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ABSTRACT

The permutation flow shop scheduling problem is one of the most studied operations research related
problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise sev-
eral objective functions. In this paper we address the total tardiness criterion, which is aimed towards
the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have
been proposed for this problem in the literature, recent contributions for related problems suggest that
there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we
propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences
without a complete evaluation of their objective function. Second, using this constructive heuristic as
initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive
computational evaluation is performed to establish the efficiency of our proposals against the existing

Beam search
Iterated greedy algorithm
Iterated local search

heuristics and metaheuristics for the problem.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The flow shop is a common manufacturing layout in which a
set of n jobs has to be processed in a set of m machines where
each job follows the same route through the machines. For sim-
plicity, the problem is denoted by permutation flow shop (PFSP
in the following) when the same sequence of jobs is applied on
each machine. The PFSP is one of the most studied optimization
problems in Operations Research. Among the objectives studied in
the literature (see e.g. Fernandez-Viagas, Dios, & Framinan, 2016a;
Fernandez-Viagas & Framinan, 2014; Pan & Ruiz, 2013), the min-
imisation of the total tardiness is essential for manufacturing sys-
tems (Raman, 1995), since due dates play an important role in
these systems (Panwalkar, Smith, & Seidmann, 1982) and delays
may increase costs and/or the dissatisfaction of customers (result-
ing in either a poor reputation, or even the loss of customer) (Sen
& Gupta, 1984).

According to the «|B|y notation (see e.g. Pinedo, 1995), the
PFSP to minimise total tardiness can be denoted as Fm|prmu|ZT;.
Since this problem is known to be NP-hard (Du & Leung, 1990),
during the last years several approximate algorithms -heuristics
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and metaheuristics- have been proposed in the literature (see
e.g. Karabulut, 2016; Li, Chen, Xu, & Gupta, 2015; Vallada, Ruiz,
& Minella, 2008). However, these proposals have not been com-
pared against themselves, or the comparison has not been car-
ried out under the same conditions, so the state-of-the-art re-
garding approximate algorithms for the problem remains unclear.
Instead, these methods have been usually compared against ei-
ther the genetic algorithm proposed by Vallada and Ruiz (2010),
the Iterated Greedy (IG) algorithm by Ruiz and Stiitzle (2007),
and/or the NEHedd by Kim (1993), which is the adaptation for
the problem of the well-known NEH heuristic by Nawaz, En-
score Jr., and Ham (1983). The latter two are considered key meth-
ods in the flowshop scheduling literature since the noteworthy
papers by Nawaz et al. (1983) and Ruiz and Stiitzle (2007), re-
spectively. Regarding the NEHedd, it is probably the key construc-
tive heuristic for the problem due to several reasons (Fernandez-
Viagas & Framinan, 2015d): aside being an efficient heuristic for
the problem, it is used to obtain an initial solution by the rest
of efficient constructive or improvement heuristics, and by more
than half of the efficient improvement heuristics or metaheuris-
tics. Regarding IG, it remains the cornerstone of subsequent al-
gorithms in the flowshop literature and can be considered as the
state-of-the-art algorithm for several scheduling problems (see e.g.
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Fernandez-Viagas and Framinan, 2015b and Dubois-Lacoste, Pag-
nozzi, & Stiitzle, 2017).!

Despite the preeminence of these two algorithms, recent ad-
vances in related scheduling problems have shown that they
can be improved: On the one hand, some studies (see e.g.
Dong, Huang, and Chen, 2009 and Pan & Ruiz, 2014) have found
better results by varying the destruction-construction phase in the
IG for total flowtime minimisation, which is related to the problem
under consideration (see Fernandez-Viagas & Framinan, 2015d). On
the other hand, recent constructive heuristics based on a non-
complete evaluation of the partial sequences have clearly outper-
formed the original NEH for other objective functions (see e.g.
Fernandez-Viagas, Dios, et al., 2016a; Fernandez-Viagas & Frami-
nan, 2015c; 2017).

To tackle the aforementioned issues, the contribution of this
work is twofold: We first implement a beam search algorithm for
the problem which constructs several partial sequences in paral-
lel. The algorithm estimates the value of the objective function for
each partial sequence based on specific variables of the problem.
We then develop several iterated-greedy-based algorithms to im-
prove the pool of sequences generated by the beam search algo-
rithm. To explore the effect of the construction phase in the algo-
rithm, we implement eight different methods based on insertions,
exchanges, randomness and optimizations of partial solutions. We
finally compare the proposals with the best performing algorithms
in the literature in an exhaustive computational evaluation.

The remainder of the paper is as follows: In Section 2 we for-
malise the problem and discuss its background. In Section 3 we
propose the beam search and the iterated-greedy-based algo-
rithms. These algorithms are compared with the state-of-the-art
methods in Section 4. Finally, in Section 5 we discuss the main
conclusions of the paper.

2. Problem statement and background

The problem under study can be set as follows: a set A of n
jobs have to be processed in a flowshop composed of a set M

of m machines. Each job je{1,...,n} has a due date d; and a
processing time p; on each machine i< {1,...,m}. Given a se-
quence of jobs IT := (mq, ..., 7,..., Ty) Where re {1,...,n} is an

index of the position in a sequence, let Cy(IT) (abbreviated to
Cj whenever it does not lead to confusion) be the completion
time of job j on machine i according to sequence I1. Obviously,
Cpni(T1) is the completion time of job j on the last machine, and
G, (IT) = Cax is the maximum completion time or makespan of
the sequence. The tardiness (earliness) of job j is defined as T; =
max{Gy; — d;, 0} (Ej = max{d; — Cpj.0}). Analogously, total tardi-
ness, whose minimisation is the goal of our problem, is defined
as YT = Y_; max{Gpj — d;, 0}, while total earliness is defined as
YEi= Z'}:l max{d; — Cy;, 0}. Note that the completion times can
be computed recursively as follows:

Cirrj = max{ci—l,rrﬂ Ci,rrj,l} + pinj (1)

where Coyr]. = Cin, = 0.

A number of approximate procedures have been proposed in
the literature to provide good solutions for this problem in rea-
sonable computation times. A review and evaluation of these al-
gorithms prior to 2008 is given in Vallada et al. (2008). From this
review, it turns out that the NEHedd proposed by Kim (1993), the
ENS2 by Kim, Lim, and Park (1996), and the simulated annealing

TIG is currently a state-of-the-art algorithm for makespan minimisation
(Fm|prmu|Crax). As stated by Fernandez-Viagas, Ruiz, and Framinan (2017), the
speed up proposed by Taillard (1990) is probably one of main reason of the good-
performance of insertion phases -constructing jobs following a greedy method for
that scheduling problem- as compared to randomized ones.

algorithms by Hasija and Rajendran (2004) and Parthasarathy and
Rajendran (1997) (denoted as HR and SAH, respectively) are the
most promising algorithms for the problem. Using the same com-
puter conditions, Framinan and Leisten (2008) propose a hybrid
algorithm (denoted as HA) which outperforms both the HR and
the SAH’ (proposed by Parthasarathy & Rajendran, 1998).2 This
algorithm combines the iterated greedy and the variable neigh-
bourhood search algorithms using a partial (adjacent-pairwise-
exchange) local search in its construction phase, as well as an in-
sertion local search improvement. In addition, Framinan and Leis-
ten (2008) have also proposed a speed up mechanism to decrease
the complexity of the evaluation.? Recently, Karabulut (2016) have
found around 50% time saving when applying it to the NEH.

In parallel to the contribution by Framinan and Leis-
ten (2008) and Vallada and Ruiz (2010) propose three genetic al-
gorithms (GAPR, GAPR2, and GADV) that also outperform the HR
and SAH in a fair comparison, and using a similar speed up mech-
anism for the problem. The best results were obtained by the
GAPR version, although this algorithm was not compared to HA.
Laterly, several contributions have outperformed the GAPR algo-
rithm. First, Cura (2015) proposes an evolutionary algorithm (EA
in the following), that outperforms both GAPR and SAH. The al-
gorithm includes a mating procedure to diversify the solutions.
Two local search methods with different neighbourhood sizes are
employed, although the comparison is not performed using the
same conditions, i.e. the algorithms used for comparison were
not re-implemented. Secondly, several trajectory scheduling meth-
ods are proposed by Li et al. (2015) using six different composite
heuristics (denoted as CH;) and three perturbation methods. Let
us denote as TSMj; the trajectory scheduling methods composed
of composite heuristic CH; and perturbation method j. Among
these methods, the best results are found by TSMg3. On the one
hand, under the same stopping criterion and the same computer
conditions, TSMg3 outperforms the three genetic algorithms by
Vallada and Ruiz (2010), i.e. GAPR, GAPR2, and GADV. On the other
hand, the proposed composite heuristics outperform the NEHedd
but require additional CPU times. Regarding NEHedd, Fernandez-
Viagas and Framinan (2015d) analyse the structure of the prob-
lem, finding that there are a high number of ties in the selec-
tion procedure of NEHdd. Eight tie-breaking mechanisms are then
proposed and compared with the original one, resulting that each
tie-breaking mechanism (with the exception of the random one)
statistically outperforms NEHedd. The most promising tie-breaking
mechanisms are NEHedd(TByy;) and NEHedd(TBys tajjiarg, 111) (these
heuristics are denoted in the following as TBjr; and TBr,, respec-
tively). In addition, they also statistically improve GAPR when used
as an initial solution instead of the traditional NEHedd.

Recently, Karabulut (2016) propose KIG, an iterated greedy al-
gorithm that incorporates a random local search method instead
of the traditional insertion local search method. The search ran-
domly performs insertion and exchanges using the speed up mech-
anism proposed by Framinan and Leisten (2008), until no more im-

2 This SAH’ algorithm was not included in the computational evaluation of
Vallada et al. (2008) due to the resemblance of it with SAH.

3 The speed up mechanism is a very common practice in the flowshop lay-
out with permutation sequences. Taillard (1990) have proposed the first one for
Fm|prmu|Cnax. Since then, several other mechanisms have been proposed for dif-
ferent constraints and/or objectives. Naderi and Ruiz (2010), Rios-Mercado and
Bard (1998) and Fernandez-Viagas and Framinan (2015b) have successfully adapted
them for the DF|prmu|Cmax, Fmisijx, prmu|Cmax and Fm|prmu|€ (Cmax/Tmax) prob-
lems, respectively. With some modifications and lesser decrease in CPU times, they
have been also adapted for the Fm|prmu|XC;, Fm|prmu|XT;, Fm|prmu| Y} E; + )" T;
and Fm|block|£C; problems by Li, Wang, and Wu (2009), Framinan and Leis-
ten (2008), Fernandez-Viagas, Dios, et al. (2016a) and Fernandez-Viagas, Leisten, and
Framinan (2016b), respectively.
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provement is achieved in n iterations. In addition, it uses a simple
annealing-like acceptance criterion with a constant temperature
based on the makespan and the due dates of the jobs. Although
the authors do not compare their proposal with algorithms specif-
ically developed for the problem, they compare it with the original
iterated greedy algorithm proposed by Ruiz and Stiitzle (2007) -
originally designed for the PFSP to minimise makespan-, which has
been reimplemented for the problem under consideration. It is to
note that such iterated greedy algorithm was found to be outper-
formed by GAPR for the problem under study.

To summarise, several algorithms have been proposed in the
literature to solve the problem under consideration. However, the
new picture of the efficient metaheuristics for the problem remains
unclear due to the following issues:

1. The most promising metaheuristics found by
Vallada et al. (2008) have been outperformed by GAPR and HA,
but there is no comparison among these two latter algorithms
and, to the best of our knowledge, contributions after 2008 do
not include HA in their comparisons.

2. There is no computational comparison among the recent iter-
ative algorithms proposed in the literature, i.e. EA, TSMg3, and
KIG.

3. Some metaheuristics are tested either under different computer
conditions or versus non-state-of-the-art metaheuristics (see
e.g. Cura, 2015; Karabulut, 2016).

In this paper, in Section 3 we first propose both a beam search
algorithm with a fixed stopping criterion, and a set of eight dif-
ferent iterated-greedy-based algorithms varying their construction
phase. In addition, we perform a comprehensive computational
evaluation of the heuristics and metaheuristics in Section 4. By do-
ing so, we establish the set of efficient algorithms for the problem.

3. Proposed algorithms: beam search and
iterated-greedy-based algorithms

In this section, we propose several approximate procedures to
solve the problem. The first proposal is a population-based con-
structive heuristic, which constructs several partial sequences in
parallel, appending jobs, one by one, at the end of the sequences
(see Section 3.1). Secondly, we propose several iterative improve-
ment algorithms based on a single solution. Using the previous
heuristic as initial solution, these algorithms iteratively search
for the local optimum of a sequence obtained by a destruction-
construction-based phase (see Section 3.2). Note that the division
between heuristics and metaheuristics is unclear in the literature
and several classifications have been proposed (see e.g. Zanakis,
Evans, & Vazacopoulos, 1989; Zipfel, Braune, & Bogl, 2010). In
this paper, we adopt the same definition as in Ruiz and Maroto
(2005) and Fernandez-Viagas et al. (2017), where metaheuristics
are defined as iterative improvement algorithms with stopping cri-
teria depending on CPU time or number of iterations. In contrast,
heuristics naturally stop when their steps are finished.

3.1. Beam search algorithm

In this subsection we present a beam search algorithm, denoted
by BS(y ), with an advance priority evaluation function. Similarly to
the B&B algorithm, this approximate procedure constructs a search
tree, where each node is formed by a partial sequence and the
child nodes are obtained by adding one of the unscheduled jobs
at the end of the parent node. However, only the most y promis-
ing nodes (denoted as beam width in the following) are kept for
the next iteration. Beam search has been successfully applied to
several scheduling problems in the literature (see e.g. Valente &

Alves, 2005; 2008). Traditionally, two different functions have been
applied to evaluate the nodes (Valente, 2010):

e Priority evaluation function. The node is evaluated by estimat-
ing the influence of the last job in the partial sequence. This
evaluation of just one job in the node (omitting the influence
of the other jobs) implies both that computing this function re-
quires a low complexity order and that it is node-dependent,
i.e. only children from the same parent node can be compared.
Total cost evaluation function. The final objective function value
to be achieved for this node is estimated taking into consid-
eration all unscheduled jobs. Obviously, this function is node-
independent as complete sequences are estimated. In addition,
its complexity increases significantly.

Recently, Fernandez-Viagas, Leisten, et al. (2016b) and
Fernandez-Viagas and Framinan (2017) have achieved excel-
lent results using a node-independent priority evaluation function.
The idea is to assign to each node a “genetic” code which keeps
the historical behaviour of that node. By means of both this code
and the influence of the last element, child nodes from different
parents can be compared. This approach is applied in our proposal.

The proposed beam search algorithm is composed of several
nodes in n different levels. Let us denote by S{‘ the partial se-
quence of the Ith node in iteration k, with I<[1, y]. Each node is
then formed by a partial sequence Sf, Sf := (s P s;i,), of k jobs,
and by a set ¢4¢ (with ¢ := {”11(,1 ..... uk 1) of n— k unscheduled
jobs. Whenever it does not lead to confusion, let us also denote
that node by Sj‘. For each iteration k, n — k child nodes are created
from each partial sequence Sf‘ by adding one job from set Z/{I" at
the end of the sequence. The best y child nodes are selected to be
the partial sequences of the nodes for the next iteration, i.e. S;‘“,
Vie{l,...,y}. More specifically, the steps of the proposed algo-
rithm are as follows:

Step 1 Initialization

Step 2 While k =2 n—1, repeat:

Step 2.1 Branching
Step 2.2 Node evaluation
Step 2.3 Node selection

Step 3 Final evaluation

To clarify both the branching and candidate selection phases, a
simple example with five jobs and y =2, i.e. BS(2), is shown in
Fig. 1.

Next, each phase is explained in more detail:

o Initialization (Step 1). The first node is formed by job j* with
the minimum sum of completion time on the last machine and
weighted idle times, wj. Let us denote such sum as index §;, i.e.

Jj* := argmin;{§;} where:
Zm 2) X (m- Z =1 Di'j
i=1 P + Z l_l 1 ’

Vijell.n] (2)

m
Eji=) pijt+ws=

i=1

In case of ties, the job with minimum wj; is chosen. See Liu and
Reeves (2001), Fernandez-Viagas, Leisten, et al. (2016b), and
Fernandez-Viagas and Framinan (2017) for similar initializa-
tions.

 Branching (Step 2.1). Each node S}‘ is branched to form n —k
child nodes. Child node v (with v e[1,n—k]) is constructed

from the node by adding ”51 at the end of the partial se-

quence Sf‘. Note that the number of child nodes in iteration k
is y(n—k).



netic offspring of the child node. By doing so, we are able
to compare child nodes with different sequenced jobs, i.e.
from different nodes. Obviously, each one of the child nodes
of node S;‘ has the same genetic code.

- The influence of the last element. It measures the influence
of the last job inserted at the end of the partial sequence.

In order to define both influences, we explore the specific char-

acteristics of the problem. Regarding the genetic code of node

S;‘, its goal is twofold. On the one hand, it should consider the

contribution of the partial sequence to the objective function.

As jobs in the following iterations are added always at the end

of the partial sequence, the total tardiness of the jobs in the

partial sequence stays unalterable until the end. On the other
hand, it should address the indirect influences on the objective
function of the future jobs to be added to the partial sequence.

These influences make possible to compare child nodes of dif-

ferent offspring. To achieve these goals, the genetic code in-

corporates the following aspects which may be considered and
balanced:

1. Cumulative total tardiness (TT). It represents the total tar-
diness of partial sequences S;‘,“. Note that S;‘,“ represents
the I'th best node of iteration k+ 1 formed by appending
job u’;vl at the end of node Sf. As | and I’ are not necessarily

the same nodes, let us denote by job[l'] such job u:j‘, and by
branch[l'] such L Then the cumulative total tardiness of Sf‘,“
is computed as follows:

k k
TT[’_H = TTbranch[l’] + Tob[l ’],branch[l']’ Vik= {2 - l}’

U={1,.. .y} (3)
where Tj’j is the tardiness of job j of node Sk in iteration k.

2. Cumulative total earliness (TE). Analogously, it represents
the total earliness of partial sequences S;‘,“. Denoting by EX

the earliness of job j of node Sf‘ in iteration k, the cumula-
tive total earliness of node Sf,“ in iteration k + 1 is defined
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Initial solution: e
=(1,3) 83 =(1,4)
k=1 _ ut = {2,4,5} Ut =1{2,3,5} )
Gii=2 Gl =15 Gi, =175 Gip =25
(1,3,2 =(1,3,5)
k=2 ul 7y 5} e - (2.4) e
G3, =175 G§ =2
G3,= G%,Q =25 03,2 = G3,=3
S35 =(1,3,2,5) 5% =1(1,3,5,4)
k=3: u = {4 U = {2
G}, =3 G3,=25
Gix =4 Gi,=35
) _ 1{1,3,2,5,4) 1 (1,3,5,4,2)
Final Evaluation: | 1
T;=3 1 T; = 3.75
L 2 1i=5 ) Z J )
Fig. 1. Example of BS.
e Node evaluation (Step 2.2). As mentioned before, the child as follows:
nodes are evaluated according to an index that weights two o1 v '
components: TES™ = TEpanehiry + Ejobprbranchyr) ¥ kK =1{2,....n =1},
- The “genetic” code. This first component measures the ge- I'={1,....y) (4)

3. Cumulative weighted idle time (TI). It represents the cumu-
lative weighted idle time of each job of partial sequence
S;‘/“, which is defined by:

k={2,....,n-1},
(5)

where I}‘l is the weighted idle time between the last job of se-

k+1
TI; = TIhranch[l’] +1 job[l'],branch[V']>
l/ = { s R ] V}

quence S;‘ and job j, which is inserted in the last position of the
sequence, see Eq. (6).
n m - max{Ci_1 ; — G; 11, 0}
K i-1,j i,[k]»
=2
i=

2i—l+(k—1)~(m—i-i—l)/(n—Z) (6)

Note that, after the node selection phase, the cumulative to-
tal tardiness, total earliness and weighted idle time are up-
dated by incorporating the corresponding value of the last job.
Thereby, it avoids to completely re-calculate of them in each
iteration. Obviously, the influence of the cumulative total tar-
diness increases when the sequence contains more jobs, while
the weight of the indirect influence (i.e. the cumulative total
earliness and idle time) decreases with each iteration. More
specifically, in the first iterations of the algorithm, it seems bet-
ter to choose sequences with high values of total idle times and
total earliness times to have more promising partial sequences
for the next iterations. In contrast, in the last iterations, the in-
fluence of the total tardiness becomes more relevant as objec-
tive function of the problem. Among TE and TI, the total earli-
ness seems to be a better estimation of the tardiness of the un-
scheduled jobs in these last iterations. In addition, by keeping
TE in the last iterations, we break the greedy behaviour of the
total tardiness. To deal with these issues and after some pre-
liminary tests, we propose weights for the three components
following the simple linear functions shown in Fig. 2.
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Weight of TT

o
o Weight of TE
‘v
2
o
£ 05
G
S Weight of Tl
o
>

0

2 n-1

Iteration k

Fig. 2. Values of the weights of total tardiness, total earliness, and total weighted
idle time, depending of the iteration k.

Hence, the genetic code, denoted as FI’,‘, of node I’ in iteration k
has the following expression:

k-1

Bk _ k. M= 2n—k—
14 T ~on

1 ¢ k—1+n
T A e
Vk={2,...n-1}, I'={1.....y} (7)

+a-TEf-

where a and b are parameters of the algorithm to balance the
contribution of TI, TE and TT. Implicitly, low values for a and b
indicate that the contribution of TI is higher than TE and TT. So,
in order to reduce the number of parameters of the algorithm,
only a and b (for TE and TT, respectively) are considered, and
the influence of TI is measured varying this parameter as TI was
normalized.

Regarding the index, denoted as L’]jl, employed to estimate
the contribution of the last job, uﬁl, when evaluating child node
v of node 55‘, we follow a similar procedure to the genetic code,
where the weighted idle time and the earliness time are cho-
sen as criteria. Note that the influence of the tardiness of the
last job is included in the earliness since a tardy job indicates
an earliness equals to 0. In addition, once several jobs are tardy,
they stay tardy in the following iterations and the influence
of other elements should be taken into account to choose the
job. Regarding these other elements, several studies (see e.g.
Fernandez-Viagas & Framinan, 2015c; Liu & Reeves, 2001) found
excellent results by incorporating an estimation of the contri-
bution of the unscheduled jobs. To deal with that, we add the
total tardiness of all jobs uk, Vv e 1,...,n -k, denoted by W.
Note that job u¥ is also included in W/ index of child node
v. By doing so, we reduce the computational effort of this in-
dex. Hence, index L’Ijl can be defined by Expression (8), where
c and e are parameters of the algorithm again to balance the

contributions of E’Jk , and WF. Similarly to F¥, after a prelim-
v’

inary test, we use a decreasing function for the weight of the
idle time, and an increasing one for Wl" (the tardiness of the
unscheduled jobs is closer to the real one in the last iterations
than in the first ones).

k _ k k e k
Ly =M=k=1) L+ e By + g W

Vik={2,....n=1}, I={1,...,y}, v={1,...,n—k} (8)
Then, each child node v obtained by node Sf is computed using
index G’ljl which adds both contributions:

G =F+Ik, Vk={2,...,n-1}, I={1,....y},
v={1,...,n—k} (9)

Node selection (Step 2.3). Among the y (n — k) child nodes in
iteration k, the best y ones are kept as the set of nodes of iter-
ation k + 1. More specifically, in iteration k, the y nodes with

the lowest values of the G’]jl indicator (Vv e {1,...,n—k},l e
{1,...,y}) are selected for the next iteration.

o Final evaluation (Step 3). The total tardiness of the nodes se-
lected in the last iteration, i.e. nodes S;“l(‘v’l e€l,...,y) is eval-

uated. The sequence yielding the minimal total tardiness is the
final sequence of the beam search algorithm.

3.2. Iterated-greedy-based algorithms, IA

The iterated greedy algorithm is a single-solution-based meta-
heuristic, originally proposed for flow-shop-type scheduling prob-
lems by Ruiz and Stiitzle (2007). Starting with an initial solution,
this metaheuristic iteratively perturbs a sequence and searches for
its local optimum. Then, the iterated greedy algorithm destructs
several jobs of a sequence in each iteration, and constructs them
following a greedy approach. More specifically, in a destruction
phase, d jobs are randomly removed from the iteration sequence,
denoted as ITi. Let us denote by IT", I1" := (7], ..., 7)), the se-
quence formed by the removed jobs and by II¢ the partial se-
quence of length n —d, formed by IT! without the removed jobs.
After that, in a construction phase, each job in II" is inserted in
the position of IT¢ yielding the lowest value of the objective func-
tion. I1¢ is the so obtained sequence. Finally, this metaheuristic
looks for the local optimum of the constructed sequence and per-
forms a basic simulated annealing phase. In this subsection we
propose eight simple Iterated Algorithms based on the iterated
greedy metaheuristic, denoted as IA, consisting on the follow-
ing same four phases which are repeated until a stopping crite-
rion is reached: destruction phase; construction phase; local search
phase; and a simple simulated annealing phase. As described ear-
lier, the destruction-construction phase plays an important role in
the efficiency of the metaheuristic. In order to take it into account,
in this paper we propose and compare the following eight different
procedures:

1. Random insertion (let us denote by IAg; the proposed algo-
rithm using this construction phase) This procedure replaces
the greedy insertion of the traditional iterated greedy by a ran-
dom one. More specifically, each removed job 7/, Vie1,...,d,
is randomly inserted in IT¢.

2. Greedy insertion (IAg;). This is the traditional construction
phase of the iterated greedy algorithm, i.e. each removed job
nl, Viel,....d, is inserted in the position of ¢ yielding the
lowest total tardiness.

3. Random general swap (IAggs). This procedure replaces the de-
struction and construction phase of the algorithm by perform-
ing d random exchanges between jobs, i.e., d jobs are ran-
domly chosen from IT' and exchanged with other jobs of this
sequence.

4. Greedy general swap (IAggs). In this procedure, a job is ran-
domly chosen from IT' and exchanged with each job of the se-
quence. Sequence I1 is replaced by the exchange yielding the
lowest total tardiness. The procedure is repeated d times for d
different jobs.

5. Random adjacent swap (IAgas). This procedure randomly
chooses a job and exchanges it with the next job of the se-
quence. The procedure is repeated d times.

4 Note that the iterated greedy algorithm is closely related to the iterated local
search and in fact, it could be considered as a special case of the iterated local
search. This latter algorithm begins with an initial solution and iteratively modi-
fies the current solution and looks for its local optimum. Therefore, assuming that
a special type of modification of a solution is to perform the destruction and con-
struction phase of the iterated greedy, both algorithms would be considered the
same metaheuristic. However, in order to maintain the coherence with previous
proposals in the literature, we also use the term “iterated-greedy-based algorithm”
in the notation of our proposals.
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6. Greedy insertion + Partial adjacent-swap-based local search
method (IAg as)- This procedure is based on Framinan and
Leisten (2008). Thereby, each job removed n], Vie {1,...,d} is
inserted in the position of I1? yielding the lowest total tardi-
ness (denoted as position b), as in the greedy insertion proce-
dure. After that, an adjacent pairwise exchange is performed for
the jobs between the last position of the partial sequence and
position b + 1.

7. Insertion-based Local search + Greedy insertion (IAys ). This
procedure adapts the procedure of destruction and construction
proposed by Dubois-Lacoste et al. (2017). The method performs
an insertion-based local search on the partial sequence I, i.e.
each job of the sequence is removed and inserted in the best
position. The procedure is repeated until there is no improve-
ment in a complete iteration. The best sequence found by the
algorithm replaces IT;. After that, the traditional construction
phase (i.e. greedy insertion) is applied.

8. Greedy insertion + Local search insertion(IAg jis). This proce-
dure is an adaptation of the method proposed by Pan and
Ruiz (2014) and Pan, Gao, Li, and Gao (2017). Similarly as
IAG|_aLs, each removed job 7], Vie {1,...,d} is inserted in the
position b of T1¢ yielding the lowest total tardiness. After that,
jobs in positions b —1 and b+ 1 are removed and reinserted in
the position yielding the lowest total tardiness.

After the destruction-construction procedure, a local optimum
of sequence TI1¢ is obtained in the local search phase. This phase
iteratively removes each job in sequence I1¢ and inserts it in the
position with the lowest vaue of the objective function. The phase
is stopped after a complete iteration without any improvement. Fi-
nally, the simulated annealing-like acceptance criterion proposed
by Karabulut (2016) is applied due to its excellent performance.
This simple criterion is a variation of the proposal of Ruiz and
Stiitzle (2007) for Fm|prmu|Cnax, Which has been successfully ap-
plied to other several objectives and/or scheduling problems (see
e.g. Fernandez-Viagas & Framinan, 2015a; 2015b; Ribas, Companys,
& Tort-Martorell, 2017). The criterion uses a constant Temperature
which depends on parameter T of the algorithm:

Y j-1 (LB, — d)
' n-10
where LB, .. is the lower bound of the makespan following the
procedure established by Taillard (1993). The pseudo-code of the
proposed metaheuristic is shown in Fig. 3. Note that BS is used
as the initial solution of the proposed iterated-greedy-based algo-
rithms.

Temperature =T (10)

4. Computational experience

In this section we compare the state-of-the-art algorithms
against our proposals. Prior to performing this computational eval-
uation, we establish the conditions adopted to achieve a fair com-
parison. Firstly, in Section 4.1 we present the sets of instances gen-
erated. Secondly, the measures to evaluate both the quality of the
solutions and the computational requirements of each algorithm
are shown in Section 4.2. Regarding our proposals, two full ex-
perimental parameter tunings are described in Section 4.3. Next,
in Section 4.4, the state-of-the-art algorithms, which are fully re-
implemented, are shown. We compare them against our proposals
by carrying out two different computational evaluations for heuris-
tics and metaheuristics, see Sections 4.5 and 4.6, respectively.

4.1. Sets of instances

In this paper, two benchmark testbeds, denoted as 8; and f,,
are generated for the experiments of our study. 81 is used for the

calibration of the parameters of the proposed algorithms. The com-
putational evaluations of both heuristics and metaheuristics are
carried out on benchmark f§,. By doing so, we avoid an over cal-
ibration of the parameters of our algorithms in the benchmark of
comparison.

e Benchmark f: This benchmark is generated by the procedure
described in Vallada and Ruiz (2010). It contains 108 different
sizes of the problem varying the parameters n, m, T and R.
Ten instances are generated for each combination of parame-
ters ne{50, 150, 250, 350}, m {10, 30, 50}, Te{0.2, 0.4, 0.6},
and Re{0.2, .0.6, 1.0}, i.e. a total of 1080 instances are gen-
erated in this benchmark. T and R are parameters to generate
different types of due dates for each size of the problem (see
Potts & Van Wassenhove, 1982). They generate the processing
times and the due dates with a uniform distribution [1, 99]
and [P-(1-T—R/2,P-(1-T+R/2], respectively, where P is
the lower bound for the makespan proposed in Taillard (1993).
Benchmark fS,: This benchmark is composed of the 540 in-
stances of Vallada et al. (2008). It contains 108 combinations of
parameters n < {50, 150, 250, 350}, m {10, 30, 50}, T<{0.2, 0.4,
0.6}, and R<{0.2, .0.6, 1.0}, with five instances for each combi-
nation. Processing times and due dates are generated following
the same distributions than in benchmark 8.

4.2. Performance indicators

In our study, two computational evaluations are carried out
to compare the most promising heuristics and metaheuristics. As
a result, 23 algorithms are tested. To conduct a fair comparison
among them, the algorithms are compared under the same condi-
tions. More specifically, the following aspects are considered:

» We use the same computer (an Intel Core i7-3770 with 3.4 GHz,
16GB RAM, and with Microsoft Windows 8.1 64 bit operating
system).

o We re-code each algorithm using the same programming lan-
guage (C# under Visual Studio 2013).

o We use the same computational skills, libraries and common
functions.

» We use the same stopping criteria for each metaheuristic.

In addition, each algorithm typically requires a different CPU
time and obtains a different solution. In order to compare both
the quality of the solutions and the computational efforts of the
implemented algorithms, the indicators for comparison have to be
established. On the one hand, heuristics are compared using the
Average Relative Deviation Index (denoted as ARDI1;, for heuristic
h) and the Average Relative Percentage computation Time (denoted
as ARPT, for heuristic h following the recommendation estab-
lished by Fernandez-Viagas and Framinan (2015c) and Fernandez-
Viagas et al. (2017) (see Eqgs. (11) and (12), respectively). On the
other hand, metaheuristics are only compared using the ARDI1, as
the same CPU times are used.

" RDI,
ARDI1), =) T

i=1

Yh=1,....H (11)

RPTn wh—1. . ...H (12)

I
ARPT, =1+ ;

i=1
Let I be the number of instances, and H be the number of con-
sidered heuristics. The Relative Deviation Index of heuristic h in
instance i, RDI1;,, and the Relative Percentage computation Time,
RPT1;;,, are defined by the following expressions, respectively:

OF,, — Best;

RDIly = —% ——1
ih = Worst; — Best;”

Vi=1,...,Lh=1,...,H (13)



64 V. Fernandez-Viagas et al./Expert Systems With Applications 94 (2018) 58-69

Procedure IAx (d,~,T)
//Initial solution

Il:= BS(v,a,b,c,e);
//Best solution

It .= 1II;

IT° = 1II;

//Destruction phase

//Construction phase

//Local search phase
I := LS(II°);

if > 7;(I") < ¥ 7;(1I) then

| =11

end

end

end

//Simulated annealing criterion

else if random < exp{—(Cyraz(7') —

while stopping criterion is not reached do

[1¢ := randomly remove d jobs from II? and insert it in II";

I1¢ := Construction Phase(I1 11");

I =11

if S 7;(11Y) < S T;(11°) then
| I =11

end

Chnaz (1)) /Temperature} then

Fig. 3. Proposed iterated-greedy-based algorithms.

Ty — ACT;

RPTin = —4cT
1

, Vi=1,...,Lh=1,...,H (14)
where Best; and Worst; are the best and worst known solution for
one run in instance i°, respectively. Let T and OF; be the CPU
time and the objective function value obtained by heuristic h in
iteration i, respectively. Finally, ACT; is the average CPU time re-
quired by all compared algorithms in iteration i, which is defined

5 These values are presented as on-line materials, which are taken from http:
/[soa.iti.es/problem-instances.

by:

Tin

H
ACE:Z”:Tlv Vi=1,...1 (15)

Regarding the experimental parameter tuning on benchmark
B1, we apply a different indicator of the quality of the solution.
More specifically, we used ARDI2, which is a small modification of
ARDI1:

1
ARDIZh:Z%, Yh=1,...,H (16)
i=1
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Table 1
Average results of RDI2 for each tested parameter.

65

Parameter a Parameter b Parameter ¢

Parameter e Parameter d Parameter y

Level  ARDI2 Level  ARDI2 Level  ARDI2 Level  ARDI2 Level  ARDI2 Level  ARDI2
0.00 27.68 0.00 27.59 0.25 43.23 2 30.98 4 36.75 2 54.36
0.25 28.37 0.15 26.22 0.50 30.65 3 29.17 5 39.84 n/10 3222
0.50 28.27 0.30 34.29 0.75 26.08 4 28.61 6 42.82 n/m 42.85
0.75 29.33 1.00 2493 5 28.72 10 38.50
1.00 30.70 1.25 24.67 15 35.55
1.25 3214 1.50 27.05 n 35.33

Table 2

ARDI1;, for each constructive heuristics grouped by the number of jobs and machines in each factory. Last three files represent the average results of ARDI1y,, ACT;,, and ARPT,

for constructive heuristics.

nx m NEHedd TB;,  TBp  CHI1 CH2 CH3 CH4 CH5 CH6  BS(2) BS(5) BS(10) BS(15) BS(n/10)  BS(nfm)  BS(n)
50 x 10 1746 1453 1372 626 772 530 535 588 546 1529 1120 1070 1022 1120 11.20 16.52
50 x 30 19.79 1868 1861 1112 1443 984 1017 1051 1040 2426 1911 1590 1595 1911 3013 25.09
50 x 50 1817 1797 1757 1094 1434 1066 1099 1061 1075 2296 1847 1614 1578 1847 29.15 26.86
150 x 10 13.80 1069 991 367 414 286 287  3.04 28 889 617 522 5.58 5.58 5.58 8.96
150 x 30  20.70 1702 1581 821 1035 751 720  8.04 715 1893 1123 922 8.50 8.50 11.23 12.55
150 x 50  22.04 1964 1857 9.62 1257 902 883 915 875 2393 1590 1256 1070  10.70 19.74 16.98
250 x 10 10.06 726 670 223 197 128 108 1.81 137 651 481 41 414 414 414 7.33
250 x 30 17.81 1329 1162 472 610 438 405 437 417 1333 802 543 4.48 3.75 6.76 6.80
250 x 50  20.21 1590 1396 620 876 584 567 595 602 1928 1176 868 6.97 5.36 11.76 8.86
350 x 10 9.01 665 614 198 112 080 067 106 069 481 276 245 2.31 2.49 2.49 491
350 x 30 1574 1140 984 334 395 265 238  3.09 249 1026 507 327 2.52 1.58 3.04 3.82
350 x 50 1738 1311 1110 3.99 578 350 353  3.83 3.61 1568 952 627 5.43 3.18 8.31 484
ARDI1,, 16.85 13.84 1280 6.02 760 530 523 561 5.31 1534 1034 833 771 7.84 11.96 11.96
ACT,, 1.56 153 156 11994 1001 6674 6378 13959 8835 005 012 026 0.40 0.84 0.27 17.16
ARPT}, 0.13 013 013 293 041 213 207 363 2.51 0.01 0.03 006 0.10 0.08 0.04 1.60

y only perturbs its objective function value, i.e. we may now mea-

OF;, — Best; . sure the influence of y in the quality of the solutions of the meta-

RDI2; = Worst, — Best.’ Vi=1....Lh=1...H (17) heuristics without altering its CPU time. In this calibration test, we

1 1

where Best; and Worst,./ are the best and worst total tardiness
among the algorithms tested in the calibration, respectively.

4.3. Experimental parameter tuning

In this subsection, two full factorial design of experiments
are presented to determine the best combinations of parameters
for the proposed algorithms. Both experiments are evaluated on
benchmark B;. Regarding BS, firstly four parameters (a, b, ¢ and
e) have been proposed to balance the contributions in the evalua-
tion of partial sequences. In addition, parameter y (beam width)
directly influences its complexity, O(max{y -n%*.m, y?.n?}), and
consequently the CPU time of the proposed beam search. For each
value of y, there is a trade-off between the quality of solutions
and the computational effort. Thus, this parameter is removed of
this experimental parameter tuning (see e.g. Fernandez-Viagas and
Framinan, 2015c; Fernandez-Viagas, Leisten, et al., 2016b; Liu and
Reeves, 2001 for similar approaches) to avoid a calibration of each
parameter y, and its value is set to 15. So the following levels of
the parameters are tested:

« ae{0, 025, 0.5, 0.75, 1, 1.25}
« be{0, 0.15, 0.3}

e c{0.25, 0.5, 0.75, 1, 1.25, 1.5}
e ec{2 3,4, 5)

Regarding the proposed iterated-greedy-based algorithms, they
use three parameters: d, y, and T. Firstly, we use in this test d € {4,
5, 6} for the number of destructed jobs. Regarding the parameter
y, the CPU time of IA; depends on its stopping criterion instead of
y, since BS is applied as its initial solution. So, different values of

use the following levels, y €{2, n/10, n/m, 10, 15, n}. For parameter
T, we use the best value found by Karabulut (2016), i.e. T = 1.0,
since its influence has not been found to be statistically significant
in several previous studies (see e.g. Fernandez-Viagas & Framinan,
2015a; Pan & Ruiz, 2014). The calibration test is carried out for [Ag,
and using n-(m/2)-60 ms.

In this paper, we carry out two non-parametric Kruskal-Wallis
analyses to determine the statistical differences between the lev-
els of the parameters. Note that the normality and homoscedastic-
ity assumptions were not satisfied. In addition, the indicator ARDI2
has been used to evaluate the quality of the solutions. The results
show that there are statistically significant differences between the
level of each parameter (a, b, ¢, e, d, and y), since each p-value
obtained in the tests is .000. The best combination of parame-
ters has been found for a=0, b=0.15, c=1.25, e=4, d =4, and
y =n/10. These values of the parameters are used in the next sec-
tions. The average results for each level of the parameters, in terms
of ARDI2, are shown in Table 1.

4.4. Implemented algorithms

The proposed algorithms, BS and IA;, are compared against the
state-of-the-art algorithms in two different computational evalua-
tions. Following the discussion in Section 2, the following heuris-
tics and metaheuristics are implemented in this study:

o Heuristics
- NEHedd proposed by Kim (1993).
- TBy1q and TBg, proposed by Fernandez-Viagas and Frami-
nan (2015d).
- CH; Vi=1,...,6 proposed by Li et al. (2015).
- The BS(y) algorithms proposed in Section 3.1, with y {2,
5, n/10, 15, n/m, n}.
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«NEHedd

xBS(2)
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BS(n)
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. BS(5)
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ARDI
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(15)
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0.5 5
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Fig. 4. ARDI1 versus ARPT for the constructive heuristics.

¢ Metaheuristics
- The hybrid algorithm HA proposed by Framinan and Leis-
ten (2008).
- The genetic algorithm GAPR proposed by Vallada and
Ruiz (2010).

- The evolutionary algorithm EA proposed by Cura (2015).
The trajectory scheduling method TSMg; proposed by
Li et al. (2015).

The iterated greedy
Karabulut (2016).

The IA; (with i € {RI, GI, RGS, GGS, RAS, GI_ALS, ILS_GI, GI_ILS})
algorithms proposed in Section 3.2.

algorithm KIG proposed by

Note that the speed up procedure, proposed by Framinan and
Leisten (2008), is applied in each insertion and exchange phase of
all the implemented algorithms.

4.5. Heuristics

The computational results of the constructive heuristics are
shown in Table 2, and in Fig. 4. Table 2 shows the results of the
ARDI1y, for each heuristic h grouped by n and m. The average re-
sults in terms of ACT,, ARPTy,, and ARDI1;, are shown in the last
three rows. The dominance of each heuristic can be graphically
seen in Fig. 4 (X-axis and Y-axis indicate the ARPT; and ARDI1,
of each heuristic h).

The results show that the BS(2), BS(5), BS(10), BS(n/10), and
BS(15) algorithms are efficient for the problem (see red line in
Fig. 4). To statistically support it (i.e. to discard that they are not
statistically better), we perform a non-parametric Wilcoxon signed-
rank test for each one of the following hypotheses: BS(5)=BS(n/m);
BS(15)=NEHedd; BS(15)=TBr,; and BS(15)=TBr;, where each effi-
cient beam search algorithm has been compared against the clos-
est heuristic. The p-value found for each one was .000 reject-

ing each one of the previous hypotheses. In addition, several of
the proposed beam search algorithms, BS(5), BS(10), BS(n/10), and
BS(15), clearly outperform the NEHedd and TB;r; heuristics both in
terms of ARDI1 and ARPT (or ACT). Note that, as stated in Section 1,
both heuristics are the key heuristics for the problem under con-
sideration (the NEHedd heuristic is used as initial solution for most
of the algorithms developed for the problem). The excellent perfor-
mance of the proposed beam search heuristic probably lies in the
reduction of the complexity of the evaluation. The complexity of
evaluating a full sequence in the Fm|prmu|XT; problem is O(nm),
while in the proposed algorithm it is only O(m) since the jobs are
inserted, one by one, at the end of a partial sequence. By reducing
the complexity of this evaluation, the algorithm can evaluate much
more sequences in the same CPU time. Regarding the six proposals
by Li et al. (2015), which also use the NEHedd as initial solution,
they perform better than each other one in terms of quality of the
solution (ARDI1) but requiring much higher CPU times.

4.6. Metaheuristics

The re-coded algorithms (KIG, TSMg3, EA, GAPR, and HA) and
our proposals (IAR[, [Ag1, 1ARgs, 1Acgs, 1ARras, IAGLALS’ IAILS_GI’ and
IAc 1s) have been run under three different stopping criteria, i.e.
time equals to 60-n-m, 90-n-m, and 120 -n-m. The computational
results for these three stopping criteria are shown, grouped by
the different levels of each parameter, in Tables 3-5, respectively.
These results show the good performance of GAPR against the HA
metaheuristic (see hypothesis H; in Table 6). Regarding the com-
parison between the last metaheuristics developed for the problem
(i.e. KIG, TSMg3, and EA), the KIG metaheuristic clearly outperforms
the other two for the three stopping criteria (hypothesis H;). Re-
garding our proposals, the following conclusions can be obtained:
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Table 3
Average RDI1y, of each metaheuristic for stopping criterion 60-n-m ms grouped by the values of the parameters.
Parameter  KIG TSMg;  EA GAPR HA AR 1Ag 1Agcs 1Accs 1ARas Acias  TAusa  Agins
T 0.2 0.27 2.53 213 1.69 252 032 0.49 0.59 2.47 0.27 0.43 0.25 0.37
T 0.4 -0.08 439 442  2.87 575 0.02 0.10 0.56 3.08 -043  -0.01 -0.23 -0.24
T 0.6 0.13 6.38 507 3.80 798 -041 -0.62  0.09 2.02 -1.04 -0.70 -0.65 -0.87
R 0.2 0.29 5.94 453 347 791 0.02 -0.16 0.47 2.40 -0.60 -0.28 -0.37 —0.40
R 0.6 -0.05 419 380 267 517 -0.14 -0.13 032 2.63 -046  -0.17 -0.25 -0.37
R 1.0 0.07 317 329 222 3.16 0.05 0.26 0.45 2.53 -0.13 0.16 -0.02 0.04
n 50 0.75 3.97 385 547 320 112 115 1.77 7.81 0.81 1.06 0.83 0.75
n 150 0.43 5.36 547 281 594 119 1.20 1.70 3.43 0.53 1.02 0.90 0.82
n 250 -0.26  4.56 369 143 608 -068 -068 -029 014 -1.01 -0.77 -0.83 -0.80
n 350 -0.50 3.84 249 143 645 -172 -170 -1.53 -128 -1.93 -1.69 -175 -175
m 10 -0.17 2.08 094 202 355 026 0.22 0.49 1.81 0.07 0.23 0.23 0.12
m 30 0.05 5.02 433 3.07 5.91 -026 -020 0.21 2.72 -063 -033 -0.50 -0.52
m 50 0.43 6.19 636 327 679 -007 -004 053 3.04 -064 -0.19 -0.37 -0.34
Average 0.10 443 388 279 542 -0.02 -0.01 0.41 2.52 -040  -0.09 -0.21 -0.25
Table 4
Average RDI1;, of each metaheuristic for stopping criterion 90-n-m ms grouped by the values of the parameters.
Parameter  KIG TSMg;  EA GAPR HA 1Ap 1Aci IARgs Accs  Apas Acias  Ausa Acius
T 0.2 0.06 2.32 200 159 223 016 0.34 0.46 247 0.11 0.28 0.07 0.20
T 0.4 -0.58 4.06 420 258 524 -024 -015 0.39 3.07 -0.70 -030 -0.51 —-0.50
T 0.6 -039 6.02 476  3.40 748 -0.64 -092 -0.06 2.01 -131 -0.98 -0.95 -112
R 0.2 -028 553 425 312 7.31 -023 -043 031 2.40 -0.88 -0.56 -0.62 -0.71
R 0.6 -047  3.90 355 240 472 -034 -035 0.19 2.63 -069 -039 -0.54 -0.56
R 100 -016 296 3.16 2.05 293  -015 0.05 0.30 2.52 -033  -0.04 -0.23 -0.15
n 50 0.52 3.67 369 541 285 0.90 091 1.59 7.81 0.65 0.80 0.58 0.62
n 150 0.06 4.85 532 277 550 0.87 0.83 148 3.43 0.18 0.70 0.47 0.44
n 250 -0.73 420 339 094 544 -086 -089 -040 0.13 -1.27 -0.97 —-1.01 -1.03
n 350 -1.06  3.81 222 097 6.16 -1.87 -1.82 -1.61 -130 -2.09 -185 -1.90 -1.94
m 10 -033 195 084 183 329 014 0.09 0.42 179 -007 011 0.14 —0.03
m 30 -041 4.68 405 2.80 544 -048 -044 0.03 2.72 -0.88  -0.57 —-0.82 -0.78
m 50 -0.17 5.76 6.07 294 622 -038 -038 033 3.04 -095 -053 -0.71 —0.62
Average -030 413 365 252 499 -024 -024 026 2.52 -063 -033 -0.47 -0.47
Table 5
Average RDI1,, of each metaheuristic h for stopping criterion 120-n-m ms grouped by the values of the parameters.
Parameter  KIG TSMg;  EA GAPR HA 1Ap 1Agi 1Arcs lAccs  Agas Aciais  Ausa Acius
T 0.2 -0.08 214 1.92 1.52 2.02 005 0.25 0.38 2.47 0.00 0.19 -0.01 0.10
T 0.4 -0.89 3.88 411 2.42 499 -039 -034 024 3.06 -0.84 -0.46 —-0.65 -0.67
T 0.6 -0.72 572 454  3.20 720 -080 -1.09 -0.21 2.01 -1.52 -1.19 -111 -1.30
R 0.2 -062 525 4.07  2.89 697 -039 -062 0.20 2.39 -1.07 -0.75 -0.75 —-0.88
R 0.6 -068 371 340 227 450 -047 -047 0.02 2.62 -0.86 —-0.55 —-0.67 -0.71
R 100 -038 279 3.10 1.98 274 -028 -0.09 019 2.52 -044  -017 -0.35 -0.27
n 50 0.40 3.40 359 541 269 079 0.76 142 7.81 0.54 0.66 0.47 0.54
n 150 -020 4.48 525 277 528 0.60 0.60 132 343 -0.05 048 0.26 0.20
n 250 -1.04  3.99 326 0.69 5.16 -097 -104 -052 013 -144 -113 -114 -1.18
n 350 -141 3.79 2.00 0.66 582 -194 -1.89 -1.67 -1.31 =221 -1.97 -1.96 -2.04
m 10 -041 1.85 0.77 1.76 313 0.09 0.00 0.33 1.78 -0.15 0.02 0.07 -0.11
m 30 -0.72 442 3.88 267 517 -0.67 -0.61 -0.09 272 -1.06  -0.78 -0.98 -0.93
m 50 -0.55 547 592 271 5.91 -0.56 -0.57 017 3.03 -1.16 -0.70 -0.87 -0.82
Average -0.56 3.91 352 238 474 -038 -039 014 2.51 -0.79 -049 -0.59 —0.62

1. The random adjacent swap is the best perturbation among our
eight proposals, for all time limits tested (hypothesis H3).

. In addition, the IAgas is efficient and outperforms each other
metaheuristic for the problem (hypothesis Hy).

. The iterated algorithm based on greedy general swap (I1Aggs)
performs worst than each other perturbation method (hypoth-
esis Hs).

. Similarly as in the Fm|prmu|Cnax (Dubois-Lacoste et al., 2017),
the greedy insertion plus local search insertion(IAjs i) outper-
forms the greedy insertion (hypothesis Hg).

. The random and greedy insertions (IAg; and IAg;, respectively)
perform very similar (hypothesis Hy).

To justify each previous conclusion, the following hypothe-
ses are checked for statistical evidence: GAPR=HA (H;);KIG=EA
(H2); 1Ages=IAns a1 (H3);lARas=KIG (Hg); I[Aras=IAcins (Hs);

IAci iis=IAci (Hg); and IAg=IAg; (Hy). Results are shown in
Table 6 for stopping criterion 60-n-m (the same statistical evi-
dences have been found for the other parameters). The last two
columns show the results obtained using Holm’s procedure (see
e.g. Pan, Tasgetiren, and Liang, 2008 and Fernandez-Viagas and
Framinan, 2015b for related studies). No statistical evidence has
been found only for the hypothesis that the random insertion out-
performs the greedy insertion. In addition, it is worth highlight-
ing that the excellent performance of IAgas probably lies in per-
forming several small variations in the sequence to decrease the
number of “bad” solutions evaluated. The perturbation phase of
this iterated algorithm is performed over a sequence which is a
local optimum, therefore this sequence is presumably “good” and
introducing a high number of changes in this sequence seems to
produce, in many cases, sequences that are worse than the ini-
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Table 6
Holm’s procedure.

Wilcoxon

o/(7—i+1)  Holm’s procedure

H; Hypothesis p-value

H;  GAPR=HA .000 R
H,  KIG=EA .000 R
H;  IApas=IAgius  .000 R
Hs  1Aras=KIG .000 R
Hs  IAccs=IAgcs .000

He  1Aus ci=IAq .000

H;  1Ap=lAq 939

0.0071 R
0.0083 R
0.0100 R
0.0125 R
0.0167
0.0250
0.0500

tial, but that have to computed, thus wasting CPU effort. Similar
results have been found for example both in Rad, Ruiz, and Boroo-
jerdian (2009) and Fernandez-Viagas and Framinan (2015d), which
could lead to similar conclusions.

5. Conclusions

In this paper we have proposed two different sets of algorithms
to solve the permutation flow shop scheduling problem to min-
imise the total tardiness. Firstly, we have proposed a set of beam-
search-based heuristics varying the size of their population. These
are fast heuristics that construct solutions by adding jobs at the
end of several partial sequences constructed in parallel. In addi-
tion, this set uses properties of the problem both to estimate the
performance of each partial sequence and to be able to compare
sequences with different jobs. Secondly, we have proposed sev-
eral simple iterated-greedy-based algorithms with several types of
destruction-construction phases. The methods developed to per-
turb the solutions are based on insertion, general swap, adjacent
swap, and partial local searches.

Our proposals have been compared with the state-of-the-art al-
gorithms of the problem under study in a well-known benchmark
testbed. More specifically, a total of 14 algorithms have been reim-
plemented and compared with our proposals (a set of beam search
algorithms varying the size of the population, and eight different
iterated algorithms). Regarding constructive heuristics, the results
show that BS(15) clearly outperforms the NEHedd in terms of qual-
ity of solutions and computational effort. In addition, the proposed
heuristics BS(2), BS(5), BS(10), BS(n/10), and BS(15) are efficient
heuristics for the problem. Regarding the computational evaluation
of metaheuristics, the iterated algorithm with a simple random
adjacent swap (IAgas) clearly outperforms the other seven simple
and complex perturbation methods of the iterated algorithm, and
statistically outperforms each other existing metaheuristic for the
problem under study.

Due to the excellent performance of the original iterated greedy
in different scheduling problems, it is noteworthy to mention that
the conclusions obtained by applying the simple random adjacent
swap, such as the destruction-construction phase of the proposed
iterated algorithm, could probably be extended for future iterated-
greedy-based algorithms developed for either the problem under
consideration, or for related scheduling problems.
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