
Expert Systems With Applications 94 (2018) 58–69

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Iterate d-gree dy-base d algorithms with beam search initialization for

the permutation flowshop to minimise total tardiness

Victor Fernandez-Viagas a , ∗, Jorge M.S. Valente

b , Jose M. Framinan

a

a Industrial Management, School of Engineering, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain
b LIAAD - INESC TEC, Faculdade de Economia, Universidade do Porto, Porto, Portugal

a r t i c l e i n f o

Article history:

Received 30 June 2017

Revised 15 September 2017

Accepted 23 October 2017

Available online 25 October 2017

Keywords:

Scheduling

Flowshop

Heuristics

PFSP

Tardiness

Beam search

Iterated greedy algorithm

Iterated local search

a b s t r a c t

The permutation flow shop scheduling problem is one of the most studied operations research related

problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise sev-

eral objective functions. In this paper we address the total tardiness criterion, which is aimed towards

the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have

been proposed for this problem in the literature, recent contributions for related problems suggest that

there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we

propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences

without a complete evaluation of their objective function. Second, using this constructive heuristic as

initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive

computational evaluation is performed to establish the efficiency of our proposals against the existing

heuristics and metaheuristics for the problem.

© 2017 Elsevier Ltd. All rights reserved.

a

e

&

p

r

g

I

t

t

a

t

s

o

p

s

t

V

t

o

t

t
1. Introduction

The flow shop is a common manufacturing layout in which a

set of n jobs has to be processed in a set of m machines where

each job follows the same route through the machines. For sim-

plicity, the problem is denoted by permutation flow shop (PFSP

in the following) when the same sequence of jobs is applied on

each machine. The PFSP is one of the most studied optimization

problems in Operations Research. Among the objectives studied in

the literature (see e.g. Fernandez-Viagas, Dios, & Framinan, 2016a;

Fernandez-Viagas & Framinan, 2014; Pan & Ruiz, 2013), the min-

imisation of the total tardiness is essential for manufacturing sys-

tems (Raman, 1995), since due dates play an important role in

these systems (Panwalkar, Smith, & Seidmann, 1982) and delays

may increase costs and/or the dissatisfaction of customers (result-

ing in either a poor reputation, or even the loss of customer) (Sen

& Gupta, 1984).

According to the α| β| γ notation (see e.g. Pinedo, 1995), the

PFSP to minimise total tardiness can be denoted as Fm | prmu | �T j .

Since this problem is known to be NP-hard (Du & Leung, 1990),

during the last years several approximate algorithms –heuristics
∗ Corresponding author.

E-mail addresses: vfernandezviagas@us.es (V. Fernandez-Viagas),

jvalente@fep.up.pt (J.M.S. Valente), vfernandezviagas@us.es (J.M. Framinan).

g

s

https://doi.org/10.1016/j.eswa.2017.10.050

0957-4174/© 2017 Elsevier Ltd. All rights reserved.
nd metaheuristics– have been proposed in the literature (see

.g. Karabulut, 2016; Li, Chen, Xu, & Gupta, 2015; Vallada, Ruiz,

 Minella, 2008). However, these proposals have not been com-

ared against themselves, or the comparison has not been car-

ied out under the same conditions, so the state-of-the-art re-

arding approximate algorithms for the problem remains unclear.

nstead, these methods have been usually compared against ei-

her the genetic algorithm proposed by Vallada and Ruiz (2010) ,

he Iterated Greedy (IG) algorithm by Ruiz and Stützle (2007) ,

nd/or the NEHedd by Kim (1993) , which is the adaptation for

he problem of the well-known NEH heuristic by Nawaz, En-

core Jr., and Ham (1983) . The latter two are considered key meth-

ds in the flowshop scheduling literature since the noteworthy

apers by Nawaz et al. (1983) and Ruiz and Stützle (2007) , re-

pectively. Regarding the NEHedd, it is probably the key construc-

ive heuristic for the problem due to several reasons (Fernandez-

iagas & Framinan, 2015d): aside being an efficient heuristic for

he problem, it is used to obtain an initial solution by the rest

f efficient constructive or improvement heuristics, and by more

han half of the efficient improvement heuristics or metaheuris-

ics. Regarding IG, it remains the cornerstone of subsequent al-

orithms in the flowshop literature and can be considered as the

tate-of-the-art algorithm for several scheduling problems (see e.g.

https://doi.org/10.1016/j.eswa.2017.10.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.10.050&domain=pdf
mailto:vfernandezviagas@us.es
mailto:jvalente@fep.up.pt
mailto:vfernandezviagas@us.es
https://doi.org/10.1016/j.eswa.2017.10.050

V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69 59

F

n

v

c

D

b

I

u

t

c

f

F

n

w

t

l

e

W

p

r

r

e

fi

i

m

p

r

m

c

2

j

o

p

q

i

C

t

C

C

t

m

n

a ∑

b

w

t

s

g

r

E

(

s

p

t

a

R

m

p

a

t

a

b

e

s

t

t

f

t

g

a

a

G

L

r

i

g

T

e

s

n

o

h

u

o

t

h

c

V

h

b

V

l

t

p

t

s

m

h

t

a

g

o

d

a

2 This SAH

′ algorithm was not included in the computational evaluation of

Vallada et al. (2008) due to the resemblance of it with SAH.
3 The speed up mechanism is a very common practice in the flowshop lay-

out with permutation sequences. Taillard (1990) have proposed the first one for

F m | prmu | C max . Since then, several other mechanisms have been proposed for dif-

ferent constraints and/or objectives. Naderi and Ruiz (2010) , Rios-Mercado and
ernandez-Viagas and Framinan, 2015b and Dubois-Lacoste, Pag-

ozzi, & Stützle, 2017). 1

Despite the preeminence of these two algorithms, recent ad-

ances in related scheduling problems have shown that they

an be improved: On the one hand, some studies (see e.g.

ong, Huang, and Chen, 2009 and Pan & Ruiz, 2014) have found

etter results by varying the destruction-construction phase in the

G for total flowtime minimisation, which is related to the problem

nder consideration (see Fernandez-Viagas & Framinan, 2015d). On

he other hand, recent constructive heuristics based on a non-

omplete evaluation of the partial sequences have clearly outper-

ormed the original NEH for other objective functions (see e.g.

ernandez-Viagas, Dios, et al., 2016a; Fernandez-Viagas & Frami-

an, 2015c; 2017).

To tackle the aforementioned issues, the contribution of this

ork is twofold: We first implement a beam search algorithm for

he problem which constructs several partial sequences in paral-

el. The algorithm estimates the value of the objective function for

ach partial sequence based on specific variables of the problem.

e then develop several iterated-greedy-based algorithms to im-

rove the pool of sequences generated by the beam search algo-

ithm. To explore the effect of the construction phase in the algo-

ithm, we implement eight different methods based on insertions,

xchanges, randomness and optimizations of partial solutions. We

nally compare the proposals with the best performing algorithms

n the literature in an exhaustive computational evaluation.

The remainder of the paper is as follows: In Section 2 we for-

alise the problem and discuss its background. In Section 3 we

ropose the beam search and the iterated-greedy-based algo-

ithms. These algorithms are compared with the state-of-the-art

ethods in Section 4 . Finally, in Section 5 we discuss the main

onclusions of the paper.

. Problem statement and background

The problem under study can be set as follows: a set N of n

obs have to be processed in a flowshop composed of a set M
f m machines. Each job j ∈ { 1 , . . . , n } has a due date d j and a

rocessing time p ij on each machine i ∈ { 1 , . . . , m } . Given a se-

uence of jobs � := (π1 , . . . , πr , . . . , πn) where r ∈ { 1 , . . . , n } is an

ndex of the position in a sequence, let C ij (�) (abbreviated to

 ij whenever it does not lead to confusion) be the completion

ime of job j on machine i according to sequence �. Obviously,

 mj (�) is the completion time of job j on the last machine, and

 mπn (�) = C max is the maximum completion time or makespan of

he sequence. The tardiness (earliness) of job j is defined as T j =
ax { C m j − d j , 0 } (E j = max { d j − C m j , 0 }). Analogously, total tardi-

ess, whose minimisation is the goal of our problem, is defined

s
∑

T j =

∑ n
j=1 max { C m j − d j , 0 } , while total earliness is defined as

E j =

∑ n
j=1 max { d j − C m j , 0 } . Note that the completion times can

e computed recursively as follows:

C iπ j
= max { C i −1 ,π j

, C i,π j−1
} + p iπ j

(1)

here C 0 π j
= C iπ0

= 0 .

A number of approximate procedures have been proposed in

he literature to provide good solutions for this problem in rea-

onable computation times. A review and evaluation of these al-

orithms prior to 2008 is given in Vallada et al. (2008) . From this

eview, it turns out that the NEHedd proposed by Kim (1993) , the

NS2 by Kim, Lim, and Park (1996) , and the simulated annealing
1 IG is currently a state-of-the-art algorithm for makespan minimisation

 F m | prmu | C max). As stated by Fernandez-Viagas, Ruiz, and Framinan (2017) , the

peed up proposed by Taillard (1990) is probably one of main reason of the good-

erformance of insertion phases -constructing jobs following a greedy method for

hat scheduling problem- as compared to randomized ones.

B

t

l

h

a

t

F

lgorithms by Hasija and Rajendran (2004) and Parthasarathy and

ajendran (1997) (denoted as HR and SAH, respectively) are the

ost promising algorithms for the problem. Using the same com-

uter conditions, Framinan and Leisten (2008) propose a hybrid

lgorithm (denoted as HA) which outperforms both the HR and

he SAH

′ (proposed by Parthasarathy & Rajendran, 1998). 2 This

lgorithm combines the iterated greedy and the variable neigh-

ourhood search algorithms using a partial (adjacent-pairwise-

xchange) local search in its construction phase, as well as an in-

ertion local search improvement. In addition, Framinan and Leis-

en (2008) have also proposed a speed up mechanism to decrease

he complexity of the evaluation. 3 Recently, Karabulut (2016) have

ound around 50% time saving when applying it to the NEH.

In parallel to the contribution by Framinan and Leis-

en (2008) and Vallada and Ruiz (2010) propose three genetic al-

orithms (GAPR, GAPR2, and GADV) that also outperform the HR

nd SAH in a fair comparison, and using a similar speed up mech-

nism for the problem. The best results were obtained by the

APR version, although this algorithm was not compared to HA.

aterly, several contributions have outperformed the GAPR algo-

ithm. First, Cura (2015) proposes an evolutionary algorithm (EA

n the following), that outperforms both GAPR and SAH. The al-

orithm includes a mating procedure to diversify the solutions.

wo local search methods with different neighbourhood sizes are

mployed, although the comparison is not performed using the

ame conditions, i.e. the algorithms used for comparison were

ot re-implemented. Secondly, several trajectory scheduling meth-

ds are proposed by Li et al. (2015) using six different com posite

euristics (denoted as CH i) and three perturbation methods. Let

s denote as TSM ij the trajectory scheduling methods composed

f composite heuristic CH i and perturbation method j . Among

hese methods, the best results are found by TSM 63 . On the one

and, under the same stopping criterion and the same computer

onditions, TSM 63 outperforms the three genetic algorithms by

allada and Ruiz (2010) , i.e. GAPR, GAPR2, and GADV. On the other

and, the proposed composite heuristics outperform the NEHedd

ut require additional CPU times. Regarding NEHedd, Fernandez-

iagas and Framinan (2015d) analyse the structure of the prob-

em, finding that there are a high number of ties in the selec-

ion procedure of NEHdd. Eight tie-breaking mechanisms are then

roposed and compared with the original one, resulting that each

ie-breaking mechanism (with the exception of the random one)

tatistically outperforms NEHedd. The most promising tie-breaking

echanisms are NEHedd(TB IT1) and NEHedd(TB MS-Taillard, IT1) (these

euristics are denoted in the following as TB IT1 and TB Ta , respec-

ively). In addition, they also statistically improve GAPR when used

s an initial solution instead of the traditional NEHedd.

Recently, Karabulut (2016) propose KIG, an iterated greedy al-

orithm that incorporates a random local search method instead

f the traditional insertion local search method. The search ran-

omly performs insertion and exchanges using the speed up mech-

nism proposed by Framinan and Leisten (2008) , until no more im-
ard (1998) and Fernandez-Viagas and Framinan (2015b) have successfully adapted

hem for the DF | prmu | C max , F m | s i jk , prmu | C max and F m | prmu | ε(C max /T max) prob-

ems, respectively. With some modifications and lesser decrease in CPU times, they

ave been also adapted for the Fm | prmu | �C j , Fm | prmu | �T j , F m | prmu | ∑

E j +

∑

T j
nd Fm | block | �C j problems by Li, Wang, and Wu (2009) , Framinan and Leis-

en (2008) , Fernandez-Viagas, Dios, et al. (2016a) and Fernandez-Viagas, Leisten, and

raminan (2016b) , respectively.

60 V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69

A

a

F

l

T

t

a

p

n

q

t

a

j

t

f

t

t

∀

r

s

F

provement is achieved in n iterations. In addition, it uses a simple

annealing-like acceptance criterion with a constant temperature

based on the makespan and the due dates of the jobs. Although

the authors do not compare their proposal with algorithms specif-

ically developed for the problem, they compare it with the original

iterated greedy algorithm proposed by Ruiz and Stützle (2007) –

originally designed for the PFSP to minimise makespan–, which has

been reimplemented for the problem under consideration. It is to

note that such iterated greedy algorithm was found to be outper-

formed by GAPR for the problem under study.

To summarise, several algorithms have been proposed in the

literature to solve the problem under consideration. However, the

new picture of the efficient metaheuristics for the problem remains

unclear due to the following issues:

1. The most promising metaheuristics found by

Vallada et al. (2008) have been outperformed by GAPR and HA,

but there is no comparison among these two latter algorithms

and, to the best of our knowledge, contributions after 2008 do

not include HA in their comparisons.

2. There is no computational comparison among the recent iter-

ative algorithms proposed in the literature, i.e. EA, TSM 63 , and

KIG.

3. Some metaheuristics are tested either under different com puter

conditions or versus non-state-of-the-art metaheuristics (see

e.g. Cura, 2015; Karabulut, 2016).

In this paper, in Section 3 we first propose both a beam search

algorithm with a fixed stopping criterion, and a set of eight dif-

ferent iterated-greedy-based algorithms varying their construction

phase. In addition, we perform a comprehensive computational

evaluation of the heuristics and metaheuristics in Section 4 . By do-

ing so, we establish the set of efficient algorithms for the problem.

3. Proposed algorithms: beam search and

iterated-greedy-based algorithms

In this section, we propose several approximate procedures to

solve the problem. The first proposal is a population-based con-

structive heuristic, which constructs several partial sequences in

parallel, appending jobs, one by one, at the end of the sequences

(see Section 3.1). Secondly, we propose several iterative improve-

ment algorithms based on a single solution. Using the previous

heuristic as initial solution, these algorithms iteratively search

for the local optimum of a sequence obtained by a destruction-

construction-based phase (see Section 3.2). Note that the division

between heuristics and metaheuristics is unclear in the literature

and several classifications have been proposed (see e.g. Zanakis,

Evans, & Vazacopoulos, 1989; Zäpfel, Braune, & Bögl, 2010). In

this paper, we adopt the same definition as in Ruiz and Maroto

(2005) and Fernandez-Viagas et al. (2017) , where metaheuristics

are defined as iterative improvement algorithms with stopping cri-

teria depending on CPU time or number of iterations. In contrast,

heuristics naturally stop when their steps are finished.

3.1. Beam search algorithm

In this subsection we present a beam search algorithm, denoted

by BS(γ), with an advance priority evaluation function. Similarly to

the B&B algorithm, this approximate procedure constructs a search

tree, where each node is formed by a partial sequence and the

child nodes are obtained by adding one of the unscheduled jobs

at the end of the parent node. However, only the most γ promis-

ing nodes (denoted as beam width in the following) are kept for

the next iteration. Beam search has been successfully applied to

several scheduling problems in the literature (see e.g. Valente &
lves, 20 05; 20 08). Traditionally, two different functions have been

pplied to evaluate the nodes (Valente, 2010):

• Priority evaluation function. The node is evaluated by estimat-

ing the influence of the last job in the partial sequence. This

evaluation of just one job in the node (omitting the influence

of the other jobs) implies both that computing this function re-

quires a low complexity order and that it is node-dependent,

i.e. only children from the same parent node can be compared.
• Total cost evaluation function. The final objective function value

to be achieved for this node is estimated taking into consid-

eration all unscheduled jobs. Obviously, this function is node-

independent as complete sequences are estimated. In addition,

its complexity increases significantly.

Recently, Fernandez-Viagas, Leisten, et al. (2016b) and

ernandez-Viagas and Framinan (2017) have achieved excel-

ent results using a node-independent priority evaluation function.

he idea is to assign to each node a “genetic” code which keeps

he historical behaviour of that node. By means of both this code

nd the influence of the last element, child nodes from different

arents can be compared. This approach is applied in our proposal.

The proposed beam search algorithm is composed of several

odes in n different levels. Let us denote by S k
l

the partial se-

uence of the l th node in iteration k , with l ∈ [1, γ]. Each node is

hen formed by a partial sequence S k
l
, S k

l
:= (s k

1 ,l
, . . . , s k

k,l
) , of k jobs,

nd by a set U k
l

(with U k
l

:= { u k
1 ,l

, . . . , u k
n −k,l

}) of n − k unscheduled

obs. Whenever it does not lead to confusion, let us also denote

hat node by S k
l
. For each iteration k , n − k child nodes are created

rom each partial sequence S k
l

by adding one job from set U k
l

at

he end of the sequence. The best γ child nodes are selected to be

he partial sequences of the nodes for the next iteration, i.e. S k +1
l

,

 l ∈ { 1 , . . . , γ } . More specifically, the steps of the proposed algo-

ithm are as follows:

Step 1 Initialization

Step 2 While k = 2 , . . . , n − 1 , repeat:

Step 2.1 Branching

Step 2.2 Node evaluation

Step 2.3 Node selection

Step 3 Final evaluation

To clarify both the branching and candidate selection phases, a

imple example with five jobs and γ = 2 , i.e. BS(2), is shown in

ig. 1 .

Next, each phase is explained in more detail:

• Initialization (Step 1). The first node is formed by job j ∗ with

the minimum sum of completion time on the last machine and

weighted idle times, w j . Let us denote such sum as index ξ j , i.e.

j ∗ := arg min j { ξ j } where:

ξ j :=

m ∑

i =1

p i j + w j =

m ∑

i =1

p i j +

(n − 2)

4

·
m ∑

i =2

(
m · ∑ i −1

i ′ =1 p i ′ j
i − 1

)
,

∀ j ∈ [1 , n] (2)

In case of ties, the job with minimum w j is chosen. See Liu and

Reeves (2001) , Fernandez-Viagas, Leisten, et al. (2016b) , and

Fernandez-Viagas and Framinan (2017) for similar initializa-

tions.
• Branching (Step 2.1). Each node S k

l
is branched to form n − k

child nodes. Child node v (with v ∈ [1 , n − k]) is constructed

from the node by adding u k v ,l at the end of the partial se-

quence S k
l
. Note that the number of child nodes in iteration k

is γ (n − k) .

V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69 61

Fig. 1. Example of BS.

• Node evaluation (Step 2.2). As mentioned before, the child

nodes are evaluated according to an index that weights two

components:

– The “genetic” code . This first component measures the ge-

netic offspring of the child node. By doing so, we are able

to compare child nodes with different sequenced jobs, i.e.

from different nodes. Obviously, each one of the child nodes

of node S k
l

has the same genetic code.

– The influence of the last element. It measures the influence

of the last job inserted at the end of the partial sequence.

In order to define both influences, we explore the specific char-

acteristics of the problem. Regarding the genetic code of node

S k
l
, its goal is twofold. On the one hand, it should consider the

contribution of the partial sequence to the objective function.

As jobs in the following iterations are added always at the end

of the partial sequence, the total tardiness of the jobs in the

partial sequence stays unalterable until the end. On the other

hand, it should address the indirect influences on the objective

function of the future jobs to be added to the partial sequence.

These influences make possible to compare child nodes of dif-

ferent offspring. To achieve these goals, the genetic code in-

corporates the following aspects which may be considered and

balanced:

1. Cumulative total tardiness (TT). It represents the total tar-

diness of partial sequences S k +1
l ′ . Note that S k +1

l ′ represents

the l ′ th best node of iteration k + 1 formed by appending

job u k v ,l at the end of node S k
l
. As l and l ′ are not necessarily

the same nodes, let us denote by job [l ′] such job u k v ,l and by

branch [l ′] such l . Then the cumulative total tardiness of S k +1
l ′

is computed as follows:

T T k +1

l ′ = T T k branch [l ′] + T k job[l ′] ,branch [l ′] , ∀ k = { 2 , . . . , n − 1 } ,
l ′ = { 1 , . . . , γ } (3)

where T k
jl

is the tardiness of job j of node S k
l

in iteration k .

2. Cumulative total earliness (TE). Analogously, it represents

the total earliness of partial sequences S k +1
l ′ . Denoting by E k

jl

the earliness of job j of node S k
l

in iteration k , the cumula-

tive total earliness of node S k +1 ′ in iteration k + 1 is defined

l
as follows:

T E k +1
l ′ = T E k branch [l ′] + E k job[l ′] ,branch [l ′] , ∀ k = { 2 , . . . , n − 1 } ,

l ′ = { 1 , . . . , γ } (4)

3. Cumulative weighted idle time (TI). It represents the cumu-

lative weighted idle time of each job of partial sequence

S k +1
l ′ , which is defined by:

T I k +1
l ′ = T I k branch [l ′] + I k job[l ′] ,branch [l ′] , ∀ k = { 2 , . . . , n − 1 } ,

l ′ = { 1 , . . . , γ } (5)

where I k
jl

is the weighted idle time between the last job of se-

quence S k
l

and job j , which is inserted in the last position of the

sequence, see Eq. (6) .

I k jl =

m ∑

i =2

m · max { C i −1 , j − C i, [k] , 0 }
i − 1 + (k − 1) · (m − i + 1) / (n − 2)

(6)

Note that, after the node selection phase, the cumulative to-

tal tardiness, total earliness and weighted idle time are up-

dated by incorporating the corresponding value of the last job.

Thereby, it avoids to completely re-calculate of them in each

iteration. Obviously, the influence of the cumulative total tar-

diness increases when the sequence contains more jobs, while

the weight of the indirect influence (i.e. the cumulative total

earliness and idle time) decreases with each iteration. More

specifically, in the first iterations of the algorithm, it seems bet-

ter to choose sequences with high values of total idle times and

total earliness times to have more promising partial sequences

for the next iterations. In contrast, in the last iterations, the in-

fluence of the total tardiness becomes more relevant as objec-

tive function of the problem. Among TE and TI , the total earli-

ness seems to be a better estimation of the tardiness of the un-

scheduled jobs in these last iterations. In addition, by keeping

TE in the last iterations, we break the greedy behaviour of the

total tardiness. To deal with these issues and after some pre-

liminary tests, we propose weights for the three components

following the simple linear functions shown in Fig. 2 .

62 V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69

Fig. 2. Values of the weights of total tardiness, total earliness, and total weighted

idle time, depending of the iteration k .

3

h

l

t

i

s

f

p

d

q

q

A

t

t

l

f

p

g

i

r

p

l

t

i

p

4 Note that the iterated greedy algorithm is closely related to the iterated local

search and in fact, it could be considered as a special case of the iterated local

search. This latter algorithm begins with an initial solution and iteratively modi-

fies the current solution and looks for its local optimum. Therefore, assuming that

a special type of modification of a solution is to perform the destruction and con-

struction phase of the iterated greedy, both algorithms would be considered the

same metaheuristic. However, in order to maintain the coherence with previous

proposals in the literature, we also use the term “iterated-greedy-based algorithm”

in the notation of our proposals.
Hence, the genetic code, denoted as F k
l ′ , of node l ′ in iteration k

has the following expression:

F k l ′ = T I k l ′ ·
n − k − 1

n
+ a · T E k l ′ ·

2 n − k − 1

2 n
+ b · T T k l ′ ·

k − 1 + n

2 n
,

∀ k = { 2 , . . . , n − 1 } , l ′ = { 1 , . . . , γ } (7)

where a and b are parameters of the algorithm to balance the

contribution of TI, TE and TT . Implicitly, low values for a and b

indicate that the contribution of TI is higher than TE and TT . So,

in order to reduce the number of parameters of the algorithm,

only a and b (for TE and TT , respectively) are considered, and

the influence of TI is measured varying this parameter as TI was

normalized.

Regarding the index, denoted as L k v l , employed to estimate

the contribution of the last job, u k v l , when evaluating child node

v of node S k
l
, we follow a similar procedure to the genetic code,

where the weighted idle time and the earliness time are cho-

sen as criteria. Note that the influence of the tardiness of the

last job is included in the earliness since a tardy job indicates

an earliness equals to 0. In addition, once several jobs are tardy,

they stay tardy in the following iterations and the influence

of other elements should be taken into account to choose the

job. Regarding these other elements, several studies (see e.g.

Fernandez-Viagas & Framinan, 2015c; Liu & Reeves, 2001) found

excellent results by incorporating an estimation of the contri-

bution of the unscheduled jobs. To deal with that, we add the

total tardiness of all jobs u k v l , ∀ v ∈ 1 , . . . , n − k, denoted by W

k
l

.

Note that job u k v l is also included in W

k
l

index of child node

v . By doing so, we reduce the computational effort of this in-

dex. Hence, index L k v l can be defined by Expression (8) , where

c and e are parameters of the algorithm again to balance the

contributions of E k
u k v l ,l

and W

k
l

. Similarly to F k
l ′ , after a prelim-

inary test, we use a decreasing function for the weight of the

idle time, and an increasing one for W

k
l

(the tardiness of the

unscheduled jobs is closer to the real one in the last iterations

than in the first ones).

L k v l = (n − k − 1) · I k
u k v l l

+ c · E k
u k v l ,l

+

e

n − k + 1

· W

k
l ,

∀ k = { 2 , . . . , n − 1 } , l = { 1 , . . . , γ } , v = { 1 , . . . , n − k } (8)

Then, each child node v obtained by node S k
l

is computed using

index G

k
v l which adds both contributions:

G

k
v l = F k l + L k v l , ∀ k = { 2 , . . . , n − 1 } , l = { 1 , . . . , γ } ,
v = { 1 , . . . , n − k } (9)

• Node selection (Step 2.3). Among the γ (n − k) child nodes in

iteration k , the best γ ones are kept as the set of nodes of iter-

ation k + 1 . More specifically, in iteration k , the γ nodes with
the lowest values of the G

k
v l indicator (∀ v ∈ { 1 , . . . , n − k } , l ∈

{ 1 , . . . , γ }) are selected for the next iteration.
• Final evaluation (Step 3). The total tardiness of the nodes se-

lected in the last iteration, i.e. nodes S n −1
l

(∀ l ∈ 1 , . . . , γ), is eval-

uated. The sequence yielding the minimal total tardiness is the

final sequence of the beam search algorithm.

.2. Iterated-greedy-based algorithms, IA

The iterated greedy algorithm is a single-solution-based meta-

euristic, originally proposed for flow-shop-type scheduling prob-

ems by Ruiz and Stützle (2007) . Starting with an initial solution,

his metaheuristic iteratively perturbs a sequence and searches for

ts local optimum. Then, the iterated greedy algorithm destructs

everal jobs of a sequence in each iteration, and constructs them

ollowing a greedy approach. More specifically, in a destruction

hase, d jobs are randomly removed from the iteration sequence,

enoted as �i . Let us denote by �r , �r := (π r
1 , . . . , π

r
d
) , the se-

uence formed by the removed jobs and by �d the partial se-

uence of length n − d, formed by �i without the removed jobs.

fter that, in a construction phase, each job in �r is inserted in

he position of �d yielding the lowest value of the objective func-

ion. �c is the so obtained sequence. Finally, this metaheuristic

ooks for the local optimum of the constructed sequence and per-

orms a basic simulated annealing phase. In this subsection we

ropose eight simple Iterated Algorithms based on the iterated

reedy metaheuristic, 4 denoted as IA, consisting on the follow-

ng same four phases which are repeated until a stopping crite-

ion is reached: destruction phase; construction phase; local search

hase; and a simple simulated annealing phase. As described ear-

ier, the destruction-construction phase plays an important role in

he efficiency of the metaheuristic. In order to take it into account,

n this paper we propose and compare the following eight different

rocedures:

1. Random insertion (let us denote by IA RI the proposed algo-

rithm using this construction phase) This procedure replaces

the greedy insertion of the traditional iterated greedy by a ran-

dom one. More specifically, each removed job π r
i
, ∀ i ∈ 1 , . . . , d,

is randomly inserted in �d .

2. Greedy insertion (IA GI). This is the traditional construction

phase of the iterated greedy algorithm, i.e. each removed job

π r
i
, ∀ i ∈ 1 , . . . , d, is inserted in the position of �d yielding the

lowest total tardiness.

3. Random general swap (IA RGS). This procedure replaces the de-

struction and construction phase of the algorithm by perform-

ing d random exchanges between jobs, i.e., d jobs are ran-

domly chosen from �i and exchanged with other jobs of this

sequence.

4. Greedy general swap (IA GGS). In this procedure, a job is ran-

domly chosen from �i and exchanged with each job of the se-

quence. Sequence �i is replaced by the exchange yielding the

lowest total tardiness. The procedure is repeated d times for d

different jobs.

5. Random adjacent swap (IA RAS). This procedure randomly

chooses a job and exchanges it with the next job of the se-

quence. The procedure is repeated d times.

V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69 63

o

i

p

i

n

b

T

S

p

e

&

w

w

p

p

a

r

4

a

u

p

e

s

a

p

i

i

b

t

4

a

c

p

c

i

c

4

t

a

a

t

t

t

i

e

A

h

a

l

V

o

t

s

i

R

i i
6. Greedy insertion + Partial adjacent-swap-based local search

method (IA GI _ ALS). This procedure is based on Framinan and

Leisten (2008) . Thereby, each job removed π r
i
, ∀ i ∈ { 1 , . . . , d} is

inserted in the position of �d yielding the lowest total tardi-

ness (denoted as position b), as in the greedy insertion proce-

dure. After that, an adjacent pairwise exchange is performed for

the jobs between the last position of the partial sequence and

position b + 1 .

7. Insertion-based Local search + Greedy insertion (IA ILS _ GI). This

procedure adapts the procedure of destruction and construction

proposed by Dubois-Lacoste et al. (2017) . The method performs

an insertion-based local search on the partial sequence �d , i.e.

each job of the sequence is removed and inserted in the best

position. The procedure is repeated until there is no improve-

ment in a complete iteration. The best sequence found by the

algorithm replaces �d . After that, the traditional construction

phase (i.e. greedy insertion) is applied.

8. Greedy insertion + Local search insertion(IA GI _ ILS). This proce-

dure is an adaptation of the method proposed by Pan and

Ruiz (2014) and Pan, Gao, Li, and Gao (2017) . Similarly as

IA GI _ ALS , each removed job π r
i
, ∀ i ∈ { 1 , . . . , d} is inserted in the

position b of �d yielding the lowest total tardiness. After that,

jobs in positions b − 1 and b + 1 are removed and reinserted in

the position yielding the lowest total tardiness.

After the destruction-construction procedure, a local optimum

f sequence �c is obtained in the local search phase. This phase

teratively removes each job in sequence �c and inserts it in the

osition with the lowest vaue of the objective function. The phase

s stopped after a complete iteration without any improvement. Fi-

ally, the simulated annealing-like acceptance criterion proposed

y Karabulut (2016) is applied due to its excellent performance.

his simple criterion is a variation of the proposal of Ruiz and

tützle (2007) for F m | prmu | C max , which has been successfully ap-

lied to other several objectives and/or scheduling problems (see

.g. Fernandez-Viagas & Framinan, 2015a; 2015b; Ribas, Companys,

 Tort-Martorell, 2017). The criterion uses a constant Temperature

hich depends on parameter T of the algorithm:

T emperature = T ·
∑ n

j=1 (LB C max
− d j)

n · 10

(10)

here LB C max
is the lower bound of the makespan following the

rocedure established by Taillard (1993) . The pseudo-code of the

roposed metaheuristic is shown in Fig. 3 . Note that BS is used

s the initial solution of the proposed iterated-greedy-based algo-

ithms.

. Computational experience

In this section we compare the state-of-the-art algorithms

gainst our proposals. Prior to performing this computational eval-

ation, we establish the conditions adopted to achieve a fair com-

arison. Firstly, in Section 4.1 we present the sets of instances gen-

rated. Secondly, the measures to evaluate both the quality of the

olutions and the computational requirements of each algorithm

re shown in Section 4.2 . Regarding our proposals, two full ex-

erimental parameter tunings are described in Section 4.3 . Next,

n Section 4.4 , the state-of-the-art algorithms, which are fully re-

mplemented, are shown. We compare them against our proposals

y carrying out two different computational evaluations for heuris-

ics and metaheuristics, see Sections 4.5 and 4.6 , respectively.

.1. Sets of instances

In this paper, two benchmark testbeds, denoted as β1 and β2 ,

re generated for the experiments of our study. β is used for the
1
alibration of the parameters of the proposed algorithms. The com-

utational evaluations of both heuristics and metaheuristics are

arried out on benchmark β2 . By doing so, we avoid an over cal-

bration of the parameters of our algorithms in the benchmark of

omparison.

• Benchmark β1 : This benchmark is generated by the procedure

described in Vallada and Ruiz (2010) . It contains 108 different

sizes of the problem varying the parameters n, m, T and R .

Ten instances are generated for each combination of parame-

ters n ∈ {50, 150, 250, 350}, m ∈ {10, 30, 50}, T ∈ {0.2, 0.4, 0.6},

and R ∈ {0.2, .0.6, 1.0}, i.e. a total of 1080 instances are gen-

erated in this benchmark. T and R are parameters to generate

different types of due dates for each size of the problem (see

Potts & Van Wassenhove, 1982). They generate the processing

times and the due dates with a uniform distribution [1, 99]

and [P · (1 − T − R/ 2 , P · (1 − T + R/ 2] , respectively, where P is

the lower bound for the makespan proposed in Taillard (1993) .
• Benchmark β2 : This benchmark is composed of the 540 in-

stances of Vallada et al. (2008) . It contains 108 combinations of

parameters n ∈ {50, 150, 250, 350}, m ∈ {10, 30, 50}, T ∈ {0.2, 0.4,

0.6}, and R ∈ {0.2, .0.6, 1.0}, with five instances for each combi-

nation. Processing times and due dates are generated following

the same distributions than in benchmark β1 .

.2. Performance indicators

In our study, two computational evaluations are carried out

o compare the most promising heuristics and metaheuristics. As

 result, 23 algorithms are tested. To conduct a fair comparison

mong them, the algorithms are compared under the same condi-

ions. More specifically, the following aspects are considered:

• We use the same computer (an Intel Core i7-3770 with 3.4 GHz,

16GB RAM, and with Microsoft Windows 8.1 64 bit operating

system).
• We re-code each algorithm using the same programming lan-

guage (C# under Visual Studio 2013).
• We use the same computational skills, libraries and common

functions.
• We use the same stopping criteria for each metaheuristic.

In addition, each algorithm typically requires a different CPU

ime and obtains a different solution. In order to compare both

he quality of the solutions and the computational efforts of the

mplemented algorithms, the indicators for comparison have to be

stablished. On the one hand, heuristics are compared using the

verage Relative Deviation Index (denoted as ARDI 1 h for heuristic

) and the Average Relative Percentage computation Time (denoted

s ARPT h for heuristic h following the recommendation estab-

ished by Fernandez-Viagas and Framinan (2015c) and Fernandez-

iagas et al. (2017) (see Eqs. (11) and (12) , respectively). On the

ther hand, metaheuristics are only compared using the ARDI 1 h as

he same CPU times are used.

ARDI 1 h =

I ∑

i =1

RDI 1 ih

I
, ∀ h = 1 , . . . , H (11)

ARP T h = 1 +

I ∑

i =1

RP T ih
I

, ∀ h = 1 , . . . , H (12)

Let I be the number of instances, and H be the number of con-

idered heuristics. The Relative Deviation Index of heuristic h in

nstance i, RDI 1 ih , and the Relative Percentage computation Time,

PT 1 ih , are defined by the following expressions, respectively:

RDI1 ih =

OF ih − Best i
W orst − Best

, ∀ i = 1 , . . . , I, h = 1 , . . . , H (13)

64 V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69

Fig. 3. Proposed iterated-greedy-based algorithms.

b

β

M
RP T ih =

T ih − ACT i
ACT i

, ∀ i = 1 , . . . , I, h = 1 , . . . , H (14)

where Best i and Worst i are the best and worst known solution for

one run in instance i 5 , respectively. Let T ih and OF ih be the CPU

time and the objective function value obtained by heuristic h in

iteration i , respectively. Finally, ACT i is the average CPU time re-

quired by all compared algorithms in iteration i , which is defined
5 These values are presented as on-line materials, which are taken from http:

//soa.iti.es/problem-instances .

A

y:

ACT i =

∑ H
h =1 T ih
H

, ∀ i = 1 , . . . , I (15)

Regarding the experimental parameter tuning on benchmark

1 , we apply a different indicator of the quality of the solution.

ore specifically, we used ARDI 2, which is a small modification of

RDI 1:

ARDI 2 h =

I ∑

i =1

RDI 2 ih

I
, ∀ h = 1 , . . . , H (16)

http://soa.iti.es/problem-instances

V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69 65

Table 1

Average results of RDI2 for each tested parameter.

Parameter a Parameter b Parameter c Parameter e Parameter d Parameter γ

Level ARDI2 Level ARDI2 Level ARDI2 Level ARDI2 Level ARDI2 Level ARDI2

0.00 27.68 0.00 27.59 0.25 43.23 2 30.98 4 36.75 2 54.36

0.25 28.37 0.15 26.22 0.50 30.65 3 29.17 5 39.84 n /10 32.22

0.50 28.27 0.30 34.29 0.75 26.08 4 28.61 6 42.82 n / m 42.85

0.75 29.33 1.00 24.93 5 28.72 10 38.50

1.00 30.70 1.25 24.67 15 35.55

1.25 32.14 1.50 27.05 n 35.33

Table 2

ARDI 1 h for each constructive heuristics grouped by the number of jobs and machines in each factory. Last three files represent the average results of ARDI 1 h , ACT h , and ARPT h
for constructive heuristics.

n × m NEHedd TB Ta TB IT1 CH1 CH2 CH3 CH4 CH5 CH6 BS(2) BS(5) BS(10) BS(15) BS(n /10) BS(n / m) BS(n)

50 × 10 17.46 14.53 13.72 6.26 7.72 5.30 5.35 5.88 5.46 15.29 11.20 10.70 10.22 11.20 11.20 16.52

50 × 30 19.79 18.68 18.61 11.12 14.43 9.84 10.17 10.51 10.40 24.26 19.11 15.90 15.95 19.11 30.13 25.09

50 × 50 18.17 17.97 17.57 10.94 14.34 10.66 10.99 10.61 10.75 22.96 18.47 16.14 15.78 18.47 29.15 26.86

150 × 10 13.80 10.69 9.91 3.67 4.14 2.86 2.87 3.04 2.82 8.89 6.17 5.22 5.58 5.58 5.58 8.96

150 × 30 20.70 17.02 15.81 8.21 10.35 7.51 7.20 8.04 7.15 18.93 11.23 9.22 8.50 8.50 11.23 12.55

150 × 50 22.04 19.64 18.57 9.62 12.57 9.02 8.83 9.15 8.75 23.93 15.90 12.56 10.70 10.70 19.74 16.98

250 × 10 10.06 7.26 6.70 2.23 1.97 1.28 1.08 1.81 1.37 6.51 4.81 4.11 4.14 4.14 4.14 7.33

250 × 30 17.81 13.29 11.62 4.72 6.10 4.38 4.05 4.37 4.17 13.33 8.02 5.43 4.48 3.75 6.76 6.80

250 × 50 20.21 15.90 13.96 6.20 8.76 5.84 5.67 5.95 6.02 19.28 11.76 8.68 6.97 5.36 11.76 8.86

350 × 10 9.01 6.65 6.14 1.98 1.12 0.80 0.67 1.06 0.69 4.81 2.76 2.45 2.31 2.49 2.49 4.91

350 × 30 15.74 11.40 9.84 3.34 3.95 2.65 2.38 3.09 2.49 10.26 5.07 3.27 2.52 1.58 3.04 3.82

350 × 50 17.38 13.11 11.10 3.99 5.78 3.50 3.53 3.83 3.61 15.68 9.52 6.27 5.43 3.18 8.31 4.84

ARDI 1 h 16.85 13.84 12.80 6.02 7.60 5.30 5.23 5.61 5.31 15.34 10.34 8.33 7.71 7.84 11.96 11.96

ACT h 1.56 1.53 1.56 119.94 10.01 66.74 63.78 139.59 88.35 0.05 0.12 0.26 0.40 0.84 0.27 17.16

ARPT h 0.13 0.13 0.13 2.93 0.41 2.13 2.07 3.63 2.51 0.01 0.03 0.06 0.10 0.08 0.04 1.60

w

a

4

a

f

b

e

t

d

c

v

a

t

F

R

p

t

u

5

γ

γ

γ

s

h

u

T

s

i

2

a

a

e

i

h

s

l

o

t

γ

t

o

4

s

t

t

RDI2 ih =

OF ih − Best
′
i

W orst
′
i
− Best

′
i

, ∀ i = 1 , . . . , I, h = 1 , . . . , H (17)

here Best
′
i

and W orst
′
i

are the best and worst total tardiness

mong the algorithms tested in the calibration, respectively.

.3. Experimental parameter tuning

In this subsection, two full factorial design of experiments

re presented to determine the best combinations of parameters

or the proposed algorithms. Both experiments are evaluated on

enchmark β1 . Regarding BS, firstly four parameters (a, b, c and

) have been proposed to balance the contributions in the evalua-

ion of partial sequences. In addition, parameter γ (beam width)

irectly influences its complexity, O (max { γ · n 2 · m, γ 2 · n 2 }), and

onsequently the CPU time of the proposed beam search. For each

alue of γ , there is a trade-off between the quality of solutions

nd the computational effort. Thus, this parameter is removed of

his experimental parameter tuning (see e.g. Fernandez-Viagas and

raminan, 2015c; Fernandez-Viagas, Leisten, et al., 2016b; Liu and

eeves, 2001 for similar approaches) to avoid a calibration of each

arameter γ , and its value is set to 15. So the following levels of

he parameters are tested:

• a ∈ {0, 0.25, 0.5, 0.75, 1, 1.25}
• b ∈ {0, 0.15, 0.3}
• c ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5}
• e ∈ {2, 3, 4, 5}

Regarding the proposed iterated-greedy-based algorithms, they

se three parameters: d, γ , and T . Firstly, we use in this test d ∈ {4,

, 6} for the number of destructed jobs. Regarding the parameter

, the CPU time of IA i depends on its stopping criterion instead of

, since BS is applied as its initial solution. So, different values of
only perturbs its objective function value, i.e. we may now mea-

ure the influence of γ in the quality of the solutions of the meta-

euristics without altering its CPU time. In this calibration test, we

se the following levels, γ ∈ {2, n /10, n / m , 10, 15, n }. For parameter

 , we use the best value found by Karabulut (2016) , i.e. T = 1 . 0 ,

ince its influence has not been found to be statistically significant

n several previous studies (see e.g. Fernandez-Viagas & Framinan,

015a; Pan & Ruiz, 2014). The calibration test is carried out for IA RI

nd using n · (m /2) · 60 ms.

In this paper, we carry out two non-parametric Kruskal–Wallis

nalyses to determine the statistical differences between the lev-

ls of the parameters. Note that the normality and homoscedastic-

ty assumptions were not satisfied. In addition, the indicator ARDI 2

as been used to evaluate the quality of the solutions. The results

how that there are statistically significant differences between the

evel of each parameter (a, b, c, e, d , and γ), since each p -value

btained in the tests is .0 0 0. The best combination of parame-

ers has been found for a = 0 , b = 0 . 15 , c = 1 . 25 , e = 4 , d = 4 , and

= n/ 10 . These values of the parameters are used in the next sec-

ions. The average results for each level of the parameters, in terms

f ARDI2, are shown in Table 1 .

.4. Implemented algorithms

The proposed algorithms, BS and IA i , are compared against the

tate-of-the-art algorithms in two different computational evalua-

ions. Following the discussion in Section 2 , the following heuris-

ics and metaheuristics are implemented in this study:

• Heuristics

– NEHedd proposed by Kim (1993) .

– TB IT1 and TB Ta proposed by Fernandez-Viagas and Frami-

nan (2015d) .

– CH i ∀ i = 1 , . . . , 6 proposed by Li et al. (2015) .

– The BS(γ) algorithms proposed in Section 3.1 , with γ ∈ {2,

5, n /10, 15, n / m, n }.

66 V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69

Fig. 4. ARDI1 versus ARPT for the constructive heuristics.

)

i

t

B

t

b

s

o

m

r

e

w

i

t

m

b

t

s

4

o

I

t

r

t

T

m

p

(

t

g

• Metaheuristics

– The hybrid algorithm HA proposed by Framinan and Leis-

ten (2008) .

– The genetic algorithm GAPR proposed by Vallada and

Ruiz (2010) .

– The evolutionary algorithm EA proposed by Cura (2015) .

– The trajectory scheduling method TSM 63 proposed by

Li et al. (2015) .

– The iterated greedy algorithm KIG proposed by

Karabulut (2016) .

– The IA i (with i ∈ { RI , GI , RGS , GGS , RAS , GI _ ALS , ILS _ GI , GI _ ILS }
algorithms proposed in Section 3.2 .

Note that the speed up procedure, proposed by Framinan and

Leisten (2008) , is applied in each insertion and exchange phase of

all the implemented algorithms.

4.5. Heuristics

The computational results of the constructive heuristics are

shown in Table 2 , and in Fig. 4 . Table 2 shows the results of the

ARDI 1 h for each heuristic h grouped by n and m . The average re-

sults in terms of ACT h , ARPT h , and ARDI 1 h are shown in the last

three rows. The dominance of each heuristic can be graphically

seen in Fig. 4 (X-axis and Y-axis indicate the ARPT h and ARDI 1 h
of each heuristic h).

The results show that the BS(2), BS(5), BS(10), BS(n /10), and

BS(15) algorithms are efficient for the problem (see red line in

Fig. 4). To statistically support it (i.e. to discard that they are not

statistically better), we perform a non-parametric Wilcoxon signed-

rank test for each one of the following hypotheses: BS(5) = BS(n / m);

BS(15) = NEHedd; BS(15) = TB Ta ; and BS(15) = TB IT1 , where each effi-

cient beam search algorithm has been compared against the clos-

est heuristic. The p -value found for each one was .0 0 0 reject-
ng each one of the previous hypotheses. In addition, several of

he proposed beam search algorithms, BS(5), BS(10), BS(n /10), and

S(15), clearly outperform the NEHedd and TB IT1 heuristics both in

erms of ARDI 1 and ARPT (or ACT). Note that, as stated in Section 1 ,

oth heuristics are the key heuristics for the problem under con-

ideration (the NEHedd heuristic is used as initial solution for most

f the algorithms developed for the problem). The excellent perfor-

ance of the proposed beam search heuristic probably lies in the

eduction of the complexity of the evaluation. The complexity of

valuating a full sequence in the Fm | prmu | �T j problem is O (nm),

hile in the proposed algorithm it is only O (m) since the jobs are

nserted, one by one, at the end of a partial sequence. By reducing

he complexity of this evaluation, the algorithm can evaluate much

ore sequences in the same CPU time. Regarding the six proposals

y Li et al. (2015) , which also use the NEHedd as initial solution,

hey perform better than each other one in terms of quality of the

olution (ARDI 1) but requiring much higher CPU times.

.6. Metaheuristics

The re-coded algorithms (KIG, TSM 63 , EA, GAPR, and HA) and

ur proposals (IA RI , IA GI , IA RGS , IA GGS , IA RAS , IA GI _ ALS , IA ILS _ GI , and

A GI _ ILS) have been run under three different stopping criteria, i.e.

ime equals to 60 · n · m , 90 · n · m , and 120 · n · m . The computational

esults for these three stopping criteria are shown, grouped by

he different levels of each parameter, in Tables 3 –5 , respectively.

hese results show the good performance of GAPR against the HA

etaheuristic (see hypothesis H 1 in Table 6). Regarding the com-

arison between the last metaheuristics developed for the problem

i.e. KIG, TSM 63 , and EA), the KIG metaheuristic clearly outperforms

he other two for the three stopping criteria (hypothesis H 2). Re-

arding our proposals, the following conclusions can be obtained:

V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69 67

Table 3

Average RDI 1 h of each metaheuristic for stopping criterion 60 · n · m ms grouped by the values of the parameters.

Parameter KIG TSM 63 EA GAPR HA IA RI IA GI IA RGS IA GGS IA RAS IA GI _ ALS IA ILS _ GI IA GI _ ILS

T 0.2 0.27 2.53 2.13 1.69 2.52 0.32 0.49 0.59 2.47 0.27 0.43 0.25 0.37

T 0.4 −0.08 4.39 4.42 2.87 5.75 0.02 0.10 0.56 3.08 −0.43 −0.01 −0.23 −0.24

T 0.6 0.13 6.38 5.07 3.80 7.98 −0.41 −0.62 0.09 2.02 −1.04 −0.70 −0.65 −0.87

R 0.2 0.29 5.94 4.53 3.47 7.91 0.02 −0.16 0.47 2.40 −0.60 −0.28 −0.37 −0.40

R 0.6 −0.05 4.19 3.80 2.67 5.17 −0.14 −0.13 0.32 2.63 −0.46 −0.17 −0.25 −0.37

R 1.0 0.07 3.17 3.29 2.22 3.16 0.05 0.26 0.45 2.53 −0.13 0.16 −0.02 0.04

n 50 0.75 3.97 3.85 5.47 3.20 1.12 1.15 1.77 7.81 0.81 1.06 0.83 0.75

n 150 0.43 5.36 5.47 2.81 5.94 1.19 1.20 1.70 3.43 0.53 1.02 0.90 0.82

n 250 −0.26 4.56 3.69 1.43 6.08 −0.68 −0.68 −0.29 0.14 −1.01 −0.77 −0.83 −0.80

n 350 −0.50 3.84 2.49 1.43 6.45 −1.72 −1.70 −1.53 −1.28 −1.93 −1.69 −1.75 −1.75

m 10 −0.17 2.08 0.94 2.02 3.55 0.26 0.22 0.49 1.81 0.07 0.23 0.23 0.12

m 30 0.05 5.02 4.33 3.07 5.91 −0.26 −0.20 0.21 2.72 −0.63 −0.33 −0.50 −0.52

m 50 0.43 6.19 6.36 3.27 6.79 −0.07 −0.04 0.53 3.04 −0.64 −0.19 −0.37 −0.34

Average 0.10 4.43 3.88 2.79 5.42 −0.02 −0.01 0.41 2.52 −0.40 −0.09 −0.21 −0.25

Table 4

Average RDI 1 h of each metaheuristic for stopping criterion 90 · n · m ms grouped by the values of the parameters.

Parameter KIG TSM 63 EA GAPR HA IA RI IA GI IA RGS IA GGS IA RAS IA GI _ ALS IA ILS _ GI IA GI _ ILS

T 0.2 0.06 2.32 2.00 1.59 2.23 0.16 0.34 0.46 2.47 0.11 0.28 0.07 0.20

T 0.4 −0.58 4.06 4.20 2.58 5.24 −0.24 −0.15 0.39 3.07 −0.70 −0.30 −0.51 −0.50

T 0.6 −0.39 6.02 4.76 3.40 7.48 −0.64 −0.92 −0.06 2.01 −1.31 −0.98 −0.95 −1.12

R 0.2 −0.28 5.53 4.25 3.12 7.31 −0.23 −0.43 0.31 2.40 −0.88 −0.56 −0.62 −0.71

R 0.6 −0.47 3.90 3.55 2.40 4.72 −0.34 −0.35 0.19 2.63 −0.69 −0.39 −0.54 −0.56

R 1.00 −0.16 2.96 3.16 2.05 2.93 −0.15 0.05 0.30 2.52 −0.33 −0.04 −0.23 −0.15

n 50 0.52 3.67 3.69 5.41 2.85 0.90 0.91 1.59 7.81 0.65 0.80 0.58 0.62

n 150 0.06 4.85 5.32 2.77 5.50 0.87 0.83 1.48 3.43 0.18 0.70 0.47 0.44

n 250 −0.73 4.20 3.39 0.94 5.44 −0.86 −0.89 −0.40 0.13 −1.27 −0.97 −1.01 −1.03

n 350 −1.06 3.81 2.22 0.97 6.16 −1.87 −1.82 −1.61 −1.30 −2.09 −1.85 −1.90 −1.94

m 10 −0.33 1.95 0.84 1.83 3.29 0.14 0.09 0.42 1.79 −0.07 0.11 0.14 −0.03

m 30 −0.41 4.68 4.05 2.80 5.44 −0.48 −0.44 0.03 2.72 −0.88 −0.57 −0.82 −0.78

m 50 −0.17 5.76 6.07 2.94 6.22 −0.38 −0.38 0.33 3.04 −0.95 −0.53 −0.71 −0.62

Average −0.30 4.13 3.65 2.52 4.99 −0.24 −0.24 0.26 2.52 −0.63 −0.33 −0.47 −0.47

Table 5

Average RDI 1 h of each metaheuristic h for stopping criterion 120 · n · m ms grouped by the values of the parameters.

Parameter KIG TSM 63 EA GAPR HA IA RI IA GI IA RGS IA GGS IA RAS IA GI _ ALS IA ILS _ GI IA GI _ ILS

T 0.2 −0.08 2.14 1.92 1.52 2.02 0.05 0.25 0.38 2.47 0.00 0.19 −0.01 0.10

T 0.4 −0.89 3.88 4.11 2.42 4.99 −0.39 −0.34 0.24 3.06 −0.84 −0.46 −0.65 −0.67

T 0.6 −0.72 5.72 4.54 3.20 7.20 −0.80 −1.09 −0.21 2.01 −1.52 −1.19 −1.11 −1.30

R 0.2 −0.62 5.25 4.07 2.89 6.97 −0.39 −0.62 0.20 2.39 −1.07 −0.75 −0.75 −0.88

R 0.6 −0.68 3.71 3.40 2.27 4.50 −0.47 −0.47 0.02 2.62 −0.86 −0.55 −0.67 −0.71

R 1.00 −0.38 2.79 3.10 1.98 2.74 −0.28 −0.09 0.19 2.52 −0.44 −0.17 −0.35 −0.27

n 50 0.40 3.40 3.59 5.41 2.69 0.79 0.76 1.42 7.81 0.54 0.66 0.47 0.54

n 150 −0.20 4.48 5.25 2.77 5.28 0.60 0.60 1.32 3.43 −0.05 0.48 0.26 0.20

n 250 −1.04 3.99 3.26 0.69 5.16 −0.97 −1.04 −0.52 0.13 −1.44 −1.13 −1.14 −1.18

n 350 −1.41 3.79 2.00 0.66 5.82 −1.94 −1.89 −1.67 −1.31 −2.21 −1.97 −1.96 −2.04

m 10 −0.41 1.85 0.77 1.76 3.13 0.09 0.00 0.33 1.78 −0.15 0.02 0.07 −0.11

m 30 −0.72 4.42 3.88 2.67 5.17 −0.67 −0.61 −0.09 2.72 −1.06 −0.78 −0.98 −0.93

m 50 −0.55 5.47 5.92 2.71 5.91 −0.56 −0.57 0.17 3.03 −1.16 −0.70 −0.87 −0.82

Average −0.56 3.91 3.52 2.38 4.74 −0.38 −0.39 0.14 2.51 −0.79 −0.49 −0.59 −0.62

s

(

I

T

d

c

e

F

b

p

i

f

n

t

l

i

p
1. The random adjacent swap is the best perturbation among our

eight proposals, for all time limits tested (hypothesis H 3).

2. In addition, the IA RAS is efficient and outperforms each other

metaheuristic for the problem (hypothesis H 4).

3. The iterated algorithm based on greedy general swap (IA GGS)

performs worst than each other perturbation method (hypoth-

esis H 5).

4. Similarly as in the F m | prmu | C max (Dubois-Lacoste et al., 2017),

the greedy insertion plus local search insertion(IA ILS _ GI) outper-

forms the greedy insertion (hypothesis H 6).

5. The random and greedy insertions (IA RI and IA GI , respectively)

perform very similar (hypothesis H 7).

To justify each previous conclusion, the following hypothe-

es are checked for statistical evidence: GAPR = HA (H 1);KIG = EA

H 2); IA GGS = IA ILS _ GI (H 3);IA RAS = KIG (H 4); IA RAS = IA GI _ ILS (H 5);
A GI _ ILS = IA GI (H 6); and IA RI = IA GI (H 7). Results are shown in

able 6 for stopping criterion 60 · n · m (the same statistical evi-

ences have been found for the other parameters). The last two

olumns show the results obtained using Holm’s procedure (see

.g. Pan, Tasgetiren, and Liang, 2008 and Fernandez-Viagas and

raminan, 2015b for related studies). No statistical evidence has

een found only for the hypothesis that the random insertion out-

erforms the greedy insertion. In addition, it is worth highlight-

ng that the excellent performance of IA RAS probably lies in per-

orming several small variations in the sequence to decrease the

umber of “bad” solutions evaluated. The perturbation phase of

his iterated algorithm is performed over a sequence which is a

ocal optimum, therefore this sequence is presumably “good” and

ntroducing a high number of changes in this sequence seems to

roduce, in many cases, sequences that are worse than the ini-

68 V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69

Table 6

Holm’s procedure.

H i Hypothesis p -value Wilcoxon α/ (7 − i + 1) Holm’s procedure

H 1 GAPR = HA .0 0 0 R 0.0071 R

H 2 KIG = EA .0 0 0 R 0.0083 R

H 3 IA RAS = IA GI _ ILS .0 0 0 R 0.0100 R

H 4 IA RAS = KIG .0 0 0 R 0.0125 R

H 5 IA GGS = IA RGS .0 0 0 0.0167

H 6 IA ILS _ GI = IA GI .0 0 0 0.0250

H 7 IA RI = IA GI .939 0.0500

R

C

D

D

F

F

F

F

F

F

F

F

K

K

K

L

L

N

N
tial, but that have to computed, thus wasting CPU effort. Similar

results have been found for example both in Rad, Ruiz, and Boroo-

jerdian (2009) and Fernandez-Viagas and Framinan (2015d) , which

could lead to similar conclusions.

5. Conclusions

In this paper we have proposed two different sets of algorithms

to solve the permutation flow shop scheduling problem to min-

imise the total tardiness. Firstly, we have proposed a set of beam-

search-based heuristics varying the size of their population. These

are fast heuristics that construct solutions by adding jobs at the

end of several partial sequences constructed in parallel. In addi-

tion, this set uses properties of the problem both to estimate the

performance of each partial sequence and to be able to compare

sequences with different jobs. Secondly, we have proposed sev-

eral simple iterated-greedy-based algorithms with several types of

destruction-construction phases. The methods developed to per-

turb the solutions are based on insertion, general swap, adjacent

swap, and partial local searches.

Our proposals have been compared with the state-of-the-art al-

gorithms of the problem under study in a well-known benchmark

testbed. More specifically, a total of 14 algorithms have been reim-

plemented and compared with our proposals (a set of beam search

algorithms varying the size of the population, and eight different

iterated algorithms). Regarding constructive heuristics, the results

show that BS(15) clearly outperforms the NEHedd in terms of qual-

ity of solutions and computational effort. In addition, the proposed

heuristics BS(2), BS(5), BS(10), BS(n /10), and BS(15) are efficient

heuristics for the problem. Regarding the computational evaluation

of metaheuristics, the iterated algorithm with a simple random

adjacent swap (IA RAS) clearly outperforms the other seven simple

and complex perturbation methods of the iterated algorithm, and

statistically outperforms each other existing metaheuristic for the

problem under study.

Due to the excellent performance of the original iterated greedy

in different scheduling problems, it is noteworthy to mention that

the conclusions obtained by applying the simple random adjacent

swap, such as the destruction-construction phase of the proposed

iterated algorithm, could probably be extended for future iterated-

greedy-based algorithms developed for either the problem under

consideration, or for related scheduling problems.

Acknowledgements

This research has been funded by the Spanish Ministry of Sci-

ence and Innovation , under projects “ADDRESS” with reference

DPI2013-4 4 461-P and “PROMISE” with reference DPI2016-80750-P.

Supplementary material

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.eswa.2017.10.050
eferences

ura, T. (2015). An evolutionary algorithm for the permutation flowshop schedul-

ing problem with total tardiness criterion. International Journal of Operational
Research, 22 (3), 366–384. doi: 10.1504/IJOR.2015.068287 .

ong, X. , Huang, H. , & Chen, P. (2009). An iterated local search algorithm for the
permutation flowshop problem with total flowtime criterion. Computers & Op-

erations Research, 36 (5), 1664–1669 .
u, J. , & Leung, J. (1990). Minimizing total tardiness on one machine is np-hard.

Mathematics of Operations Research, 15 (3), 4 83–4 95 .

Dubois-Lacoste, J., Pagnozzi, F., & Stützle, T. (2017). An iterated greedy algorithm
with optimization of partial solutions for the makespan permutation flowshop

problem. Computers and Operations Research, 81 , 160–166. doi: 10.1016/j.cor.2016.
12.021 .

ernandez-Viagas, V., Dios, M., & Framinan, J. (2016a). Efficient constructive and
composite heuristics for the permutation flowshop to minimise total earliness

and tardiness. Computers and Operations Research, 75 , 38–48. doi: 10.1016/j.cor.

2016.05.006 .
ernandez-Viagas, V. , & Framinan, J. (2015a). A bounded-search iterated greedy al-

gorithm for the distributed permutation flowshop scheduling problem. Interna-
tional Journal of Production Research, 53 (4), 1111–1123 .

Fernandez-Viagas, V., & Framinan, J. (2015b). Efficient non-population-based algo-
rithms for the permutation flowshop scheduling problem with makespan min-

imisation subject to a maximum tardiness. Computers & Operations Research,

64 (0), 86–96. https://doi.org/10.1016/j.cor.2015.05.006 .
ernandez-Viagas, V. , & Framinan, J. (2015c). A new set of high-performing heuris-

tics to minimise flowtime in permutation flowshops. Computers & Operations
Research, 53 , 68–80 .

Fernandez-Viagas, V., & Framinan, J. (2015d). NEH-based heuristics for the permu-
tation flowshop scheduling problem to minimise total tardiness. Computers &

Operations Research, 60 , 27–36. doi: 10.1016/j.cor.2015.02.002 .

ernandez-Viagas, V., & Framinan, J. (2017). A beam-search-based constructive
heuristic for the pfsp to minimise total flowtime. Computers and Operations Re-

search, 81 , 167–177. doi: 10.1016/j.cor.2016.12.020 .
ernandez-Viagas, V., & Framinan, J. M. (2014). On insertion tie-breaking rules in

heuristics for the permutation flowshop scheduling problem. Computers & Op-
erations Research, 45 (0), 60–67. https://doi.org/10.1016/j.cor.2013.12.012 .

ernandez-Viagas, V., Leisten, R., & Framinan, J. (2016b). A computational evaluation

of constructive and improvement heuristics for the blocking flow shop to min-
imise total flowtime. Expert Systems with Applications, 61 , 290–301. doi: 10.1016/

j.eswa.2016.05.040 .
ernandez-Viagas, V., Ruiz, R., & Framinan, J. (2017). A new vision of approximate

methods for the permutation flowshop to minimise makespan: State-of-the-art
and computational evaluation. European Journal of Operational Research, 257 (3),

707–721. doi: 10.1016/j.ejor.2016.09.055 .
raminan, J. , & Leisten, R. (2008). Total tardiness minimization in permutation flow

shops: A simple approach based on a variable greedy algorithm. International

Journal of Production Research, 46 (22), 6479–6498 .
Hasija, S. , & Rajendran, C. (2004). Scheduling in flowshops to minimize total tardi-

ness of jobs. International Journal of Production Research, 42 (11), 2289–2301 .
arabulut, K. (2016). A hybrid iterated greedy algorithm for total tardiness min-

imization in permutation flowshops. Computers and Industrial Engineering, 98 ,
300–307. doi: 10.1016/j.cie.2016.06.012 .

im, Y.-D. (1993). Heuristics for flowshop scheduling problems minimizing mean

tardiness. Journal of the Operational Research Society, 44 (1), 19–28 .
im, Y.-D. , Lim, H.-G. , & Park, M.-W. (1996). Search heuristics for a flowshop

scheduling problem in a printed circuit board assembly process. European Jour-
nal of Operational Research, 91 (1), 124–143 .

Li, X., Chen, L., Xu, H., & Gupta, J. (2015). Trajectory scheduling methods for mini-
mizing total tardiness in a flowshop. Operations Research Perspectives, 2 , 13–23.

doi: 10.1016/j.orp.2014.12.001 .

i, X. , Wang, Q. , & Wu, C. (2009). Efficient composite heuristics for total flowtime
minimization in permutation flow shops. OMEGA, The International Journal of

Management Science, 37 (1), 155–164 .
iu, J. , & Reeves, C. (2001). Constructive and composite heuristic solutions to

the P || �c i scheduling problem. European Journal of Operational Research, 132 ,
439–452 .

aderi, B. , & Ruiz, R. (2010). The distributed permutation flowshop scheduling prob-

lem. Computers & Operations Research, 37 (4), 754–768 .
awaz, M. , Enscore, E., Jr. , & Ham, I. (1983). A heuristic algorithm for the m-ma-

https://doi.org/10.13039/501100004837
https://doi.org/10.1016/j.eswa.2017.10.050
https://doi.org/10.1504/IJOR.2015.068287
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0003
https://doi.org/10.1016/j.cor.2016.12.021
https://doi.org/10.1016/j.cor.2016.05.006
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0006
https://doi.org/10.1016/j.cor.2015.05.006
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0008
https://doi.org/10.1016/j.cor.2015.02.002
https://doi.org/10.1016/j.cor.2016.12.020
https://doi.org/10.1016/j.cor.2013.12.012
https://doi.org/10.1016/j.eswa.2016.05.040
https://doi.org/10.1016/j.ejor.2016.09.055
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0015
https://doi.org/10.1016/j.cie.2016.06.012
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0018
https://doi.org/10.1016/j.orp.2014.12.001
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0023

V. Fernandez-Viagas et al. / Expert Systems With Applications 94 (2018) 58–69 69

P

P

P

P

P

P

P

P

P

R

R

R

R

R

R

S

T

T

V

V

V

V

V

Z

Z

chine, n-job flow-shop sequencing problem. OMEGA, The International Journal of
Management Science, 11 (1), 91–95 .

an, Q.-K., Gao, L., Li, X.-Y., & Gao, K.-Z. (2017). Effective metaheuristics for schedul-
ing a hybrid flowshop with sequence-dependent setup times. Applied Mathemat-

ics and Computation, 303 , 89–112. doi: 10.1016/j.amc.2017.01.004 .
an, Q.-K. , & Ruiz, R. (2013). A comprehensive review and evaluation of permuta-

tion flowshop heuristics to minimize flowtime. Computers & Operations Research,
40 (1), 117–128 .

an, Q.-K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed

no-idle permutation flowshop scheduling problem. Omega (United Kingdom), 44 ,
41–50. doi: 10.1016/j.omega.2013.10.002 .

an, Q.-K. , Tasgetiren, M. , & Liang, Y.-C. (2008). A discrete differential evolution al-
gorithm for the permutation flowshop scheduling problem. Computers and In-

dustrial Engineering, 55 (4), 795–816 .
anwalkar, S. , Smith, M. , & Seidmann, A. (1982). Common due date assignment to

minimize total penalty for the one machine scheduling problem.. Operations Re-

search, 30 (2), 391–399 .
arthasarathy, S., & Rajendran, C. (1997). A simulated annealing heuristic for

scheduling to minimize mean weighted tardiness in a flowshop with sequence-
dependent setup times of jobs-a case study. Production Planning and Control,

8 (5), 475–483. doi: 10.1080/095372897235055 .
arthasarathy, S. , & Rajendran, C. (1998). Scheduling to minimize mean tardiness

and weighted mean tardiness in flowshop and flowline-based manufacturing

cell. Computers and Industrial Engineering, 34 (2–4), 531–546 .
inedo, M. (1995). Scheduling: Theory, algorithms and systems . Prentice Hall .

otts, C. , & Van Wassenhove, L. (1982). A decomposition algorithm for the single
machine total tardiness problem. Operations Research Letters, 1 (5), 177–181 .

ad, S. F. , Ruiz, R. , & Boroojerdian, N. (2009). New high performing heuristics for
minimizing makespan in permutation flowshops. OMEGA, The International Jour-

nal of Management Science, 37 (2), 331–345 .

aman, N. (1995). Minimum tardiness scheduling in flow shops: Construction and
evaluation of alternative solution approaches. Journal of Operations Management,

12 (2), 131–151 .
ibas, I., Companys, R., & Tort-Martorell, X. (2017). Efficient heuristics for the paral-
lel blocking flow shop scheduling problem. Expert Systems with Applications, 74 ,

41–54. doi: 10.1016/j.eswa.2017.01.006 .
ios-Mercado, R. , & Bard, J. (1998). Heuristics for the flow line problem with setup

costs. European Journal of Operational Research, 110 (1), 76–98 .
uiz, R. , & Maroto, C. (2005). A comprehensive review and evaluation of per-

mutation flowshop heuristics. European Journal of Operational Research, 165 (2),
479–494 .

uiz, R. , & Stützle, T. (2007). A simple and effective iterated greedy algorithm for

the permutation flowshop scheduling problem. European Journal of Operational
Research, 177 (3), 2033–2049 .

en, T. , & Gupta, S. (1984). A state-of-art survey of static scheduling research involv-
ing due dates. OMEGA, The International Journal of Management Science, 12 (1),

63–76 .
aillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing

problem. European Journal of Operational Research, 47 (1), 65–74 .

aillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64 (2), 278–285 .

alente, J. (2010). Beam search heuristics for quadratic earliness and tardiness
scheduling. Journal of the Operational Research Society, 61 (4), 620–631. doi: 10.

1057/jors.2008.191 .
alente, J., & Alves, R. (2005). Filtered and recovering beam search algorithms for

the early/tardy scheduling problem with no idle time. Computers and Industrial

Engineering, 48 (2), 363–375. doi: 10.1016/j.cie.2005.01.020 .
alente, J. , & Alves, R. (2008). Beam search algorithms for the single machine total

weighted tardiness scheduling problem with sequence-dependent setups. Com-
puters and Operations Research, 35 (7), 2388–2405 .

allada, E. , & Ruiz, R. (2010). Genetic algorithms with path relinking for the mini-
mum tardiness permutation flowshop problem. OMEGA, The International Journal

of Management Science, 38 (1–2), 57–67 .

allada, E. , Ruiz, R. , & Minella, G. (2008). Minimising total tardiness in the m-ma-
chine flowshop problem: A review and evaluation of heuristics and metaheuris-

tics. Computers & Operations Research, 35 (4), 1350–1373 .
anakis, S. , Evans, J. , & Vazacopoulos, A. (1989). Heuristic methods and applications:

A categorized survey. European Journal of Operational Research, 43 (1), 88–110 .
äpfel, G. , Braune, R. , & Bögl, M. (2010). Metaheuristic search concepts . Springer .

http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0023
https://doi.org/10.1016/j.amc.2017.01.004
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0025
https://doi.org/10.1016/j.omega.2013.10.002
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0028
https://doi.org/10.1080/095372897235055
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0033
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0034
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0034
https://doi.org/10.1016/j.eswa.2017.01.006
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0036
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0037
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0038
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0039
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0040
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0041
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0041
https://doi.org/10.1057/jors.2008.191
https://doi.org/10.1016/j.cie.2005.01.020
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0044
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0045
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0046
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0047
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0048
http://refhub.elsevier.com/S0957-4174(17)30732-7/sbref0048

	Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimise total tardiness
	1 Introduction
	2 Problem statement and background
	3 Proposed algorithms: beam search and iterated-greedy-based algorithms
	3.1 Beam search algorithm
	3.2 Iterated-greedy-based algorithms, IA

	4 Computational experience
	4.1 Sets of instances
	4.2 Performance indicators
	4.3 Experimental parameter tuning
	4.4 Implemented algorithms
	4.5 Heuristics
	4.6 Metaheuristics

	5 Conclusions
	 Acknowledgements
	 Supplementary material
	 References

