fall between actual scores

(the results easily generalize to continuous dis-
tributions using probability density functions).
There is a useful duality between thresholds and
scores: decision thresholds correspond to op-
erating points connecting two segments in the
ROC curve, and actual scores correspond to seg-
ments of the ROC curve connecting two oper-
ating points. Let f .sjC/ and f .sj�/ denote the
relative frequency of positive (negative) examples
from a test set being assigned score s. (Note
that s itself may be an estimate of the likelihood
p.xjC/ of observing a positive example with
feature vector x. We will return to this later.)

Properties of ROC Curves
The first property of note is that the true (false)
positive rate achieved at a certain decision thresh-
old t is the proportion of the positive (negative)
score distribution to the right of the threshold;
that is, tpr.t/ D

P
s>t f .sjC/ and fpr.t/ DP

s>t f .sj�/. In Fig. 2, setting the threshold at 1
using the discretized scores gives a true positive
rate of 0:72 and a false positive rate of 0:08, as
can be seen by summing the bars of the histogram
to the right of the threshold. Although the ROC

http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_66

1112 ROC Analysis

curve does not display thresholds or scores, this
allows us to reconstruct the range of thresholds
yielding a particular operating point from the
score distributions.

If we connect two distinct operating points on
an ROC curve by a straight line, the slope of
that line segment is equal to the ratio of positives
to negatives in the corresponding score interval;
that is,

slope.t1; t2/ D
tpr.t2/ � tpr.t1/

fpr.t2/ � fpr.t1/

D

P
t1<s<t2

f .sjC/P
t1<s<t2

f .sj�/

Choosing the score interval small enough to cover
a single segment of the ROC curve corresponding
to score s, it follows that the segment has slope
f .sjC/=f .sj�/. This can be verified in Fig. 2, e.g.,
the top-right segment of the smoothed curve has
slope 0 because the leftmost bin of the histogram
contains only negative examples. For continuous
distributions, the slope of the ROC curve at any
operating point is equal to the ratio of probability
densities at that score.

It can happen that slope.t1; t2/ < slope.t1; t3/ <

slope.t2; t3/ for t1 < t2 < t3, which means
that the ROC curve has a “dent” or concavity.
This is inevitable when using raw classifier
scores (unless the positives and negatives are
perfectly separated), but can also be observed
in the smoothed curve in the example: the
rightmost bin of the histogram has a positive-
to-negative ratio of 5, while the next bin has
a ratio of 13. Consequently, the two leftmost
segments of the ROC curve display a slight
concavity. What this means is that performance
can be improved by combining those two bins,
leading to one large segment with slope 9. In
other words, ROC curve concavities demonstrate
locally suboptimal behavior of a classifier. An
extreme case of suboptimal behavior occurs if
the entire curve is concave or at least below the
ascending diagonal: in that case, performance
can simply be improved by assigning all test
instances the same score, resulting in an ROC

curve that follows the ascending diagonal. A
convex ROC curve is one without concavities.

The AUC Statistic
The most important statistic associated with ROC
curves is the area under (ROC) curve or AUC.
Since the curve is located in the unit square, we
have 0 � AUC � 1. AUC D 1 is achieved
if the classifier scores every positive higher than
every negative; AUC D 0 is achieved if every
negative is scored higher than every positive.
AUC D 1=2 is obtained in a range of different
scenarios, including: (i) the classifier assigns the
same score to all test examples, whether positive
or negative, and thus the ROC curve is the ascend-
ing diagonal; (ii) the per-class score distributions
are similar, which results in an ROC curve close
(but not identical) to the ascending diagonal; and
(iii) the classifier gives half of a particular class
the highest scores and the other half the lowest
scores. Notice that, although a classifier with
AUC close to one half is often said to perform
randomly, there is nothing random in the third
classifier: rather, its excellent performance on
some of the examples is counterbalanced by its
very poor performance on some others (Some-
times a linear rescaling 2 �AUC�1 called the Gini
coefficient is preferred, which has a related use in
the assessment of income or wealth distributions
using Lorenz curves: a Gini coefficient close to 0
means that income is approximately evenly dis-
tributed. Notice that this Gini coefficient is often
called the Gini index, but should not be confused
with the impurity measure used in � decision tree
learning).

AUC has a very useful statistical interpreta-
tion: it is the expectation that a (uniformly) ran-
domly drawn positive receives a higher score than
a randomly drawn negative. It is a normalized
version of the Wilcoxon-Mann-Whitney sum of
ranks test, which tests the null hypothesis that two
samples of ordinal measurements are drawn from
a single distribution. The “sum of ranks” epithet
refers to one method to compute this statistic,
which is to assign each test example an integer
rank according to decreasing score (the highest-
scoring example gets rank 1, the next gets rank
2, etc.); sum up the ranks of the n� negatives,

http://dx.doi.org/10.1007/978-1-4899-7687-1_66

ROC Analysis 1113

R

which we want to be high; and subtract
Pn�

iD1 i D

n�.n� C 1/=2 to achieve 0 if all negatives are
ranked first. The AUC statistic is then obtained
by normalizing by the number of pairs of one
positive and one negative, nCn�. There are sev-
eral other ways to calculate AUC, for instance,
we can calculate, for each negative, how many
positives precede it, which basically is a column-
wise calculation and yields an alternative view
of AUC as the expected true positive rate if the
operating point is chosen just before a randomly
drawn negative.

Identifying Optimal Points and the ROC
Convex Hull
In order to select an operating point on an ROC
curve, we first need to specify the objective func-
tion we aim to optimize. In the simplest case, this
will be � accuracy, the proportion of correctly
predicted examples. Denoting the proportion of
positives by pos, we can express accuracy as a
weighted average of the true positive and true

negative rates pos � tpr C .1 � pos/.1 � fpr/. It
follows that points with the same accuracy lie on
a straight line with slope a D .1 � pos/=pos;
these parallel lines are the isometrics for accuracy
(Peter 2003). In order to find the optimal operat-
ing point for a given class distribution, we can
start with an accuracy isometric through .0; 1/

and slide it down until it touches the ROC curve
in one or more points (Fig. 3 (left)). In the case
of a single point, this uniquely determines the
operating point and thus the threshold. If there are
several points in common between the accuracy
isometric and the ROC curve, we can make an
arbitrary choice or interpolate stochastically. We
can read off the achieved accuracy by intersecting
the accuracy isometric with the descending diag-
onal, on which tpr D 1 � fpr, and therefore the
true positive rate at the intersection point is equal
to the accuracy associated with the isometric.

We can generalize this approach to any ob-
jective function that is a linear combination of
true and false positive rates. For instance, let
predicting class i for an instance of class j

0
0

10

20

30

40

50

T
P

 R
at

e 60

70

80

90

100

10 20 30 40 50

FP Rate

60 70 80 90 100

A

B

0
0

10

20

30

40

50

T
P

 R
at

e 60

70

80

90

100

10 20 30 40 50

FP Rate

60 70 80 90 100

ROC Analysis, Fig. 3 (left) The slope of accuracy iso-
metrics reflects the class ratio. Isometric A has slope 1/2:
this corresponds to having twice as many positives as
negatives, meaning that an increase in true positive rate
of x is worth a 2x increase in false positive rate. This
selects two optimal points on the ROC curve. Isometric
B corresponds to a uniform class distribution and selects
optimal points which make fewer positive predictions. In

either case, the achieved accuracy can be read off on the
y-axis after intersecting the isometric with the descending
diagonal (slightly higher for points selected by A). (right)
The convex hull selects those points on an ROC curve
which are optimal under some class distribution. The slope
of each segment of the convex hull gives the class ratio
under which the two end points of the segment yield equal
accuracy. All points under the convex hull are non-optimal

http://dx.doi.org/10.1007/978-1-4899-7687-1_3

1114 ROC Analysis

incur cost cost.i jj /, so, for instance, the cost
of a false positive is cost.Cj�/ (profits for cor-
rect predictions are modeled as negative costs,
e.g., cost.CjC/ < 0). Cost isometrics then have
slope

cost.Cj�/ � cost.�j�/

cost.�jC/ � cost.CjC/

Nonuniform class distributions are simply taken
into account by multiplying the class and cost
ratio, giving a single skew ratio expressing the
relative importance of negatives compared to pos-
itives.

This procedure of selecting an optimal point
on an ROC curve can be generalized to select
among points lying on more than one curve
or even an arbitrary set of points (e.g., points
representing different categorical classifiers). In
such scenarios, it is likely that certain points are
never selected for any skew ratio; such points
are said to be dominated. For instance, points
on a concave region of an ROC curve are dom-
inated. The nondominated points are optimal for
a given closed interval of skew ratios and can
be joined to form the convex hull of the given
ROC curve or set of ROC points (Fig. 3 (right));
in multi-objective optimization, this concept is
called the Pareto front. This notion of the ROC
convex hull (sometimes abbreviated to ROCCH)
is extremely useful in a range of situations. For
instance, if an ROC curve displays concavities,
the convex hull represents a discretization of the
scores which achieves higher AUC. Alternatively,
the convex hull of a set of categorical classifiers
can be interpreted as a hybrid classifier that can
reach any point on the convex hull by stochastic
interpolation between two neighboring classifiers
(Foster and Tom 2001).

Obtaining Calibrated Estimates of the
Class Posterior
Recall that each segment of an ROC curve has
slope slope.s/ D f .sjC/=f .sj�/, where s is the
score associated with the segment, and f .sjC/

and f .sj�/ are the relative frequencies of posi-
tives and negatives assigned score s. Now con-
sider the function

cal.s/ D
pos � f .sjC/

pos � f .sjC/ C .1 � pos/ � f .sj�/

D
slope.s/

slope.s/C a

with a D .1 � pos/=pos. The calibration map
s 7! cal.s/ adjusts the classifier’s scores to
reflect the empirical probabilities observed in the
test set. If the ROC curve is convex, slope.s/

and cal.s/ are monotonically nonincreasing with
decreasing s, and thus replacing the scores s with
cal.s/ does not change the ROC curve (other than
merging neighboring segments with different
scores but the same slope into a single segment).

Consider � decision trees as a concrete exam-
ple. Once we have trained (and possibly pruned) a
tree, we can obtain a score in each leaf l by taking
the proportion of positive training examples in
that leaf: score.l/ D p.Cjl/=.p.Cjl/Cp.�jl//.
Each leaf of the tree then gives rise to a different
segment of the ROC curve, which, by the nature
of how the scores were calculated, will be con-
vex. Furthermore, we have that cal.score.l// D

score.l/, which means that the tree produces pos-
terior probabilities that are perfectly calibrated
with respect to the training set. If we anticipate
changes in class distribution, we may choose to
calibrate with a different a. For example, if we
use a D 1, the calibrated scores cal.score.l// are
adjusted for a uniform prior.

If the ROC curve is not convex, the mapping
s 7! cal.s/ is not monotonic; while the scores
cal.s/ would lead to improved performance on
the data from which the ROC curve was de-
rived, this is very unlikely to generalize to other
data and thus leads to � overfitting. This is why,
in practice, a less drastic calibration procedure
involving the convex hull is applied (Tom and
Alexandru 2007). Let s1 and s2 be the scores
associated with the start and end segments of
a concavity, i.e., s1 > s2 and slope.s1/ <

slope.s2/. Let slope.s1s2/ denote the slope of
the line segment of the convex hull that re-
pairs this concavity, which implies slope.s1/ <

slope.s1s2/ < slope.s2/. The calibration map
will then map any score in the interval Œs1; s2	 to
slope.s1s2/=.slope.s1s2/C 1/ (Fig. 4).

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

ROC Analysis 1115

R

++-+--+-+--+--- ++++-

+ + + +

+ + -
+ -

+ + - - -+ - -
- - -

0 .2 .4 .6 .8 1

1

.8

.6

.4

.2

0

Original scores

C
al

ib
ra

te
d

sc
or

es

ROC Analysis, Fig. 4 The piecewise constant calibration
map derived from the convex hull in Fig. 3. The original
score distributions are indicated at the top of the figure,
and the calibrated distributions are on the right. We can
clearly see the combined effect of binning the scores and
redistributing them over the interval Œ0; 1�

This ROC-based calibration procedure, which
is also known as isotonic regression (Barbara
and Charles 2002), not only produces calibrated
probability estimates but also improves AUC.
This is in contrast with other calibration pro-
cedures such as logistic calibration which do
not bin the scores and therefore do not change
the ROC curve. ROC-based calibration can be
shown to achieve the lowest Brier score (Glenn
1950), which measures the mean squared error
in the probability estimates as compared with the
ideal probabilities (1 for a positive and 0 for a
negative), among all probability estimators that
do not reverse pairwise rankings. On the other
hand, being a nonparametric method, it typically
requires more data than parametric methods in
order to estimate the bin boundaries reliably. See
�Classifier Calibration for further details.

Future Directions

ROC analysis in its original form is restricted
to binary � classification, and its extension to
more than two classes gives rise to many open
problems. c-class ROC analysis requires c.c�1/

dimensions, in order to distinguish each possi-
ble misclassification type. Srinivasan proved that
basic concepts such as the ROC polytope and
its linearly interpolated convex hull generalize
to the c-class case (Ashwin 1999). In theory,
the volume under the ROC polytope can be em-
ployed for assessing the quality of a multi-class
classifier (César et al. 2003), but this volume
is hard to compute as – unlike the two-class
case, where the segments of an ROC curve can
simply be enumerated in O.n log n/ time by
sorting the n examples on their score (Tom 2006;
Peter 2004) – there is no simple way to enu-
merate the ROC polytope. Mossman considers
the special case of three-class ROC analysis,
where for each class the two possible misclas-
sifications are treated equally (a so-called one-
versus-rest scenario) (Douglas 1999). Hand and
Till propose the average of all one-versus-rest
AUCs as an approximation of the area under
the ROC polytope (David and Robert 2001).
Various algorithms for minimizing a classifier’s
misclassification costs by reweighting the classes
are considered in Nicolas and Peter (2003) and
Chris et al. (2008).

Other research directions include the explicit
visualization of misclassification costs (Chris and
Robert 2006) and using ROC analysis to study
the behavior of machine learning algorithms and
the relations between machine learning metrics
(Johannes and Peter 2005).

Cross-References

�Accuracy
�Classification
�Classifier Calibration
�Confusion Matrix
�Cost-Sensitive Learning
�Error Rate
� False Negative
� False Positive
�Gaussian Distribution
� Posterior Probability
� Precision
� Prior Probability
�Recall

http://dx.doi.org/10.1007/978-1-4899-7687-1_900
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_900
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_181
http://dx.doi.org/10.1007/978-1-4899-7687-1_85
http://dx.doi.org/10.1007/978-1-4899-7687-1_299
http://dx.doi.org/10.1007/978-1-4899-7687-1_300
http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_648
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_702

1116 ROC Convex Hull

� Sensitivity
� Specificity
�True Negative
�True Positive

Recommended Reading

Bourke C, Deng K, Scott S, Schapire R, Vinodchan-
dran NV (2008) On reoptimizing multi-class classi-
fiers. Mach Learn 71(2–3):219–242

Brier G (1950) Verification of forecasts expressed in
terms of probabilities. Mon Weather Rev 78:1–3

Drummond C, Holte R (2006) Cost curves: an im-
proved method for visualizing classifier perfor-
mance. Mach Learn 65(1):95–130

Egan J (1975) Signal detection theory and ROC analy-
sis. Series in cognitition and perception. Academic
Press, New York

Fawcett T (2006) An introduction to ROC analysis.
Patt Recognit Lett 27(8):861–874

Fawcett T, Niculescu-Mizil A (2007) PAV and the ROC
convex hull. Mach Learn 68(1):97–106

Ferri C, Hernández-Orallo J, Salido M (2003) Volume
under the ROC surface for multi-class problems. In:
Proceedings of the fourteenth European conference
on machine learning, Cavtat, pp 108–120

Flach P (2003) The geometry of ROC space: under-
standing machine learning metrics through ROC
isometrics. In: Proceedings of the twentieth inter-
national conference on machine learning (ICML
2003), Washington, DC, pp 194–201

Flach P (2004) The many faces of ROC analysis
in machine learning, July 2004. ICML-04 Tu-
torial. Notes available from http://www.cs.bris.ac.
uk/�flach/ICML04tutorial/index.html

Fuernkranz J, Flach P (2005) ROC ’n’ Rule learning
– towards a better understanding of covering algo-
rithms. Mach Learn 58(1):39–77

Hand D, Till R (2001) A simple generalization of
the area under the ROC curve to multiple class
classification problems. Mach Learn 45(2):171–186

Lachiche N, Flach P (2003) Improving accuracy
and cost of two-class and multi-class probabilistic
classifiers using ROC curves. In: Proceedings of
the twentieth international conference on machine
learning (ICML’03), Washington, DC, pp 416–423

Mossman D (1999) Three-way ROCs. Med Decis Mak
19:78–89

Provost F, Fawcett T (2001) Robust classification
for imprecise environments. Mach Learn 42(3):
203–231

Srinivasan A (1999) Note on the location of optimal
classifiers in n-dimensional ROC space. Technical
report PRG-TR-2-99, Oxford University Computing
Laboratory, Oxford

Zadrozny B, Elkan C (2002) Transforming classi-
fier scores into accurate multiclass probability es-

timates. In: Proceedings of the 8th ACM SIGKDD
international conference on Knowledge discovery
and data mining, Edmonton. ACM, pp 694–699

ROC Convex Hull

The convex hull of an �ROC curve is a ge-
ometric construction that selects the points on
the curve that are optimal under some class and
cost distribution. It is analogous to the Pareto
front in multiobjective optimization. See �ROC
Analysis.

ROC Curve

The ROC curve is a plot depicting the trade-off
between the � true positive rate and the � false
positive rate for a classifier under varying deci-
sion thresholds. See �ROC Analysis.

Rotation Forests

Rotation Forests is an � ensemble learning tech-
nique. It is similar to the �Random Forests
approach to building decision tree ensembles. In
the first step, the original feature set is split ran-
domly into K disjoint subsets. Next, � principal
components analysis is used to extract n principal
component dimensions from each of the K sub-
sets. These are then pooled, and the original data
projected linearly into this new feature space.
A tree is then built from this data in the usual
manner. This process is repeated to create an
ensemble of trees, each time with a different
random split of the original feature set.

As the tree learning algorithm builds the clas-
sification regions using hyperplanes parallel to
the feature axes, a small rotation of the axes
may lead to a very different tree. The effect of
rotating the axes is that classification regions of
high accuracy can be constructed with far fewer
trees than in �Bagging and �Adaboost.

http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_770
http://dx.doi.org/10.1007/978-1-4899-7687-1_853
http://dx.doi.org/10.1007/978-1-4899-7687-1_855
http://www.cs.bris.ac.uk/~flach/ICML04tutorial/index.html
http://www.cs.bris.ac.uk/~flach/ICML04tutorial/index.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_735
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_100492
http://dx.doi.org/10.1007/978-1-4899-7687-1_300
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_695
http://dx.doi.org/10.1007/978-1-4899-7687-1_665
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_917

Rule Learning 1117

R

RSM

�Random Subspace Method

Rule Learning

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Informally, rule learning denotes all algo-
rithms that learn or discover patterns in
data, which are formulated in the form
of a � rule. These can be predictive (e.g.,
� classification rules) or descriptive rules (e.g.,
� association rules or � supervised descriptive
rule induction). Consequently, the learning
algorithms typically differ in the type of
search they use for finding these rules in
the search space. Exhaustive search is more
common in descriptive rule mining, whereas
heuristic search using a variety of quality
criteria is more commonly used in predictive
rule learning. An overview of the field can be
found in Fürnkranz et al. (2012).

Learning Individual Rules

Conceptually, rule learning may be viewed as a
search in the space of possible � rules. The first
algorithms, such as the candidate elimination al-
gorithm, aimed at identifying the � version space
of all complete and consistent rules (Mitchell
1982). �Association rule discovery algorithms
look for all rules that satisfy certain constraints,
typically all rules with a minimum coverage and
a minimum support. Most flexible are algorithms
that use heuristic search for optimizing given
quality criteria. Such algorithms are also often
used in � supervised descriptive rule induction.

procedure FINDBESTRULE(Examples,BestRule)

Input: Examples, a set of positive and negative examples
for a class c.

InitRuleD INITIALIZERULE(Examples)
InitValD EVALUATERULE(InitRule)
BestRuleD <InitVal,InitRule>
RulesD fBestRuleg
while Rules¤ ; do

CandidatesD SELECTCANDIDATES(Rules,
Examples)
RulesD Rules n Candidates
for Candidate 2 Candidates do

RefinementsD REFINERULE(Candidate,
Examples)
for Refinement 2 Refinements do

EvaluationDEVALUATERULE(Refinement,
Examples)
if STOPPINGCRITERION(Refinement,

Examples)
then next Refinement

NewRuleD <Evaluation,Refinement>
RulesD INSERTSORT(NewRule, Rules)
if NewRule > BestRule
thenBestRuleD NewRule

endfor
endfor
RulesD FILTERRULES(Rules, Examples)

endwhile

Output: BestRule

FINDBESTRULE is a prototypical algorithm
that searches for a rule which optimizes a given
quality criterion defined in EVALUATERULE. The
value of this heuristic function is the higher the
more positive and the less negative examples are
covered by the candidate rule. FINDBESTRULE

maintains Rules, a sorted list of candidate rules,
which is initialized by the procedure INITIAL-
IZERULE. New rules will be inserted in appropri-
ate places (INSERTSORT), so that Rules will al-
ways be sorted in decreasing order of the heuristic
evaluations of the rules. At each cycle, SELECT-
CANDIDATES selects a subset of these candidate
rules, which are then refined using the refine-
ment operator REFINERULE. Each refinement is
evaluated and inserted into the sorted Rules list
unless the STOPPINGCRITERION prevents this.
If the evaluation of the NewRule is better than
the best rule found previously, BestRule is set to
NewRule. FILTERRULES selects the subset of the

http://dx.doi.org/10.1007/978-1-4899-7687-1_696
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_808
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_877
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_808

1118 Rule Learning

ordered rule list that will be used in subsequent
iterations. When all candidate rules have been
processed, the best rule will be returned.

Different choices of these functions allow
the definition of different biases for the
separate-and-conquer learner. The search
bias is defined by the choice of a search
strategy (INITIALIZERULE and REFINERULE),
a search algorithm (SELECTCANDIDATES

and FILTERRULES), and a search heuristic
(EVALUATERULE). The refinement operator
REFINERULE constitutes the language bias of
the algorithm. An overfitting avoidance bias can
be implemented via some STOPPINGCRITERION

and/or in a post-processing phase.
For example, INITIALIZERULE and RE-

FINERULE may be defined so that they realize
a top-down (general-to-specific), a bottom-up
(specific-to-general), or a bidirectional search.
Exhaustive breadth-first, depth-first, or best-first
searches can be realized by appropriate choices
of EVALUATERULE and no filtering or candidate
selection. FILTERRULES can, e.g., be used to
realize a hill-climbing or � beam search by
maintaining only the best or the BeamWidth best
rules. Evolutionary algorithms and stochastic
local search can also be easily realized.

The most common algorithm for finding the
best rule is a top-down hill-climbing algorithm.
It basically constructs a rule by consecutively
adding conditions to the rule body so that a
given quality criterion is greedily optimized. This
constitutes a simple greedy hill-climbing algo-
rithm for finding a local optimum in the hypoth-
esis space defined by the feature set. INITIAL-
IZERULE will thus return the most general rule,
the rule with the body ftrueg, and REFINERULE

will return all possible extensions of the rule by a
single condition. FILTERRULES will only let the
best refinement pass for the next iteration, so that
SELECTCANDIDATES will always have only one
choice. The search heuristic, the StoppingCrite-
rion, and the post-processing are discussed in the
next sections.

Rule Learning Heuristics
The goal of rule learning is to find a rule or a
� rule set that is as complete and consistent as

possible. Thus, each rule should cover as many
positive examples and as few negative examples
as possible. A few important ones are (assume
that p out of P positive examples and n out of
N negative examples are covered by the rule):

Laplace estimate (Lap D pC1
pCnC2) computes the

fraction of positive examples in all covered
examples, where each class is initialized with
one virtual example in order to penalize rules
with low coverage.

m-Estimate (m D pCm �P=.PCN /
pCnCm

) is a gener-
alization of the Laplace estimate which uses
m examples for initialization, which are dis-
tributed according to the class distribution in
the training set (Cestnik 1990).

Information gain (ig D p � .log2
p

pCn
�

log2
p0

p0Cn0

/, where p0 and n0 are the number
of positive and negative examples covered by
the rule’s predecessor) is Quinlan’s (1990)
adaptation of the information gain heuristic
used for decision tree learning. The main
difference is that this only focuses on a
single branch (a rule), whereas the decision
tree version tries to optimize all branches
simultaneously.

correlation and �2 (corrD p.N�n/�.P�p/n
p

PN.pCn/.P�pCN�n/
)

computes the four-field correlation of cov-
ered/uncovered positive/negative examples.
It is equivalent to a �2 statistic (�2 D

.P CN / corr2).

An exhaustive overview and theoretical com-
parison of various search heuristics in coverage
space, a variant of ROC space can be found in
Fürnkranz and Flach (2005).

Overfitting Avoidance
It is trivial to find a rule set that is complete and
consistent on the training data. To achieve this,
one only needs to convert each positive example
into a rule. Each of these rules is consistent
(provided the data set is not inconsistent), and
collectively they cover the entire example set
(completeness). However, this is clearly a bad
case of � overfitting because the theory will not
generalize to new positive examples.

http://dx.doi.org/10.1007/978-1-4899-7687-1_68
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

Rule Learning 1119

R

Overfitting is to some extent handled by
the search heuristics described above, but most
algorithms use additional � pruning techniques.
One can discriminate between pre-pruning
techniques, where a separate criterion is used
to filter out unpromising rules. For example,
CN2 computes the likelihood ratio statistic lrs
D 2 � .p log p

ep
C n log n

en
/, where ep D .p C

n/ P
PCN

and en D .pC n/ N
PCN

D .pC n/� ep

are the number of positive and negative examples
one could expect if the p C n examples covered
by the rule were distributed in the same way as
the P C N examples in the full data set. This
statistic follows a �2 distribution, which allows
to filter out rules for which the distribution of the
covered examples is not statistically significantly
different from the distribution of examples in
the full data set. Other pre-pruning criteria
are simple thresholds that define a minimum
acceptable value for the search heuristic or
FOIL’s �minimum description length criterion
that relates the length of a rule to the number of
examples it covers.

However, it can be shown experimentally that
CN2 or FOIL still has a tendency to overfit the
data. Instead, state-of-the-art algorithms post-
prune a rule right after it has been learned.
For this purpose, one-third of the training data
are reserved for pruning. After a rule has been
learned, its accuracy is greedily simplified on the
pruning set. Simplifications can be the deletion of
the last condition, a final sequence of conditions,
or an arbitrary condition of the rule. If the
simplification does not decrease the accuracy of
the rule on the pruning set, it will be performed.
This so-called incremental reduced error pruning
algorithm (Fürnkranz and Widmer 1994) is used
in the rule learning algorithm RIPPER.

A survey and experimental comparison of
pruning techniques for rule learning can be found
in Fürnkranz (1997).

Learning Rule Sets

In many cases, rule learning is used for solving
a � classification problem via the induction of
a � rule set or a � decision list. In these cases,

individual rules are learned as above but then
combined to form a theory that is able to classify
all examples. The principal approach is the so-
called � covering or � separate-and-conquer al-
gorithm, which learns one rule at a time, succes-
sively removing the covered examples. Individual
algorithms within this framework differ primarily
in the way they learn single rules.

An obvious generalization of covering is to not
entirely remove covered examples but to reduce
their example �weights, thus decreasing their
importance in subsequent iterations (see, e.g., the
SLIPPER algorithm (Cohen and Singer 1999)).

Rules can also be learned by alternative strate-
gies. There have been numerous proposals, and
we can only mention the most influential. Each
path from the root to a leaf of a � decision tree
corresponds to a rule and so rules can be learned
by first learning a decision tree and then post-
processing it (see, e.g., the C4.5RULES algo-
rithm, (Quinlan 1993)). It is also possible to use
the �Apriori algorithm for an exhaustive search
for classification rules and to use a subsequent
covering algorithm to combine the rules into
a rule set (see, e.g., the CBA algorithm (Liu
et al. 1998)). RISE (Domingos 1996) combines
bottom-up generalization with � nearest neighbor
algorithms to learn a theory via “conquering
without separating.”

Well-Known Rule Learning
Algorithms

AQ can be considered as the original cover-
ing algorithm. Its original version was conceived
by Ryszard Michalski in the 1960s (Michalski
1969), and numerous versions and variants of the
algorithm appeared subsequently in the literature.
AQ uses a top-down beam search for finding the
best rule. It does not search all possible special-
izations of a rule but only considers refinements
that cover a particular example, the so-called seed
example. This idea is basically the same as the
use of a � bottom clause in � inductive logic
programming.

CN2 (Clark and Niblett 1989; Clark and
Boswell 1991) employs a beam search guided

http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_303
http://dx.doi.org/10.1007/978-1-4899-7687-1_886
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_936
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

1120 Rule Learning

by the Laplace or m-estimates, and the
abovementioned likelihood ratio significance
test to fight overfitting. It can operate in two
modes, one for learning � rule sets (by modeling
each class independently) and one for learning
� decision lists.

FOIL (Quinlan 1990) was the first relational
learning algorithm that received attention beyond
the field of � inductive logic programming. It
learns a concept with the covering loop and
learns individual concepts with a top-down re-
finement operator, guided by information gain.
The main difference to previous systems is that
FOIL allowed the use of first-order background
knowledge. Instead of only being able to use
tests on single attributes, FOIL could employ
tests that compute relations between multiple
attributes and could also introduce new variables
in the body of a rule.

RIPPER was the first rule learning system that
effectively countered the overfitting problem via
incremental reduced error pruning, as described
above. It also added a post-processing phase for
optimizing a rule set in the context of other rules.
The key idea is to remove one rule out of a
previously learned rule set and try to relearn it not
only in the context of previous rules (as would be
the case in the regular covering rule) but also in
the context of subsequent rules. RIPPER is still
state of the art in inductive rule learning. A freely
accessible re-implementation can be found in the
WEKA machine learning library under the name
of JRIP.

OPUS (Webb 1995) was the first rule learning
algorithm to demonstrate the feasibility of a full
exhaustive search through all possible rule bodies
for finding a rule that maximizes a given quality
criterion (or heuristic function). The key idea is
the use of ordered search that prevents that a
rule is generated multiple times. This means that
even though there are lŠ different orders of the
conditions of a rule of length l , only one of them
can be taken by the learner for finding this rule.
In addition, OPUS uses several techniques that
prune significant parts of the search space, so that
this search method becomes feasible. Follow-up
work has shown that this technique is also an effi-
cient alternative for � association rule discovery,

provided that the database to mine fits into the
memory of the learning system.

CBA was one of the first and best-known
algorithms that employed association rule learn-
ing algorithms for learning predictive rules (Liu
et al. 1998). In its simplest version, the algorithm
selects the final rule sets by sorting all class
association rules according to confidence and
incrementally adding rules to the final set until
all examples are covered or the quality of the rule
set decreases.

Cross-References

�Association Rule
�Classification Rule
�Covering Algorithm
�Decision List
�Decision Lists and Decision Trees
�Rule Set
� Supervised Descriptive Rule Induction

Recommended Reading

Cestnik B (1990) Estimating probabilities: a crucial
task in machine learning. In: Aiello L (ed) Proceed-
ings of the 9th European conference on artificial in-
telligence (ECAI-90). Pitman, Stockholm, pp 147–
150

Clark P, Boswell R (1991) Rule induction with CN2:
some recent improvements. In: Proceedings of the
5th European working session on learning (EWSL-
91). Springer, Porto, pp 151–163

Clark P, Niblett T (1989) The CN2 induction algo-
rithm. Mach Learn 3(4):261–283

Cohen WW, Singer Y (1999) A simple, fast, and
effective rule learner. In: Proceedings of the 16th na-
tional conference on artificial intelligence (AAAI-
99). AAAI/MIT Press, Menlo Park, pp 335–342

Domingos P (1996) Unifying instance-based and rule-
based induction. Mach Learn 24:141–168

Fürnkranz J (1997) Pruning algorithms for rule learn-
ing. Mach Learn 27(2):139–171. http://www.ke.
informatik.tu-darmstadt.de/ juffi/publications/mlj97.
pdf

Fürnkranz J, Flach PA (2005) ROC ‘n’ rule
learning – towards a better understanding of
covering algorithms. Mach Learn 58(1):39–77.
doi:10.1007/s10994-005-5011-x. http://www.cs.
bris.ac.uk/�flach/papers/furnkranz-flach-mlj.pdf

http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_65
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_808
http://www.ke.informatik.tu-darmstadt.de/~juffi/publications/mlj97.pdf
http://www.cs.bris.ac.uk/~flach/papers/furnkranz-flach-mlj.pdf
http://www.cs.bris.ac.uk/~flach/papers/furnkranz-flach-mlj.pdf

Rule Set 1121

R

Fürnkranz J, Widmer G (1994) Incremental reduced
error pruning. In: Cohen WW, Hirsh H (eds) Pro-
ceedings of the 11th international conference on ma-
chine learning (ML-94). Morgan Kaufmann, New
Brunswick, pp 70–77. http://www.ke.informatik.tu-
darmstadt.de/�juffi/publications/ml-94.ps.gz

Fürnkranz J, Gamberger D, Lavrač N (2012) Foun-
dations of rule learning. Springer. doi:10.1007/978-
3-540-75197-7. ISBN 978-3-540-75196-0. http://
www.springer.com/978-3-540-75196-0

Liu B, Hsu W, Ma Y (1998) Integrating classification
and association rule mining. In: Agrawal R, Stolorz
P, Piatetsky-Shapiro G (eds) Proceedings of the 4th
international conference on knowledge discovery
and data mining (KDD-98), New York, pp 80–86

Michalski RS (1996) On the quasi-minimal solution
of the covering problem. In: Proceedings of the 5th
international symposium on information process-
ing (FCIP-69), vol A3 (Switching circuits), Bled,
pp 125–128

Mitchell TM (1982) Generalization as search. Artif
Intell 18(2):203–226

Quinlan JR (1990) Learning logical definitions from
relations. Mach Learn 5:239–266

Quinlan JR (1993) C4.5: programs for machine learn-
ing. Morgan Kaufmann, San Mateo

Webb GI (1995) OPUS: an efficient admissible algo-
rithm for unordered search. J Artif Intell Res 5:
431–465

Rule Set

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

A rule set is a collection of individual
� classification rules that collectively form
a classifier. In contrast to a � decision list, the
rules in the set do not have an inherent order,
and all rules in the set have to be tried for
deriving a prediction for an example.

Discussion

This may cause two types of problems that have
to be resolved with additional algorithms:

Multiple rules fire: More than one rule
can fire on a single example, and these
rules can make contradicting predictions.
This type of conflict is typically resolved
by preferring rules that cover a higher
fraction of training examples of their class
(typically estimated with Laplace correction,
see � rule learning). This is equivalent to
converting the rule set into a decision list
that is ordered according to this evaluation
heuristic. More elaborate tie-breaking
schemes, such as using a Naive Bayes
algorithm, or inducing a separate rule set
for handling these conflicts (double induction
(Lindgren and Boström 2004)), have also been
tried.

No rule fires: It may also occur that no rule fires
for a given example. Such cases are typically
handled via a so-called default rule, which
typically predicts the majority class. Again, a
more complex algorithm, such as trying to find
the closest rule (rule stretching (Eineborg and
Boström 2001)), has been proposed.

A rule set that only contains rules for a single
class, as is the result of � concept learning prob-
lems, typically contains an implicit default rule
for the other class (very much like a Prolog pro-
gram). If all rules are conjunctive, such rule sets
may be interpreted as a definition in disjunctive
normal form for this class.

Cross-References

�Classification Rule
�Decision List
�Disjunctive Normal Form
�Rule Learning

Recommended Reading

Eineborg M, Boström H (2001) Classifying uncovered
examples by rule stretching. In: Rouveirol C, Sebag
M (eds) Proceedings of the eleventh international
conference on inductive logic programming (ILP-
01), Strasbourg. Springer, pp 41–50

Lindgren T, Boström H (2004) Resolving rule conflicts
with double induction. Intell Data Anal 8(5): 457–
468

http://www.ke.informatik.tu-darmstadt.de/~juffi/publications/ml-94.ps.gz
http://www.ke.informatik.tu-darmstadt.de/~juffi/publications/ml-94.ps.gz
http://www.springer.com/978-3-540-75196-0
http://www.springer.com/978-3-540-75196-0
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_914
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_223
http://dx.doi.org/10.1007/978-1-4899-7687-1_744

	R
	Radial Basis Function Approximation
	Radial Basis Function Networks
	Synonyms
	Definition
	Motivation and Background
	Structure of the Network/Learning System
	Applications
	Theory/Solution
	Regularization and Generalizations
	Advantages of the Approach
	Limitations
	Cross-References
	Recommended Reading

	Radial Basis Function Neural Networks
	Random Decision Forests
	Random Forests
	Synonyms
	Definition

	Random Subspace Method
	Synonyms
	Definition

	Random Subspaces
	Randomized Decision Rule
	Randomized Experiments
	Rank Correlation
	Method
	Cross-References
	Recommended Reading

	Ratio Scale
	Real-Time Dynamic Programming
	Recall
	Cross-References

	Receiver Operating Characteristic Analysis
	Recognition
	Recommender Systems
	Definition
	Motivation and Background
	Structure of Learning System
	Collaborative Filtering
	Neighborhood-Based Collaborative Filtering

	Content-Based Recommending
	Hybrid Approaches
	Evaluation Metrics
	Challenges and Limitations

	Recommended Reading

	Record Linkage
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	The Record Linkage Process
	Record Linkage Model of Fellegi and Sunter
	Learning Parameters via the Methods of Fellegi and Sunter

	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Recurrent Associative Memory
	Recursive Partitioning
	Reference Reconciliation
	Regression
	Definition
	Motivation and Background
	Theory/Solution
	Fitting
	Regularized/Penalized Fitting
	Bias-Variance Dilemma
	Nonparametric Regression
	Generalized Linear Models
	Other Variants of Regression

	Cross-References
	Recommended Reading

	Regression Trees
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Learning a Regression Tree
	Pruning Regression Trees

	Cross-References
	Recommended Reading

	Regularization
	Definition
	Motivation and Background
	Theory
	An Illustrative Example: Ridge Regression
	Examples of Regularization
	Measuring the Capacity of Model Class

	Applications
	Cross-References
	Recommended Reading

	Regularization Networks
	Reinforcement Learning
	Cross-References
	Recommended Reading

	Reinforcement Learning in Structured Domains
	Relational Data Mining
	Relational Dynamic Programming
	Relational Learning
	Problem Definition
	Learning from Examples with External Relationships
	Learning from Examples with a Complex Internal Structure

	Approaches to Relational Learning
	Inductive Logic Programming
	Learning from Graphs
	Multi-relational Data Mining
	Statistical Relational Learning/Probabilistic Logic Learning

	Relational Reinforcement Learning
	Cross-References
	Recommended Reading

	Relational Regression Tree
	Relational Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Benefits of Relational Reinforcement Learning
	Example Relational Reinforcement Learning Approaches
	Relational Q-Learning
	Nonparametric Policy Gradients
	Relational Approximate Policy Iteration
	Relational Cross Entropy Policy Search
	Symbolic Dynamic Programming

	Cross-References
	Further Information
	Recommended Reading

	Relational Value Iteration
	Relationship Extraction
	Relevance Feedback
	Cross-References

	Representation Language
	Reservoir Computing
	Synonyms
	Definition
	Recommended Reading

	Resubstitution Estimate
	Cross-References

	Reward
	Reward Selection
	Reward Shaping
	Synonyms
	Definition
	Motivation and Background
	Theory
	Potential-Based Shaping
	Cross-References
	Recommended Reading

	Robot Learning
	Definition
	Robot Learning Systems
	Model Learning
	Imitation and Apprenticeship Learning
	Robot Reinforcement Learning

	Application Domains
	Cross-References
	Recommended Reading

	ROC Analysis
	Synonyms
	Definition
	Motivation and Background
	Solutions
	Properties of ROC Curves
	The AUC Statistic
	Identifying Optimal Points and the ROC Convex Hull
	Obtaining Calibrated Estimates of the Class Posterior

	Future Directions
	Cross-References
	Recommended Reading

	ROC Convex Hull
	ROC Curve
	Rotation Forests
	RSM
	Rule Learning
	Learning Individual Rules
	Rule Learning Heuristics
	Overfitting Avoidance

	Learning Rule Sets
	Well-Known Rule Learning Algorithms
	Cross-References
	Recommended Reading

	Rule Set
	Discussion
	Cross-References
	Recommended Reading

