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Abstract—Taxi services play a central role in the mobility
dynamics of major urban areas. Advanced communication de-
vices such as GPS (Global Positioning System) and GSM (Global
System for Mobile Communications) made it possible to monitor
the drivers’ activities in real-time. This paper presents an online
learning approach to predict profitability in taxi stands. This
approach consists of classifying each stand based according to
the type of services that are being requested (for instance, short
and long trips). This classification is achieved by maintaining a
time-evolving histogram to approximate local probability density
functions (p.d.f.) in service revenues. The future values of this
histogram are estimated using time series analysis methods
assuming that a non-homogeneous Poisson process is in place.
Finally, the method’s outputs were combined using a voting
ensemble scheme based on a sliding window of historical data.
Experimental tests were conducted using online data transmitted
by 441 vehicles of a fleet running in the city of Porto, Portugal.
The results demonstrated that the proposed framework can
provide an effective insight on the characterization of taxi stand
profitability for a 60-minute horizon.

Index Terms—Taxi-stand profitability, taxi-passenger demand,
mobility intelligence, GPS data, time series forecasting, non-
homogeneous Poisson processes, online learning.

I. INTRODUCTION

ODAY, taxi services play a central role in the mobility

dynamics of major urban areas. It offers a personalized
destination service in a fast and yet secure manner. One of
the largest companies operating in New York City performed
roughly 470,000 trips in 2006, generating $1.82 billion US
dollars in revenue. It represented 30% of the total public
transportation fares and an averaged driver income per shift
of $158 US dollars [1]. However, this level of revenue was
achieved by performing an inefficient use of the resources
available, namely the vehicles and fuel. Traditionally, taxi
drivers earn their profit by randomly cruising the road network
looking for a passenger. This naive strategy leads to large fuel
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wastes on heavily congested traffic and, consequently, to a
low ratio of live miles (miles with a fare) over cruising miles
(miles without a fare).

Experienced drivers are able to make smarter decisions
regarding the taxi-passenger finding problem by knowing some
demand patterns in advance. However, most drivers choose
to use only a few number of stands to wait for their next
service. Advanced communication devices such as the GPS
(Global Positioning System) and the GSM (Global System
for Mobile Communications) made it possible to monitor the
drivers’ activities in real-time. The data acquired by these
systems can be used to combine the drivers’ experience with
intelligent decision support frameworks in order to recommend
the most suitable area/stand to go after a passenger drop-off.
This problem is known as the taxi stand choice problem
[2]-[6]. The real-time stand-choice problem is based on four
key variables: the expected revenue for a service over time,
the distance/cost relation of each stand, the number of taxis
already waiting at each stand and the passenger demand for
each stand over time.

Most of the existing research on this topic focus on predict-
ing passenger demand when characterizing stand profitability
[4]-[6]. In fact, this can be true to a certain extent if the
expected demand is the main variable in this problem. Know-
ing where the demand will occur is a valuable contribution
to reducing cruising miles. However, a question arises: is
this knowledge enough? There are roughly two types of taxi
networks: the ones where service demand is larger than the
supply (Scenario 1), and the ones where the opposite happens
(Scenario 2). In the first scenario, the answer to that may be
positive. However, that does not happen in the second scenario
where the drivers have to select which services to take and
which services to ignore.

This paper presents an online learning approach to predict
taxi stand profitability. This approach consists of classifying
each stand based on the type of services demanded (for
instance, short or long trips). By doing so, the authors expect to
provide a framework capable of giving a continuous short-term
perspective on which are the stands where high-profit services
will be demanded. This stepwise approach starts by maintain-
ing a time-evolving histogram to approximate local probability
density functions (p.d.f.) in service revenues. The p.d.f. curves
are used to classify each stand over time. Then, the short-
term future values of the histogram are estimated using time
series analysis approaches based on non-homogeneous Poisson
processes [4]]-[6]. Finally, the outputs of the methods were
combined using a simple voting ensemble scheme.

A large taxi fleet running in the city of Porto, Portugal, was
selected as a case study. The city contains a total of 63 taxi



stands and two taxi companies, each running one fleet. The
data transmitted between August 2011 and February 2012 by
the largest company, which has 441 vehicles, was used as test
bed for the methodology presented here. In this scenario, the
average cruising time in each service is just 12 minutes.
Consequently, 65% of the services represent low revenues (<
$8 US dollars). The voting-based ensemble outperformed the
remaining predictive methods used on the testbed scenario
by achieving an average accuracy of 74%. These results
support the concept presented in this paper where each stand
profitability is given by the size of their short-term service
revenues.

The remainder of the paper is structured as follows: Section
2 revises the existing literature on this topic. Section 3 formally
presents the model employed. Section 4 firstly describes how
the dataset used was acquired and preprocessed. Then, some
statistics about the dataset are presented. Section 5 describes
how the methodology was tested in a real scenario: firstly, the
experimental setup and metrics used to evaluate the model
are introduced; then, the results obtained are presented in
detail, followed by some important remarks. Finally, in the
last section conclusions are drawn and topics for future work
are outlined.

II. RELATED WORK

More and more datasets containing historical GPS data
sets are being explored to improve taxi driver profitability.
Typically, studies employ one of the following approaches:
(1) predicting the number of service requests within a given
area or (2) selecting some areas where there will be a high
demand for services in the short-term. In (1), the state-of-
the-art approaches are time series analysis techniques, namely
the Poisson-based Autoregressive Integrated Moving Averages
(ARIMA) [4]-[6]] and Exponential Smoothing [5]], [6]. In [4]],
an extended ARIMA model is used where a time-varying Pois-
son process is assumed to be in place. The work by Moreira-
Matias et al. 5] extends this concept by introducing both
an online ensemble scheme and a Poisson-based Exponential
Smoothing, which uses historical data to build the predictive
model. The same authors extended the methodology to be fully
incremental [6] by proposing a perceptron-based rule to update
the ARIMA weights for each prediction instead of finding its
optimal fitting.

Type-2 approaches rely on recommending highly profitable
routes. The main goal of these routing techniques is to es-
tablish Origin-Destination matrices to select demand hotspots
(regions that are more likely to provide high demand rates).
Hierarchical clustering is employed in [7[], [8] while the
work in [8]] also explores DBSCAN to mine time-dependent
attractive areas by analyzing the historical time series of
demands within predefined time spans. These approaches were
extended by Hu et al. [9] who proposed a heuristic function to
connect the centroids of the top-k hotspots and a probability
model to estimate the gasoline consumption in every route to
compute the link weights.

The abovementioned approaches aim at increasing the ratio
between live and cruising miles. However, this may be mis-
leading as the variability in service revenue is high, especially

from region to region [10]. Let us formulate this issue with a
numerical example: a predictive model of interest forecasted
a demand of d; = 10 and dy = 6 services in areas/stands
Ay, A, respectively, during the following period of P minutes.
Let C1,C5 denote the number of cars already parked in the
stands. The profit at each stand can be expressed as follows:

)
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where 7 is the expected service revenue and 7 is a constant
expressing the cost of letting a vehicle wait in line at a stand
per unit of time || Assuming that both are equally distant
from our current location and that the number of vehicles
already parked in those areas is similar (i.e. C; ~ (b), it
is possible to estimate that the relationship between waiting
times to pick-up the next passenger at each stand 1, d, will
be 01 = 0.6 X d2. Finally, if the waiting time cost is considered
to be independent from the area under analysis and that the
average revenue at each stand 71,79 is, for instance, $8 and
$14, the most profitable stand would be As and not A;. A
typical example of this could be airports, where long-runs are
normally provided from city outskirts to downtown areas.

The work in [4] presented a more accurate approach to the
profitability problem by profiling the driver’s experience ac-
cording to the historical data on high-profit/low-profit drivers.
However, the work that comes closest to the one presented here
is the work by Powell et al. [[10], who present a model to esti-
mate the most profitable route by employing a spatial window
to model the profitability of the neighboring regions, regarding
the short-term decision on the path to take. The area’s revenue
scores end up being computed based on a moving average of
the fares using a very short time window (i.e. 60 minutes).
However, previous work has already shown how important the
mid and long-term history can be to compute demand-based
predictions [Sf], [6]. Moreover, by maintaining the fares as
continuous variables, the authors oversimplify the concept of
”low/high” fare to make it constant, which can be misleading
(e.g. a $10 dollars service may not be relevant on the morning
peak but can be valuable on the evening one; a peak value
can be harder to predict than a class label). By maintaining a
fair approximation to the revenue p.d.f., the present approach
should be adaptable to every scenario, allowing the user
to decide which should be the rules in place to consider a
service revenue high. Moreover, it combines sliding windows
of different lengths to explore the historical data on different
levels. For these reasons, the present framework meets no
parallel in the existing literature on this topic.

Aprofit =T—- (

III. METHODOLOGY

Let Xy, = {Xko0,Xk1,..., Xk} be a discrete time series
(aggregation period of P-minutes) for the number of services
requested at a taxi stand k. Let Ry, ; denote a vector containing
the revenue values corresponding to the amount paid by each
service which starts at the stand k at time period ¢, where

! It is important to highlight that the authors assume that both the demand
and the service revenues follow a homogeneous Poisson process on the current
time period for this particular example.



Y1 Rit; = Xgt : n = |Rypy|. To characterize the dis-
tribution of these values, the authors propose to approximate
its local p.d.f.. One of the best known ways of doing that
is by discretizing the variable values into intervals using
histograms [[11]]. By dividing the number of services X}, ; into
n bins according to service revenue, it is possible to obtain
n discrete time series for the number of services requested
within a certain revenue interval. Secondly, a set of fixed
rules is employed to classify the period’s profitability based on
those histograms. Thirdly, time series analysis techniques are
employed to estimate the future values of these n series based
on previous work about demand prediction. Those values
will be used to predict the stand’s short-term profitability
class by employing the abovementioned set of rules. Finally,
an ensemble voting scheme is employed to combine each
method’s prediction into the final one. This methodology is
illustrated in Fig. [T} Its details are provided along this section.

A. On Discretizing the Revenues

The first goal is to discretize the revenues into a value inter-
val m; = [b;, bi+1) € II for Ry, such that b; < Rp; < bit1.
IT can be defined as follows

IT = {m;|m; = [bs, bit1) : big1—b; = bi—bi—1,Vb; € N} (2)

where 0 = b;11 — b; denotes the interval width. Conse-
quently, it is possible to obtain an equal-width histogram
h(F, B) defined by the aforementioned set of break points
B =1by,...,b,_1 and a set of frequency counts F' = f1, ..., f,.
To define the number of bins n, it is necessary to define the
range of the random variable and the desired interval width.
For that, three user-defined parameters are employed: the
interval width p and a minimum/maximum value as ms, ma,
respectively. Therefore, it is possible to redefine m; as follows:

mi=[mi+px(@E—1),mi+uxi): (mi+uxi)<ma (3)

An additional last bucket is added to the ones defined in II to
account for all the revenue values above the threshold value
(i.e. ma). Consequently, n = |IT| + 1.

By employing these histograms, it is possible to monitor the
evolution of the revenue’s p.d.f. at a given taxi stand to predict
the short-term one . Estimating the p.d.f. estimation brings a
vast range of possibilities when it comes to building a set
of rules (or multiple rules) capable of classifying the stand’s
profitability in every time period. The set of rules used in this
particular scenario is described in Section [V-A]

B. Numerical Predictions for the Stand’s Classification

Regardless of the evolution of the p.d.f. throughout time,
the number of bins n is constant over time (it only depends
on the parameters ma, ms and p). Consequently, each bin can
be seen as a time series in terms of the number of services
requested at that stand where the revenues are constrained by a
given interval. This observation makes it possible to model the
p.d.f. estimation problem as multiple time series forecasting
ones . Departing from the previous work in [5], it is expected
that these new series also follow non-homogeneous Poisson
processes. Consequently, the three predictive models used in
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Fig. 1: Illustration of the predictive framework proposed.

the previous work (ARIMA, Time-Varying Poisson Models
and Exponential Smoothing) were also applied to these n time
series using the very same parameter setting (namely, a two-
week period to train both the ARIMA and the Exponential
Smoothing). The result is a set of three p.d.f. which, based
on the set of rule mentioned before, are capable of outputting
three labels on the profitability of the next time period. A
majority voting scheme was employed to combine the label
outputs according to each prediction. This simple scheme
consists of measuring the average accuracy of each method
on the last § periods. The average accuracy of each method is
calculated every 24h. This ensemble is merely a wise selection
of the best predictive method for each stand.

However, since the algorithm’s output is numerical, it is
possible to explore other predictive approaches over the ob-
tained p.d.f., which is commonly used in on machine learning
research works. Nevertheless, the goal with this paper is to
demonstrate its effectiveness in predicting the short-term stand
profitability as a simple proof of concept.

IV. CASE STUDY

A taxi company operating in the city of Porto, Portugal,
was used as case study. This city is the center of a medium-
sized urban area (consisting of 1.3 million inhabitants) where
passenger demand is lower than the number of vacant taxis
running, and this causes taxi companies to compete fiercely.
The data were acquired using the telematics installed in each
of the 441 running vehicles which are part of the company
fleet. The data refer to a non-stop period of seven months
between August 2011 and February 2012, containing nearly
one million trip records. At first, each chunk of data comes
with the following five attributes: the driver’s ID, a Julian
timestamp, the taxi status (zero/one for vacant/busy), and
the latitude/longitude coordinates. By preprocessing the data,
it was possible to obtain a dataset containing one entry
per service where the variables were a 1) Julian timestamp
marking the beginning of the trip, 2) the stand from which the
taxi departed, 3) the cruising distance (in meters) and 4) the
cruising time (in seconds). All services that did not start at a
taxi stand were not considered in this study.

A simplified version of Porto’s taxi service price structure
was used to conduct these experiments, which is illustrated in
Table [l Fig. 2] represents three sample-based estimations of
the revenue’s p.d.f.: a global estimation, one for the daytime



TABLE I: Porto’s taxi service price structure. Both the tem-
poral and spatial fractions cost 0.15 euros.

Locati Ti Minimum | Minimum Spatial Temporal
ocation me Price Distance Fraction Fraction
Inside the 6am — 9pm 2.00eur. 220.0m 333.3m 37.0 sec.
city limits 9pm — 6am 2.50eur. 176.0m 277.Tm 37.0 sec.
Outside the | 6am — 9pm 3.25eur. 220.0m 166.6m 37.0 sec.
city limits 9pm — 6am 3.90eur. 176.0m 138.9m 37.0 sec.
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Fig. 2: Sample-based p.d.f. for the revenues detailed by
daytime and nightime.

revenues and another for the nighttime revenues. All estima-
tions exhibit a bimodal structure. That is even clearer when
the nightime scenario is analyzed. The time lag between the
nighttime and the remaining p.d.f. indicates that the nighttime
services usually have larger revenues than daytime services.
Fig. [3] illustrates an equal-width revenue histogram and its
cumulative frequency. Note that nearly 60% of the demanded
services have a revenue below 6 euros. This pattern shows
how difficult it is to maintain a balanced relationship between
service offer and demand in this particular case study.

V. EXPERIMENTS
A. Experimental Setup

The parameter setting is described in Table [} The first six
months of data were used to train the model, while the last
month (February) was used as test set.

The numerical prediction methods setup followed closely
the one proposed in a previous study [5]]. The ARIMA model
(p,d,q values and seasonality) was firstly set (and updated
each 24h) by learning/detecting the underlying model running
on the historical time series curve of each stand during the
last two weeks. For that, an automatic time series function in
the [forecast] R package [[12]] - auto-arima was employed. The
weights/parameters for each model are specifically fit for each
period/prediction using the function arima from the built-in R
package [stats]. The time-varying Poisson averaged models
(both weighted and non-weighted) were updated every 24h.
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Fig. 3: Equal-Width Revenue Histogram and its cumulative
frequency.

TABLE II: Parameter Setting used in the experiments.

Parameter | Value Description
¥ 8 Learning period for the Exponential Smoothing (8 weeks)
o 0.4 parameter to calculate the weight’s curve on the Exponential Smoothing
P 60 aggregation period used to calculate the time series (in minutes)
mi 2 minimum value in the revenue histogram obtained for each period
ma 10 maximum bounded value in the revenue histogram obtained for each period
o 4 bounded width of the intervals

The parameter setting for (ma,mi,z) resulted in histograms
with three bins (i.e. n = 3). For this particular scenario,
the authors have established a three-class set to estimate the
stands’ profitability (’low”,’medium” and “high”). A user-
defined set of rules was developed for this particular task
adapted to the present scenario. Its pseudo code is displayed
in Fig. @ However, the authors sustain that this approach can
be adapted by any taxi network by changing n, the number of
classes and the rule set in place.

The labels obtained with the three numerical predictions
were compared to the ensemble method. A majority class
baseline was also considered in the experimental setup. These
five methods were tested on all 63 stands available.

B. Evaluation Metrics

The Root Mean Square Error (RMSE) and the Accuracy
(ACC) were used as evaluation metrics. They can be defined
as follows:

N a2
RMSE = \/ 2z (P TN av;) &)

N . .
1if =rl); h
ACC = E : if (pl = rl);0 otherwise 5)

i=1 N
where (pr,av) denote the predicted and the actual value of
the target variable (for each bin value) and (pl,rl) stand
for the predicted and the actual label of the current period,
respectively. Moreover, the accuracy error was divided into



1: function CLASSIFY-PERIOD(h(F, B), Xy 1+)
2 if X, = 0 then return ~/ow”;

3 end if

4: if Xk-‘,—t <=5 then

5: if b; = 0 then return ’medium”;

6 else

7 return “low”;

8 end if

9: end if

10: bl atio = b1/ Xpte;

11: if bl,41i0 < (1 — 0.4) then return “high”;
12: else

13: return bl,.;;, < (1 —0.2) return “medium”;
14: end if
15: return “low”;

16: end function

Fig. 4: Period Profitability Classification using the Revenue
Histogram. The parameters represent the histogram’s frequen-
cies (F) and break points (B), as well as its total mass Xp¢.

higher-prediction and lower—-prediction tO discover when
the predicted profitability is higher/lower than the real one.

The abovementioned metrics were calculated for the N
periods considered in the test set of each stand. They were
then aggregated by calculating aweighted mean of their values
at the existing taxi stands. Each stand’s weight corresponds to
the number of services requested at the stand during the entire
test period (i.e. Zf;l Xk.i)-

C. Results

Fig. [5] presents descriptive statistics on the bin values of
one of the busiest taxi stands in this case study. This statistics
are divided by profitability class and also by day period. This
division shows how the classification rule set (Fig. ) works
over the histograms. Using these rules, the following class dis-
tribution was obtained: “low”: 81.57%; “medium”: 13.10%;
“high”: 5.33%. Table [III] presents a detailed evaluation of the
five classification frameworks employed in this task. Finally,
Fig. [0] divides the ensemble accuracy between each of the
63 taxi stands in Porto grouped with the number of services
requested at the stand during the test period.

D. Discussion

The results in Table [[IIl demonstrate that the Ensemble
method presents the highest accuracy in the time-dependent
profitability classification task. It is important to highlight that
this method surpasses the majority class method, especially
if we consider that we are facing an unbalanced classifica-
tion task (i.e. 81.57% of the true labels are “low”. Fig. [
exemplifies the histograms distribution on distinct classes and
scenarios. Note that the class ("low”/’medium”/’high”) does
not have a direct relationship with the bins frequencies. Its
goal is to describe the fypical service.

The low number of bins (three) is a rough approximation
of the true revenue p.d.f.. This level of detail is user-defined,
along with the histogram classification rule set. The reduced

length of the test set (i.e. one month) may not be enough to
assume this setting as the best possible for this case study.
Moreover, in more complex urban areas, it may be relevant to
explore more complex p.d.f. approximations by determining
which are the best parameter settings (i.e. ma, mi, pu and
rule set) for each scenario. However, this discussion is not
addressed in this paper.

In Fig.[6] it is possible to observe that the ensemble method
has an accuracy > 90% in most stands. The busiest stands
present a lower accuracy than expected. This behavior may
indicate that there is a persistent error on this type of stand.
However, a stand-based analysis on the algorithm’s behavior
is required to reach these conclusions.

Despite the limitations mentioned above, this work is only
a fair proof of concept for using the demand numerical
predictions in [5] to uncover the stands’ profitability. Note that
nearly 70% of the classification error results in a profitability
class that is lower than the period’s true label. This shows
how reliable this methodology can be by being conservative
when predicting high-revenue scenarios. This approach may
also benefit from employing a numerical ensemble (such as the
one proposed in [5]]) instead of a class-based ensemble. This
work uses taxi stands as demand aggregation points. However,
they may be replaced with spatial areas instead by dividing the
urban area into non-overlapping regions[13]]. The incremental
properties of this time series may also be used to increase the
prediction frequency [6].

VI. FINAL REMARKS

This application paper proposes a novel technique to predict
the short-term profitability of the taxi stand network spread
throughout an urban area. The technique consists of typifying
the services that will occur at each specific stand over the
next period of P-minutes. The authors do so by predicting an
approximate revenue p.d.f. at each stand by employing time
series analysis techniques based on non-homogeneous Pois-
son processes [S[. Experiments conducted in a real-world case
study demonstrated the validity of this concept by presenting a
profitability classification accuracy of ~ 74%. It can provide
a relevant contribution to the taxi-stand choice problem by
predicting where the most profitable services will be requested,
instead of looking solely at pick-up quantities.

The framework described along this paper is just a proof
of concept of what can be done in the stand profitability
prediction topic. There are mainly two issues to be mitigated in
future work: (1) How can we determine the optimal parameter
setting (i.e. ma,ms,u and set of rules) for a given urban area?
(2) How can we reduce the accuracy error at the busiest taxi
stands? These are open research questions.
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