
JMLR: Workshop and Conference Proceedings 1:1–10, 2016 ICML 2016 AutoML Workshop

Effect of Incomplete Meta-dataset on Average Ranking
Method

Salisu Mamman Abdulrahman salisu.abdul@gmail.com
LIAAD - INESC TEC/Faculdade de Ciências da Universidade do Porto

Pavel Brazdil pbrazdil@inescporto.pt

LIAAD - INESC TEC/Faculdade de Economia, Universidade do Porto

Abstract

One of the simplest metalearning methods is the average ranking method. This method uses
metadata in the form of test results of a given set of algorithms on a given set of datasets
and calculates an average rank for each algorithm. The ranks are used to construct the
average ranking. We investigate the problem of how the process of generating the average
ranking is affected by incomplete metadata involving fewer test results. This is relevant,
as such situations are often encountered in practice. In this paper we describe a relatively
simple average ranking method that is capable of dealing with incomplete metadata. Our
results show that the proposed method is relatively robust to omissions in the test results.
This finding could be of use in a future design of experiments. As the incomplete metadata
does not affect the final results much, we can simply conduct fewer tests and thus save
computation time.

Keywords: Average Ranking, Aggregation of Rankings, Incomplete Metadata

1. Introduction

A large number of data mining algorithms exist, rooted in the fields of machine learning,
statistics, pattern recognition and artificial intelligence. The task to recommend the most
suitable algorithm(s) has thus become rather challenging. The algorithm selection problem,
originally described by Rice (1976), has attracted a great deal of attention, as it endeavours
to select and apply the best or near best algorithm(s) for a given task (Brazdil et al. (2008);
Smith-Miles (2008)). We address the problem of robustness of one particular version of
an average ranking method that uses incomplete rankings as input. These arise if we
have incomplete test results in the meta-dataset. We have investigated how much the
performance degrades in such circumstances.

The remainder of this paper is organized as follows. In the next section we present an
overview of the existing work in related areas. Section 3 provides details about the proposed
aggregation method for incomplete metadata, the experimental results and future work.

2. Related Work

In this paper we are addressing a particular case of the algorithm selection problem, ori-
ented towards the selection of classification algorithms. Various researchers addressed this
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problem over the last 25 years. One approach to algorithm selection/recommendation relies
on metalearning. The simplest method uses just performance results on different datasets
in the form of rankings. Some commonly used measures of performance are accuracy, AUC
or A3R that combines accuracy and runtime Abdulrahman and Brazdil (2014).

The rankings are then aggregated to obtain a single aggregated ranking. The aggregated
ranking can be used as a simple model to identify the top algorithms to be used. This
strategy is sometimes referred to as the Top-N strategy (Brazdil et al. (2008)).

A more advanced approach often considered as the classical metalearning approach uses,
in addition to performance results, a set of measures that characterize datasets (Pfahringer
et al. (2000); Brazdil et al. (2008); Smith-Miles (2008)). Other approaches exploit estimates
of performance based on past tests in so-called active testing method for algorithm selection
Leite et al. (2012). Hutter et al. (2011) used so-called surrogate models to suggest the next
test to carry out in the hyper-parameter optimization task.

Aggregation of complete rankings is a simple matter. Normally it just involves calcu-
lating the average rank for all items in the ranking (Lin, 2010). Complete rankings are
those in which k items are ranked N times and no value in this set is missing. Incomplete
rankings arise when only some ranks are known in some of the rankings. These arise quite
often in practice. Many diverse methods exist for the aggregation of incomplete rankings.
According to Lin (2010), methods applicable to long lists can be divided into three cate-
gories: Heuristic algorithms, Markov chain methods and stochastic optimization methods.
The last category includes, for instance, the Cross Entropy Monte Carlo, CEMC method.

Some of the approaches require that the elements that do not appear in list Li of k
elements be attributed a concrete rank (e.g. k + 1). This does not seem to be correct. We
should not be forced to assume that some information exists, if in fact we have none. We
have considered using the R package RankAggreg (Pihur et al. (2014)), but unfortunately
we would have to attribute a concrete rank (e.g. k + 1) to all missing elements. We have
therefore developed a simple heuristic method based on Borda’s method described in Lin
(2010).

As Lin (2010) pointed out simple methods often compare quite favourably to other more
complex approaches.

3. Effect of Incomplete Meta-Data on Average Ranking Method

Our aim is to investigate the issue of how the generation of the average ranking is affected
by incomplete test results in the meta-data available. Although other measures, such as
AUC, could have been used instead, here we focus on the ranking obtained on the basis of
a combined measure of accuracy and runtime (Abdulrahman and Brazdil (2014)):
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on dataset di, where aref represents a given reference algorithm. Similarly, T di
aj and T di

aref
represent the runtime of the algorithms, in seconds. To trade off the importance of runtime
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and accuracy, A3R includes the N th root parameter. This is motivated by the observation
that runtime vary much more than accuracies. It is not uncommon that one particular
algorithm is three orders of magnitude slower (or faster) than another one. Obviously, we
do not want the time ratios to completely dominate the equation. If we take the N th root
of the runtime, we will get a number that goes to 1 in the limit.

We wish to see how robust the method is to omissions in the meta-data. This issue
is relevant because meta-data gathered by researchers are very often incomplete. Here we
consider two different ways in which the meta-data can be incomplete: First, the test results
on some datasets may be completely missing. Second, there may be a certain proportion of
omissions in the test results of some algorithms on each dataset.

The expectation is that the performance of the average ranking method would degrade
when less information is available. However, an interesting question is how grave the degra-
dation is. The answer to this issue is not straightforward, as it depends greatly on how
diverse the datasets are and how this affects the rankings of algorithms. If the rankings are
very similar, then we expect that the omissions would not make much difference. So the
issue of the effects of omissions needs to be relativized. To do this we will investigate the
following issues:

• Effects of missing test results on X% of datasets (alternative MTD);

• Effects of missing X% of test results of algorithms on each dataset (alternative MTA).

If the performance drop of alternative MTA were not too different from the drop of alter-
native MTD, then we could conclude that X% of omissions is not unduly degrading the
performance and hence the method of average ranking is relatively robust. Each of these
alternatives is discussed in more detail below.

Missing all test results on some datasets (alternative MTD): This strategy involves
randomly omitting all test results on a given proportion of datasets from our meta-dataset.
An example of this scenario is depicted in Table 1. In this example the test results on
datasets D2 and D5 are completely missing. The aim is to show how much the average
ranking degrades due to these missing results.

Table 1: Missing test results on a certain percentage of datasets (MTD)

Algorithms D1 D2 D3 D4 D5 D6

a1 0.85 0.77 0.98 0.82

a2 0.95 0.67 0.68 0.72

a3 0.63 0.55 0.89 0.46

a4 0.45 0.34 0.58 0.63

a5 0.78 0.61 0.34 0.97

a6 0.67 0.70 0.89 0.22

Missing some algorithm test results on each dataset (alternative MTA): Here the aim
is to drop a certain proportion of test results on each dataset. The omissions are simply
distributed uniformly across all datasets. That is, the probability that the test result of
algorithm ai is missing is the same irrespective of which algorithm is chosen. An example of
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this scenario is depicted in Table 2. The proportion of test results on datasets/algorithms

Table 2: Missing test results on a certain percentage of algorithms (MTA)

Algorithms D1 D2 D3 D4 D5 D6

a1 0.85 0.77 0.98 0.82

a2 055 0.67 0.68 0.66

a3 0.63 0.55 0.89 0.46

a4 0.45 0.52 0.34 0.44 0.63

a5 0.78 0.87 0.61 0.34 0.42

a6 0.99 0.89 0.22

omitted is a parameter of the method. Here we use the values shown in Table 3. The meta-
data used in this study is described further in Section 3.2. This dataset was used to obtain a
new one in which the test results of some datasets chosen at random, would be omitted. The
resulting dataset was used to construct the average ranking. Each ranking was then used
to construct a loss-time curve described in Section 3.2. The whole process was repeated
10 times. This way we would obtain 10 loss-time curves, which would be aggregated into a
single loss-time curve. Our aim is to upgrade the average ranking method to be able to deal
with incomplete rankings. The enhanced method (AR-MTA-H) is described in the next
section. It can be characterized as a heuristic method of aggregation of incomplete rankings
that uses weights of ranks. Later it is compared to the classical approach (AR-MTA-B),
that serves as a baseline here. This method is based on the original Borda method described
by Lin (2010) and is commonly used by many researchers.

Table 3: Percentages of omissions and the numbers of datasets and algorithms used

Omissions % 0 5 10 20 50 90 95

No of datasets used in MTD 38 36 34 30 19 4 2

No of tests per dataset in MTA 53 50 48 43 26 5 3

3.1. Aggregation Method for Incomplete Rankings (AR-MTA-H)

Before describing the method, let us consider a motivating example (see Table 4), illustrating
why we cannot simply use the usual average ranking method (Lin (2010)), often used in
comparative studies in machine learning literature. Let us compare the rankings R1 (Table
4a) and R2 (Table 4b). We note that algorithm a2 is ranked 4th in ranking R1, but has
rank 1 in ranking R2. If we used the usual method, the final ranking of a2 would be the
mean of the two ranks, i.e. (4+1)/2=2.5. This seems intuitively wrong, as the information
in ranking R2 is incomplete. If we carry out just one test and obtain ranking R2 as a result,
this information is obviously inferior to ranking that include results of more test(e.g R1)
leading to ranking R1. This suggests that the number of tests should be taken into account
to set the weight of the individual elements of the ranking.
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Table 4: An example of two rankings R1 and R2 and the aggregated ranking RA

(a)

R1 Rank

a1 1

a3 2

a4 3

a2 4

a6 5

a5 6

(b)

R2 Rank

a2 1

a1 2

(c)

RA Rank Weight

a1 1.67 1.2

a3 2 1

a4 3 1

a2 3.5 1.2

a6 5 1

a5 6 1

In our method the weight is calculated using the expression (N−1)/(Nmax−1), where N
represents the number of filled in elements in the ranking and Nmax the maximum number of
elements that could be filled in. So, for instance, in the ranking R1, N = 6 and Nmax = 6.
Therefore, the weight of each element in the ranking is 5/5 = 1. We note that N − 1
(i.e. 5), represents the number of non-transitive relations in the ranking, namely a1 > a3,
a3 > a4, .. , a6 > a5. The transitive relations are not considered. Here ai > aj is used to
indicate that ai is preferred to aj .

Let us consider the incomplete ranking R2. Suppose we know a priori that the ranking
could include 6 elements and so Nmax = 6, as in the previous case. Then the weight of each
element will be (N − 1)/(Nmax − 1) = 1/5 = 0.2. The notion of weight captures the fact
that ranking R2 provides less information than ranking R1. We need this concept in the
process of calculating the average ranking.

Our upgraded version of the aggregation method for incomplete rankings involves ini-
tializing the average ranking RA with the first ranking. Then in each subsequent step,
another ranking is read and aggregated with the average ranking, producing an updated
average ranking. The aggregation iterates over the elements in the ranking. If the element
appears in both the aggregated ranking and the new ranking, its rank is recalculated as a
weighted average of the two ranks:

rAi := rAi ∗ wA
i /(wA

i + wj
i ) + rji ∗ w

j
i /(wA

i + wj
i ) (2)

where rAi represents the rank of element i in the aggregated ranking and rji the rank of

element i in the ranking j and wA
i and wj

i represent the corresponding weights. The weight
is updated as follows:

wA
i := wA

i + wj
i (3)

If the element appears in the aggregated ranking, but not in the new ranking, both the rank
and the weight are kept unchanged.

Suppose the aim is to aggregate the rankings R1 and R2 shown before. The new rank
of a2 will be rA2 = 4 * 1/1.2 + 1*0.2/1.2 = 3.5. The weight will be wA

2 = 1 + 0.2 = 1.2.
The final aggregated ranking of rankings R1 and R2 is shown in Table 4c.

5



Abdulrahman Brazdil

3.2. The Effects of Omissions in the Meta-data

Meta dataset used: The data used in the experiments involves the meta-dataset con-
structed from evaluation results retrieved from OpenML (Vanschoren et al. (2014)), a col-
laborative science platform for machine learning. This dataset contains the results of 53
parameterized classification algorithms from the Weka workbench (Hall et al. (2009)) on
39 datasets1. In leave-one-out cross-validation, 38 datasets are used to generate the model
(e.g. average ranking), while the dataset left out is used for evaluation.

Using leave-one-out cross-validation helps to gain confidence that the average ranking
can be effectively transferred to new datasets and produce satisfactory outcomes.

Characterization of the meta-dataset: We were interested to analyze different
rankings of classification algorithms on different datasets used in this work and, in particular,
how these differ for different pairs of datasets. If two datasets are very similar, the algorithm
rankings will also be similar and consequently the correlation coefficient will be near 1. On
the other hand, if the two datasets are quite different, the correlation will be low. In
the extreme case, the correlation coefficient will be -1 (i.e. one ranking is the inverse
of the other). The distribution of pairwise correlation coefficients provides an estimate
of how difficult the meta-learning task is. Fig.1 shows a histogram of correlation values.
The histogram is accompanied by the expected value, standard deviation and coefficient
of variation calculated as the ratio of standard deviation to the expected value (mean)
(Witten and Frank (2005)). These measures are shown in Table 5.
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Figure 1: Spearman correlation coefficient between rankings of pairs of datasets.

Evaluation using loss-time curves: Our aim was to investigate how certain omis-
sions in the meta-datasets affect the performance. The results are presented in the form of
loss-time curves (van Rijn et al. (2015)) which show how the performance loss depends on

1. Full details: http://www.openml.org/project/tag/ActiveTestingSamples/u/1
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Table 5: Measures characterizing the histogram of correlations in Fig. 1

Measure % Expected Value Standard Deviation Coefficient of Variation

Value 0.5134 0.2663 51.86%

time. The loss is calculated as the difference between the performance of the best algorithm
identified using the ranking to the ideal choice. Each loss-time curve can be characterized
by a number representing the mean loss in a given interval. This characteristic is similar
to AUC, but there is an important difference. When talking about AUCs, the values fall
in the 0-1 interval. Our loss-time curves span the interval Tmin - Tmax which is specified
by the user. Typically the user only worries about run times when they exceed a minimum
value. In the experiments here we have set Tmin to 10 seconds. The value of Tmax was set
to 104 seconds, i.e. about 2.78 hours.

Variants the of ranking methods used: Ranking methods use a particular perfor-
mance measure to construct an ordering of algorithms. Some commonly used measures of
performance are accuracy, AUC or A3R that combines accuracy and runtime (Abdulrah-
man and Brazdil, 2014). In this study here we have opted for A3R, because it leads to good
results when loss time curves are used in the evaluation. All the ranking variants used in
the experiments described here use A3R.

Results: Table 6 presents the results for the alternatives AR-MTD, AR-MTA-H and
AR-MTA-B in terms of mean interval loss (MIL). All loss-time curves start from the initial
loss of the default classification. This loss is calculated as the difference in performance
between the best algorithm and the default accuracy for each dataset. The default accuracy
is calculated in the usual way, by simply predicting the majority class for the dataset
in question. The values for the ordinary average ranking method, AR-MTA-B, are also
shown, as this method serves as a baseline. Fig. 2 shows the loss-time curves for the three
alternatives when the number of omissions is 90%. Not all loss-time curves are shown, as
the figure would be rather cluttered.

Table 6: Mean interval loss (MIL) values for different percentages of omissions

`````````````̀Method
Omission%

0 5 10 20 50 90 95

AR-MTD 0.531 0.535 0.535 0.536 0.550 1.175 1.633

AR-MTA-H 0.531 0.534 0.537 0.542 0.590 1.665 2.042

AR-MTA-B 0.531 0.536 0.537 0.544 0.593 2.970 3.402

AR-MTA-H/AR-MTD 1.00 1.00 1.00 1.01 1.07 1.42 1.25

Our results show that the proposed average ranking method AR-MTA-H achieves better
results than the baseline method AR-MTA-B. We note also that although the proposed
method AR-MTA-H achieves comparable results to AR-MTD for many values of the per-
centage drop (all values up to about 50%) and only when we get to rather extreme values,
such as 90%, the difference is noticeable. Still the differences between our proposed variant
AR-MTA-H and AR-MTD are smaller than the differences between AR-MTA-B and AR-
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Figure 2: Comparison of AR-MTA-H with AR-MTD and the baseline method AR-MTA-B
for 90% of omissions.

MTD. These results indicate that the proposed average ranking method is relatively robust
to omissions.

4. Conclusion:

In this paper we have investigated the problem of how the process of generating the average
ranking is affected by incomplete test results. We have shown that a percentage drop of up
to 50% does not make much difference. This can be exploited in the future - we can simply
opt for fewer tests when gathering metadata.

We have described a relatively simple method, AR-MTA-H, that permits to aggregate
incomplete rankings. We have also proposed a methodology that is useful in the process of
evaluating our aggregation method. This involves using a standard aggregation method AR-
MTD on a set of complete rankings, but whose number is decreased following the proportion
of omissions in the incomplete rankings. As we have shown, the proposed aggregation
method achieves quite comparable results and is relatively robust to omissions in test results
in the test data.

Future work: As the incomplete meta-dataset does not affect much the final ranking
and the corresponding loss, this could be explored in future design of experiments, when
gathering new test results. We could investigate approaches that permit to consider also
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the costs (runtime) of off-line tests. Their cost (runtime) could be set to some fraction of
the cost of on-line test (i.e. tests on a new dataset), but not really ignored altogether.
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