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ABSTRACT Diabetic retinopathy (DR) detection is a critical retinal image analysis task in the context of
early blindness prevention. Unfortunately, in order to train a model to accurately detect DR based on the
presence of different retinal lesions, typically a dataset with medical expert’s annotations at the pixel level
is needed. In this paper, a new methodology based on the multiple instance learning (MIL) framework is
developed in order to overcome this necessity by leveraging the implicit information present on annotations
made at the image level. Contrary to previous MIL-based DR detection systems, the main contribution of
the proposed technique is the joint optimization of the instance encoding and the image classification stages.
In this way, more useful mid-level representations of pathological images can be obtained. The explainability
of themodel decisions is further enhanced bymeans of a new loss function enforcing appropriate instance and
mid-level representations. The proposed technique achieves comparable or better results than other recently
proposed methods, with 90% area under the receiver operating characteristic curve (AUC) on Messidor,
93% AUC on DR1, and 96% AUC on DR2, while improving the interpretability of the produced decisions.

INDEX TERMS Multiple instance learning, diabetic retinopathy detection, bag of visual words, retinal
image analysis.

I. INTRODUCTION
The retina is a well-known source of biomarkers that enable
the early identification of several human disorders, such as
hypertension, heart diseases, or Diabetic Retinopathy (DR),
among others. DR is known to be the leading cause of pre-
ventable blindness, affecting more than 415 million people
worldwide [1]. Fortunately, DR can be detected at its early
stages by expert ophthalmologists through routine analysis
of the eye fundus [2]. Timely DR detection can lead to the
administration of preventive treatments and efficient thera-
pies to avoid vision impairment and further consequences.

To provide early disease diagnosis and appropriate eye
care, large-scale global screening programs have been imple-
mented by hospitals and local authorities [3], [4] with great
success. In the context of such programs, patients are called
to clinical settings in order to acquire eye color images with
a retinal fundus camera. These images are then submitted

to specialists, who look for visual signs of the presence of
lesions and perform diagnosis based on them. A sample of
these potential signs of disease is shown in Fig. 1.

Unfortunately, more than 83% of undiagnosed DR patients
are located in underdeveloped areas, where there is a lack
of specialists to attend large masses of population, blocking
the appropriate implementation of screening programs [5].
For this reason, Computer-Aided Diagnosis (CAD) systems
capable of detecting signs of DR from standard retinal fundus
images are becoming highly relevant in recent years [6].
An effective automatic DR detection system can substantially
reduce the workload experimented by ophthalmologists in
the context of large-scale screening programs, having a large
positive impact on population healthcare [7], [8].

However, the design of a CAD system to support expert’s
decisions in an appropriate manner must take into account
several desirable properties. First, the amount of annotated
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FIGURE 1. (a–c) A Retinal Images showing signs of DR (b–d) Lesions associated to DR (d) Exudates (e) Microaneurysms (f) Hemorrhages.

training data must be medium-to-moderate, since manually
labeling each pixel on image regions containing lesions can
be a time-consuming and error-prone process. Ideally, a CAD
system must be able to learn to detect disease signs from
a set of images labeled with a single number indicating the
presence or not of DR. Adding a single tag on a retinal
image is a much easier and faster task for human experts to
accomplish. Moreover, there is already a large quantity of
visual data stored at hospitals that has been annotated with
this kind of labels, representing an immense source of training
data. We refer to this type of annotations as weakly labeled
data. Second, any CAD system supporting ophthalmologists’
clinical decisions must work reliably and in an interpretable
manner, in order to fit regular clinical work-flows.

To address both of these challenges, the main contribution
of this paper consists of a new technique for DR detection
capable of learning from a set of weakly labeled images and
performing interpretable diagnose prediction. The proposed
technique allows to train a DR detection CAD system at an
image level using implicit local information, e.g. deciding
if the image is healthy or not based on lesions present in
certain image regions, even if their location is unknown. This
is achieved by means of a novel Multiple Instance Learn-
ing (MIL) technique that improves upon previously proposed
MIL approaches by jointly learning to encode and classify
visual information coming from localized areas of the image.
As a second contribution, the interpretability of the proposed
model is enhanced by means of a constraint imposed on the
learned representations, which forces them to remain sparse
in case of healthy images while becoming dense whenever the
image contains DR signs. Hence, the proposed system learns
from weakly labeled data without requiring strong manual
annotations to be trained, but it can still pinpoint the regions
on the image that triggered the diagnosis decision, resulting
in a highly interpretable CAD system. Comprehensive perfor-
mance evaluation on several publicly available datasets favor
the proposed technique, demonstrating that it competes well
with other recent approaches while providing an increased
interpretability outcome. The method presented in this paper
is a substantial extension of the conference publication [9].

II. RELATED WORK
A. DR DETECTION ON RETINAL IMAGES
DR detection on images of the eye fundus is usually achieved
by first locating specific disease signs and lesions in the
retinal images. This is typically accomplished based on a

conventional machine learning pipeline for detecting objects
of interest within images, i.e. given a dataset of image regions
containing manually delineated lesions:

1) Lesion Description: Visual features are extracted to
characterize each type of lesionmodeling their geomet-
ric, textural and color appearance.

2) Classifier Training: A classifier is trained to distin-
guish lesions based on the extracted features.

3) Lesion Candidate Extraction: Given a new image,
candidate regions are extracted from it, and the
retrieved candidates are described with those same
features.

4) Lesion Candidate Classification: These descriptors
are inputted to the classifier, which decides if the can-
didate is a lesion or not (false positive removal) and/or
the most likely type of lesion.

Usually, these techniques are specifically designed to deal
with a single type of lesion, e.g.microaneurysms [10] or hard
exudates detection [11].More generally, red lesions [12], [13]
or bright lesions [14], [15] can be detected. After lesion
detection has been performed, DR detection and grading can
be realized. Several papers have thus proposed DR detection
techniques consisting of combining distinct lesion detec-
tion techniques to extract all relevant anomalies, and then
merge the results into a single outcome indicating the pres-
ence or severity of DR [16], [17].

Themain drawback of the above approach is that it requires
an image database that has been previously annotated by
a specialist at the lesion level. The lesion borders need to
be marked pixel by pixel or with specialized visual tracing
tools. This represents a tedious and time-consuming pro-
cess. Yet another relevant limitation of lesion-detection based
DR detection is the necessity of complex and often error-
prone pre-processing techniques. For instance, the optic disc
typically needs to be located and removed in order to avoid
the generation of candidate regions that can be confused as
bright lesions [16].

To avoid the need for manually segmented training
examples, this work differs from multi-lesion detection
approaches by framing the problemwithin theMIL paradigm.
MIL allows to build a weakly-supervised learning system,
where only a single indicator is required for a given image
but predictions are formulated based implicitly on region-
level characteristics. Below we provide a brief theoretical
introduction to the MIL framework.
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B. MULTIPLE-INSTANCE LEARNING
The MIL framework for binary classification problems con-
siders two main entities, called bags and instances. In this
setting, a bag is composed of an undetermined number of
instances. While the goal of a MIL algorithm is to classify
bags into positive or negative, it is assumed that instances
carry useful information regarding bags containing them.
However, the only available ground-truth inMIL is associated
to bags. The goal in this approach then becomes to model the
implicit relationship between instances and their correspond-
ing bags. A typical example of such a relationship would be:
if a bag contains at least a positive instance, regardless of how
many negative instances it may contain, it should be declared
as positive, whereas a bag should be predicted as negative if
it contains only negative instances.

There are two main MIL algorithms categories, namely
instance-level techniques (ILT) and bag-level techni-
ques (BLT). In ILT, a classifier is trained to classify instances,
and instance-level predictions are aggregated to build a
bag-level prediction. Examples of this approach are mi-
SVM [18], or MIL-Boost [19]. The way in which instance-
level predictions are combined will model the instance/bag
relationship. Following the above example, instance-level
predictions can be aggregated with a max-rule: the bag-level
prediction is given by the top positive instance contained on
it. The main disadvantage of this approach is that not always
a single instance should condition the bag-level prediction, as
the final label may be influenced by a larger set of instances.

BLT differ from ILT in that the classifier is not trained
to classify instances, but rather it learns to classify bags
directly. The main difference lies in the moment the instance-
level information is aggregated.While ILT combine instance-
level predictions, in BLT a bag-level representation is built
from a combination of instance-level representations, and the
classifier is trained on this combined representation [20].

The main problem of MIL-BLT is that the amount of
instances within a bag is not known a priori, which gives rise
to bag representations of varying dimension. To overcome
this obstacle, typically all the instance-level representations
of different bags are mapped into a common space. This
is achieved with embedding functions followed by pooling
operations, and the goal becomes finding a representation
space as discriminative as possible.

One particularly interesting MIL-based image classifica-
tion model is the Bag of Visual Words (BoVW), introduced
in [21] for video retrieval. In BoVW, an image (bag) is
decomposed into a set of local low-level visual descriptors
(instances). These are then mapped onto a common represen-
tation, defined by a visual dictionary.

In BoVW techniques, the way the visual dictionary is
learned is a critical part of the method. The most popular
approaches involve applying unsupervised techniques, such
as k-means clustering, on features extracted from a group of
images. In this case, the resulting k centroids conform the
visual words composing the dictionary. Once the instances
associated to an image have been encoded using the visual

dictionary, they are combined together via a pooling opera-
tion, resulting in a feature vector that is supplied to a standard
classifier.

In summary, BoVW is characterized by two separate
stages. The first one extracts features from all images and
learns a visual dictionary. The second one is composed of four
processes:

1) Feature extraction to build instance representations.
2) Encoding of instance representations into a discrimina-

tive space.
3) Pooling the encoded representations into a mid-level

representation for each image, and
4) Classifier training on these mid-level representations.

An illustration of this process is shown in Fig. 2.
MIL techniques, and in particular BoVW, have been pre-

viously proposed with success for medical imaging appli-
cations [22]. For instance, MIL was applied in [23] for
obstructive pulmonary disease detection on lung CT scans,
in [24] for segmentation and diagnosis of histopathology
images, or for detecting early signs of dementia on brainMRI
in [25].MIL has also been proposed for retinal image analysis
tasks [26], [27]. In this context, the closer techniques to the
method proposed in this paper are [22] and [28]. In [22],
a MIL-based DR system is proposed, based on a complex
pipeline involving multi-scale patch extraction and alternate
local-global weight updating to optimize distances between
relevant instances in the feature space. In [28], Pires et al.
introduce a BoVW technique for DR detection based on
sparse SpeededUpRobust Features [29] features with a semi-
soft encoding scheme and max-pooling.

The approach proposed in this paper is also based on
the BoVW framework. However, we depart from the con-
ventional two-stage process which: firstly, learns a visual
dictionary, and secondly, trains a binary classifier on mid-
level bag representations. This is achieved by simultaneously
learning to encode the instance-level feature vectors onto
useful representations and learning to classify bags based on
them. Thanks to this joint learning process, the learned repre-
sentations are enforced to be useful for the classification task.
This way, the classification performance directly drives the
learning process from end to end. Furthermore, the mid-level
representations are also constrained via a new loss function
that is designed to enhance their interpretability. An overview
of the proposed system is illustrated on Fig. 3.

III. BoVW FOR INTERPRETABLE DR DETECTION
To formalize the BoVW approach for MIL in the context of
DR detection, let us consider a training dataset {(Bn, ln)}Nn=1
of N retinal eye fundus images Bn with associated labels ln,
indicating whether they contain pathological signs. From
each image B, N (B) instances are extracted, consisting of
a set of local descriptors from a variable number of image
regions.

In this case, each bag B is modeled as follows:

B ≈ {xi, 1 ≤ i ≤ N (B)}, (1)
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FIGURE 2. Conventional BoVW framework. Note that the visual dictionary is learned in a separate stage. Hence, the learned mid-level representations
zi are completely independent of the binary classifier’s performance.

FIGURE 3. Improved BoVW algorithm. The system avoids the explicit creation of a visual dictionary. Furthermore, note that in the proposed version of
the BoVW the classifier’s performance drives the selection of optimal mid-level representations zi, as opposed to the conventional approach.

where xi ∈ Rd is a feature vector describing the i-th instance
found in B.
In order to classify a new bag, we need to train a binary

classifier. However, since N (B) varies for each image B,
the description in eq. (1) is not suitable for this task.
The conventional BoVW approach proceeds by extract-
ing the representations for all images in a training set
and aggregating them, obtaining a set D of (

∑N
i=1 N (Bi))

d–dimensional descriptors. On this set, an unsupervised
clustering technique can be applied, e.g. k–means. In this
case, the set of descriptors is summarized into k centroids,
known as visual words, which compose the visual dictionary
D̃ = {̃x1, x̃2, . . . x̃k}.

Once a suitable dictionary D̃ is learned, then for every
training bag B the method encodes each of its instances xi

into a set of k-dimensional codes wi based on D̃ by means of
an embedding function f : Rd

→ Rk . All the N (B) codes
of different instances extracted from B are finally pooled in
order to obtain a single k-dimensional representation z. This
can be achieved for instance with the max-pooling operation
P : RN (B)

× Rk
→ Rk . In this case, the m–th element in z is

given by:

zm = max
1≤j≤N (B)

wjm. (2)

We refer to this final pooled vector z as the bag’s mid-level
representation associated with image B. After processing the
training set, the resulting set of mid-level representations,
together with the corresponding bag-level labels, are finally
supplied to a classifier C(B), which is trained to discriminate
between positive or negative bags.

A. JOINTLY LEARNING TO ENCODE INSTANCES AND
CLASSIFY BAGS
The standard BoVW strategy outlined above presents several
important disadvantages. A relevant deficiency is that the
visual dictionary construction, which determines the resulting
mid-level representations, is a process completely isolated
from the training of the binary classifier. To compensate
for this and build a sufficiently expressive dictionary that
can capture the complexity of the feature space, its size
is typically large. In some cases the amount of considered
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visual words can reach thousands [26]. Existing alternatives
comprise for instance considering a hierarchical coarse-to-
fine dictionary learning, on which an initial fine-grained dic-
tionary is iteratively refined employing the bag-level labels,
until an optimal size is reached [30]. However, this is a cum-
bersome step requiring itself a separate optimization process.

To overcome these drawbacks, a new strategy to simulta-
neously learn the encoding and classification steps is pro-
posed in this work. In order to avoid the construction of a
visual dictionary, two neural networks are built: the first one,
U(x; θU), learns optimal weights θU to produce useful mid-
level representations z while the second, D(z; θD) receives
those representations and its parameters θD are optimized to
perform accurate bag-level classification. The error of D is
back-propagated directly to U, influencing the way in which
the mid-level representations are produced by it. In this way,
both processes can benefit from each other. An overview of
this improved BoVW approach is shown in Fig. 3.
Technically, the neural network U(x; θ ) is defined by a

series of layers j ∈ {1, . . . ,L} with Mj hidden neurons that
perform simple linear operations specified by weights θ j on
their inputs x, followed by a non-linear operation:

x 7→ σ (θ j · x) (3)

where the first element of x is set as x0 = 1 in such a way that
θ
j
0 contains the bias term. In the above equation, σ denotes a
sigmoid function or any other kind of non-linearity.

For a given bag B, each of its instances xi going through U
will be encoded into a ML-dimensional code vector wi. Note
that the last layer of U is followed by a softmax activation
function, ensuring that

∑k
j=1 w

i
j = 1. The set of codes

{wi, 1 ≤ i ≤ N (B)} computed from every instance in B are
then pooled into the mid-level representation z.
Regarding the pooling stage, several options can be

applied, such as average pooling, which averages all codes in
{wi, 1 ≤ i ≤ N (B)}. However, this can lead to a smoothing
effect due to the contribution of all instances from the bag,
even when some of them may be irrelevant.

An alternative to avoid this effect is to perform a max-
pooling operation P, as defined in eq. (2). In addition to
sharper mid-level representations, max-pooling matches bet-
ter the goal of DR detection. If no abnormal instance is
found on the mid-level representation associated to an image
B, it should be declared as healthy. On the other hand,
the presence of a single microaneurysm or any other kind of
lesion is enough to classify the image as pathological. In our
case, max-pooling is implemented to accept the output codes
{wi, 1 ≤ i ≤ N (B)} of the last hidden layer of U and pool
the results into z.
While training U, the obtained mid-level representations

become the input of the second neural network D, defined
in the same way as U. The output of the final layer of D is
supplied to a sigmoid activation unit, which produces a sin-
gle output containing the prediction of the system regarding
the presence or not of DR on the image B from where the
instances where extracted. In training time, this prediction is

compared with the actual label of the image by means of a
cross-entropy loss penalizing inaccurate predictions:

Lclass =
−1
N

N∑
i=1

li log(D(zi))+ (1− li) log(1− D(zi)), (4)

where zi is the mid-level representation of the training
image Bi, and li its corresponding ground-truth label. The
weights θU and θD of both networks are iteratively updated
until convergence by standard back-propagation with mini-
batch stochastic gradient descent, in order to minimize the
error given by eq. (4).

After jointly training U and D, given a new image B,
the output of the proposed model is a prediction of the prob-
ability p of B being affected by DR, i.e., p = D(P(U(B))).

B. A STRATEGY TO ENFORCE MODEL INTERPRETABILITY
Ideally, the mid-level representations z obtained from pooling
the encoded instances {wi, 1 ≤ i ≤ N (B)} extracted from an
image B contain visually meaningful content. However, this
behavior of the proposed model can be further enforced.

Since we know that healthy images only contain healthy
instances, we can act at the instance level on codes wi

extracted from healthy images. The goal in this case is to
force the model to generate sparse mid-level representations.
This can be accomplished by requiring that, when the label
of an image B is negative, U uses few codes to encode all
its instances. In this way, after pooling a set of codes from
healthy instances, the resulting mid-level representation will
necessarily be sparse.

In order to impose this behavior on the model, consider a
healthy image B, its set of instances {xi, 1 ≤ i ≤ N (B)}, and
their corresponding codes {wi 1 ≤ i ≤ N (B)}. We define the
following quantity for healthy bags:

Lh =
1
N

N (B)∑
i=1

− log(wi1), (5)

which reaches a minimum whenever the code generated by
U is closer to the unitary vector (1, 0, . . . , 0), since codes wi

are normalized to sum up to 1.
On the other hand, if the image B is pathological, it may

contain both pathological and healthy instances. We cannot
proceed in the same way and constrain the resulting mid-
level representation from instance-level codes wi. However,
we can still act at the bag level, by imposing that the mid-
level representation z is dense. In this case, we can define the
following quantity for pathological bags:

Lp =
1
ML

ML∑
i=1

− log(zi), (6)

which will be minimized whenever the mid-level representa-
tion z is closer to the vector (1, 1, . . . , 1). Since z is the result
of pooling codes coming from every instance in B, this can
only happen if the model encodes pathological instances with
different visual words.
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FIGURE 4. A visual explanation of the interpretability-enhancing loss
behavior. When the system receives a healthy image, every instance
ideally contributes to the same codes in Lh, while disease instances,
only present on images showing signs of DR, appear as denser visual
words contributing more to Lp.

Finally, given a bagBwith corresponding label l, we define
an interpretability-enhancement loss as the combination of
both Lh and Lp:

Lint = α(1− l)Lh + β · l · Lp. (7)

Note that l = 0 whenever B is healthy, whereas l = 1
for pathological images. In this way, each of the compo-
nents of Lint becomes active depending of bag-level infor-
mation. Parameters α and β are positive real-valued hyper-
parameters, weighting the contribution of each term. The
global loss function that drives the learning of the entire
system is simply the addition of the binary classification loss
defined in eq. (4) and the interpretability-enhancement loss
of eq. (7):

Lglobal = Lclass + Lint . (8)

A schematic representation illustrating the different situa-
tions the model may encounter, and the way in which the
interpretability-enhancement loss in eq. (7) reacts to them,
is shown in Fig. 4.

C. IMPLEMENTATION DETAILS
In order to apply the proposed method to the DR detection
problem, we need to decide on the feature extraction and
description methods. In this case, SURF features [29] were
employed for both feature description and extraction as they
have been shown to perform better than other description
methods for DR detection tasks [28]. SURF is a scale and
rotation invariant method that detects and describes inter-
est points in an image. To better describe each interest

TABLE 1. DR grading rules for the Messidor Dataset MA =

Microaneurysms, HE = Hard Exudates, NV = Neo-Vessels.

point, 128 dimensional extended descriptors were computed.
We used OpenCV’s implementation of SURF [31] with
default parameters and Theano [32] to implement the two
neural networks U and D.

IV. EXPERIMENTAL EVALUATION
In this section, we provide experimental assessment of the
performance of the proposed method when compared with
other recent approaches. Performance is reported in terms
of Area Under the receiver operating characteristic Curve
(AUC) for the task of DR detection and DR referral, and we
finally verify the enhanced interpretability of the proposed
model, illustrating that it can effectively reveal the regions
contributing to detect pathological images.

A. DR DETECTION PERFORMANCE EVALUATION
We first evaluate the proposed DR detection technique on
the publicly available Messidor dataset [33]. Messidor con-
tains 1200 color retinal fundus images acquired on three
different French hospitals between 2005 and 2006. Images
were obtained with TRC-NW6 non-mydriatic retinographs
(Topcon, Tokyo) with a 45◦ field of view, at a varying resolu-
tion of 1440×960, 2240×1488 and 2304×1536. No image
pre-processing was applied before extracting and describing
the instances within these images.

The clinical information associated to each image on Mes-
sidor consists of two labels indicating the grade of DR and the
risk of macular edema, based on the presence and number of
different types of lesions, see Table 1. In order to build a DR
presence label for each image, the provided values aremerged
in such a way that any image associated to a DR severity
greater or equal than one is labeled as pathological, meaning
that it contains early signs of DR, while only grade 0 images
are considered as healthy. This resulted in a dataset on which
546 images were labeled as normal and 654 as pathological.

The Messidor dataset has been widely employed in the
literature to assess the performance of DR detection and
grading techniques. Some methods approach the problem by
designing a separate detector for each of possible lesions,
and then applying it to Messidor images. The output of
these lesion detectors is then combined with the set of rules
in Table 1 in order to produce a DR presence/grade decision.
However, it is important to stress that this approach requires
the availability of an independent database containing pixel-
wise ground-truth at the lesion level. This is precisely the
challenge that our technique and other MIL-based methods
try to overcome.
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TABLE 2. Performance comparison of DR detection methods tested on the Messidor dataset.

A standard evaluation procedure was followed: 20% of the
dataset was held-out for testing, while 65% was employed
for training and 15% for validation. Hyper-parameters were
found using random search [41], selecting the best val-
ues in terms of AUC on the validation set. Performance
results of the proposed technique are shown in Table 2
in terms of AUC, together with the performance obtained
in the same dataset by different state-of-the-art techniques.
We include both methods trained on independent datasets
for the task of lesion detection and methods that learn
directly from the image-level ground-truth in order to predict
DR detection.

The results on Table 2 lead to several conclusions. First,
the proposed method achieves a superior performance com-
paring to the other techniques that have been trained without
access to pixel-level lesion annotations. It is particularly inter-
esting to note that other MIL-based techniques such as [22],
or the best of the DR detection techniques reported in [38],
obtain a lower AUC. The main difference between all these
methods and the technique introduced in this paper is the
propagation of the bag-level labels until the encoding pro-
cess, which directly benefits from this information in order
to produce more useful mid-level representations, leading
to a better detection performance. Second, performance of
methods trained with lesion-level ground-truth is comparable
but not superior to the introduced technique. This means
that the proposed MIL-based approach for DR detection can
effectively make use of local information on the image to the
same extent as these techniques, but without having explicit
access to it.

It should be noted that other recent approaches based
on Deep Convolutional Neural Networks (CNN) have been
tested with great success on the Messidor dataset [1], [6],
achieving even larger AUC values without the need of lesion-
level information. However, these studies propose models
trained on external large dataset of retinal images, contain-
ing several dozens of thousands of training images. More-
over, the output of this kind of CNN-based models typically
lacks interpretability, which may hinder the predisposition of

TABLE 3. Performance comparison of DR detection on the DR1 dataset.

doctors towards its acceptance in a regular clinical workflow.
The method introduced in this paper addresses both issues by
leveraging as much information as possible from a moderate-
size dataset, while enforcing the interpretable behavior of the
model, as illustrated in section IV-C. However, in order to
develop a more comprehensive assessment of deep-learning
based systems on medium-sized datasets, we include for
comparison the performance of a fine-tuned deep convolu-
tional neural network [37], after pre-training on the ImageNet
database [42]. It has been proven in [43] that fine-tuning
a CNN that has been pre-trained on ImageNet is the most
meaningful approach to implement deep neural networks on
moderate-sized datasets.

In order to test if the proposed method generalizes to
different datasets, we also tried to detect DR as the presence
of any single lesion in the DR1 dataset, introduced in [44].
This dataset contains 1077 retinal images captured with a
TRC-50X (Topcon Inc., Tokyo, Japan) mydriatic camera with
a 45◦ field of view and an average resolution of 640 × 1077
pixels. From all the images, 595 were classified as contain-
ing no sign of DR and 482 as showing pathological signs.
In this case, we are only aware of a work addressing the
task of DR detection on this dataset [45]. Since DR1 con-
tains ground-truth regarding the presence of different lesions
within each pathological image, DR detection is achieved
by training separate detectors for each of them and then
fusing the results with a meta-classifier. Performance com-
parison with the results in [45] is shown in Table 3. In this
case, the proposed technique clearly outperforms the method
proposed in [45], which confirms the generality of our
approach.
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TABLE 4. Performance comparison of DR referral methods tested on the DR2 dataset.

B. DR REFERRAL PERFORMANCE EVALUATION
It has been argued in [44] that the presence of a given lesion
may not be enough to make a decision on the need to refer
a patient for further examination. Table 1 contains a set
of rules designed in order to make such a decision, but it
may not cover all the signs an expert ophthalmologist takes
into account when recommending further examination of a
patient. For instance, in [46], referral is defined as having a
DR grade above mild non-proliferative (R1) and/or macular
edema. Lesion location may also impact the clinical decision
regarding referral.

In order to assess the performance of the proposed method
in terms of DR referral prediction, we employ the publicly
available DR2 dataset. This dataset was introduced in [44],
and it is composed of 520 retinal fundus images, from which
337 images were categorized by two independent ophthal-
mologists as not requiring referral, and 98 were deemed to
require referral within one year by a specialist. It is important
to note that while labeling the images, the experts were
required to categorize them ignoring specific lesions and
considering only if the image should lead to referral. The
medical specialists based their decision on any reason they
considered to be clinically relevant, not only on the pres-
ence of particular lesions. DR2 images were acquired with a
TRC-NW8 (Topcon Inc., Tokyo, Japan) nonmydriatic retinal
camera, and they all have 867 × 575 pixel resolution with a
45◦ field of view.
Several methods have been proposed in the past for

DR referral prediction [40], [46], [47]. Unfortunately, there
is not a standard definition of referral, which results in dif-
ferent problems of varying difficulty being solved. In [47]
images containing signs of macular edema were considered
as referrable, while in [40] the adopted definition was the
presence of signs of high DR grade or high risk of mac-
ular edema. In order to be able to properly compare the
proposed approach in a fair manner, we select those studies
that were tested on DR2, since it contains direct referral
opinion from medical experts. In this case, [44] proposed
a solution consisting of training individual lesion detectors,
and employing the resulting decision scores in order to train
a meta-classifier to predict referral. The individual detectors
consist on a variant of BoVW with more advanced pooling
and encoding operations. In a later work [28], this scheme
was improved bymeans of a semi-soft encoding strategy, with
results outperforming those of [44].

It is worth noting that these methods, even if being
MIL-based approaches, still need to be trained with weak

lesion-level information. In this case, information regard-
ing which kind of lesion is present in an image, but not
the exact location and its delineation, is used. In order to
train these techniques, the DR1 dataset described in the
previous section was used. In contrast, the technique pro-
posed in this paper was trained only on DR2, with no other
information than the need for referral of each image. This
characteristic is shared by another recent technique intro-
duced in [26]. In that work, it was effectively shown that
DR referral could be predicted without the need for explicit
lesion detection. However, the proposed method still presents
a separate visual dictionary construction and classifier
training.

Performance results for DR referrable predictions in terms
of AUC is presented in table 4. It can be observed that the
proposed technique improves or matches the performance of
previously reported methods also in the task of DR refer-
ral. The arguments suggested in [26] about the possibility
of training a referral prediction system without the need of
explicitly building separate lesion detectors are confirmed
by these results. We can conclude that both the technique
proposed in this work and the one introduced in [26] obtain
superior performance than lesion-detection based techniques,
confirming the validity of this approach. It is important to
notice, however, that the method from [26] only addresses
DR referral, while the technique presented here is tested both
in DR detection and referral. Moreover, the results obtained
by our technique are better interpretable than those produced
by [26]. In the next section we analyze this aspect of our
model.

C. INTERPRETABILITY OF THE MODEL
One of the most relevant features of the DR detection sys-
tem proposed in this paper is its enhanced interpretability,
allowed by the joint minimization of the two loss functions in
eqs. (4) and (7). This enables us to explain which instances
within the images most likely caused the model to reach
the produced decision. To experimentally demonstrate this
aspect of the model, a first example of this behavior on
pathological images from the DR2 dataset is shown in Fig. 5.
In Figs. (5a) and (5c), SURF keypoints contributing to
the resulting mid-level representations of these images are
depicted. We can clearly see how most of the selected
instances correspond to keypoints extracted from bright
lesions, while only few keypoints are related to instances that
are typically present on both normal and pathological retinal
images, such as the macula or the optic disc. Zoomed-in
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FIGURE 5. Instances on two pathological images that contributed to the decision produced by the proposed system. In this case, it can be appreciated
that most of the SURF keypoints are located on top of bright lesions. Best viewed in color.

FIGURE 6. SURF keypoints associated to image instances considered by the proposed model in order to produce a decision on DR presence. (a) and
(b) depict healthy images, on which fewer instances were taken into account. On the contrary, (c) and (d) show pathological images, on which a
greater amount of instances are considered to reach a decision. Best viewed in color.

FIGURE 7. Comparison between results produced by a model trained without the interpretability-enhacnement loss - (a), (b) - and after adding
it - (c), (d). In this case, (a) and (c) show a healthy image, while (b) and (d) show a pathological example. Best viewed in color.

details are also shown in Figs. (5b) and (5d) to better present
this observation.

A second experiment was run to better illustrate that
the model trained with the interpretability-enhancement loss
behaves as desired. The loss function introduced in eq. (7)
aims at promoting a sparse mid-level representation for
healthy images, on which few instances are ideally consid-
ered, while in the case of pathological images, the produced
mid-level representations are expected to be denser. This
should translate into more SURF keypoints appearing when
considering pathological examples. This is visually verified
in Fig. 6. There it can be observed that fewer keypoints

were taken into account when reaching a decision regarding a
healthy image, see Figs. (6a) and (6b), than when a patholog-
ical image was considered, as shown in Figs. (6c) and (6d).

To further verify that the loss term in eq. (7) effectively
contributes to the explainability of the model’s decision,
we trained a separate classifier by minimizing only the loss
function of eq. (4), without including the interpretability-
enhancement loss term. Both results are visually compared
in Fig. 7. It can be seen how the extra loss term leads
to more interpretable results by a better identification of
the pathological instances. Only a fraction of the input
instances are used by the model to produce a decision, while
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irrelevant instances are filtered out. It is worth noting that
when the interpretability-enhancement loss term was not
included, the model considered roughly the same number
of keypoints on normal and pathological images, as shown
in Figs. (7a) and (7b). However, when the global loss in
eq. (7) is minimized, the resulting model considers substan-
tially less keypoints in a healthy example than in a patholog-
ical image in order to make a decision, as can be observed
in Figs. (7c) and (7d).

V. DISCUSSION
From the above experiments, it can be seen that the results
obtained by the proposed approach outperformed other DR
detection techniques in most cases. It is worth noting, how-
ever, that in the case of the DR1 dataset, a state-of-the-art
Convolutional Neural Network achieved higher AUC. CNNs
are powerful classification models, but they are known to
provide results that are hard to interpret by a user. In addi-
tion, the same model was tested on the Messidor and the
DR2 datasets, obtaining a lower performance. This indicates
that the model generalizes poorly to different data sources,
in particular when there is few training data available (as
in the case of the DR2 dataset). However, it is important
to mention that, for a fair comparison, neither for Incep-
tion V3 nor for any other technique (including the proposed
approach), we performed artificial data augmentation. This
could be expected to lead to some accuracy improvement on
CNN models.

When compared with the remaining techniques, it can
be observed that the proposed technique brought substantial
performance increases in every considered dataset. When
evaluated for DR detection in the Messidor dataset,
the weakly-supervised technique introduced in this paper
achieved the largest performance among every method that
does not require pixel-wise lesion annotations to be trained.
From the four considered techniques that employ lesion anno-
tations, two of them achieved a similar performance, while
the other two obtained lower DR detection AUCs. This is
highly relevant, since producing this kind of annotations is a
costly and time-consuming process, and the ability to bypass
it is a great advantage.

The results for the task of DR referral on the DR2 dataset
confirmed the good performance of the proposed approach:
from the four other considered techniques, only one achieved
similar performance, indicating that our technique com-
petes well or outperforms other previous methods. More-
over, the proposed interpretability-enhancement mechanism
was qualitatively shown to offer highly interpretable results,
which has great importance for the potential adoption of
an automatic computer-aided diagnosis in a real clinical
work-flow.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, a new weakly-supervised Diabetic Retinopa-
thy (DR) detection system has been presented, based on
the Multiple-Instance Learning framework. The method

can learn from weak information regarding only the pres-
ence or absence of disease to formulate predictions on new
images based on implicit local information. The main novelty
of the proposed model with respect to previously existing
MIL-based DR detection systems is a joint-learning scheme
in which the encoding and the classification stages are con-
nected. Thanks to this approach, themid-level representations
generated by the model are optimized to improve DR detec-
tion accuracy. Furthermore, a novel strategy to enforce the
interpretability of the resulting predictions has been intro-
duced, resulting in a better understanding of the output of
the model. Performance comparisons against other recent
DR detection and DR referral techniques give advantage to
the proposed technique, confirming previous observations
stating that weak expert labels (at the image level only) can
be leveraged to produce accurate predictions without the
need of pixel-level information related to the different lesions
indicating the presence of DR.

The developed technique achieves good performance, but
further improvements can be achieved. Speeded-Up Robust
Features (SURF) were employed in this work to locate and
describe instances within retinal images. Even if the proposed
technique jointly optimizes the encoding and the classifica-
tion stages of the model, instance location and description
may be included in the same global optimization process.
This could be achieved with an end-to-end system in which
the most appropriate image representation for the task of
DR detection is also learned by using a Deep Convolutional
Neural Network. Further work will involve exploring this
direction of research, in order to obtain higher performance
in terms of DR detection, as well as extending the approach
to predicting different levels of DR severity.
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