
Executing ARMv8 Loop Traces on Reconfigurable
Accelerator via Binary Translation Framework

Nuno Paulino, João Canas Ferreira, João Bispo, João M.P. Cardoso
INESC TEC and

Faculty of Engineering of the University of Porto
Porto, PORTUGAL

{nuno.m.paulino, joao.c.ferreira, joao.bispo, joao.paiva.cardoso@inesctec.pt}

Abstract—Performance and power efficiency in edge and em-
bedded systems can benefit from specialized hardware. To avoid
the effort of manual hardware design, we explore the generation
of accelerator circuits from binary instruction traces for several
Instruction Set Architectures.

Index Terms—accelerator, instruction traces, binary accelera-
tion, HW/SW partitioning, heterogeneous systems, ARMv8

One of the requirements of edge computing and embed-

ded systems is power efficiency. Systems with heterogeneous

hardware are an efficient approach for promoting both an

increase in computing performance and a reduction in energy

consumption, since well defined computing kernels can be

offloaded to specialized units. Further gains can be attained

by designing application-specific circuits on a per-case basis.

This work focuses on providing this heterogeneity to em-

bedded and edge devices, while also easing hardware design

effort, by automating generation of specialized hardware. We

rely on low-level information such as analysis of the program

binary, or on retrieved instruction traces. We thus aim to

prevent interference with software programming flows, and to

provide modest but ubiquitous acceleration from embedded

applications. We have demonstrated this in previous work

regarding acceleration of loop traces [PFC19a], where Mi-

croBlaze applications are executed on automatically generated

modulo-scheduled accelerators capable of reconfiguration via

Dynamic Partial Reconfiguration.

Using a redesigned binary translation framework, we are

currently expanding the applicability of our approach to other

Instruction Set Architectures (ISAs), and exploring additional

accelerator architecture, such as custom instruction units and

nested loop accelerators. The framework can generate Control

and Dataflow Graphs (CDFGs) representing portions of binary

code, i.e., binary segments, which are extracted from either

static analysis, or from instruction traces [PFC19b]. The

former analysis is performed by inspection of the ELF file, and

the latter by offline simulation via a combination of QEMU

[Bel05] emulation and gdb. Different types of binary segments

can be detected, among which, repeating loop traces.

This work was supported by the PEPCC project, ”PTDC/EEI-
HAC/30848/2017”, financed by FCT (Fundação para a Ciência e Tecnologia
- Portuguese Fundation for Science and Technology).

ELF

MicroBlaze
ARMv8
RISC-V

HDL
Parameters

Accelerator
Template

Synthesis

Accelerator(s)MemoryCPU

Translation Framework

Static Analysis

Trace Analysis

Fig. 1. Generation of accelerator circuits from binary analysis of MicroBlaze,
ARMv8, or RISC-V binaries

We will present the use of the binary translation framework

for generation of hardware specifications for a loop accelerator.

After detection and selection of loop traces, their CDFG repre-

sentations are used to generate a specialized instance of a loop

accelerator template. Speedups over CPU-only execution are

achieved by exploiting memory access parallelism, Instruction

Level Parallelism (ILP), and loop pipelining. For ARMv8

binaries, the latent ILP results in a potential to execute 5.6

Instruction per Clock Cycle (IPC) in hot Basic Blocks, and

7.6 IPC through single-cycle custom instructions.

On-going work is addressing the reduction of accesses to

main memory by optimizing away memory access instructions

present in the CDFGs. We will also present preliminary

support for detection of static and trace binary segments

from RISC-V binaries. Future work will focus on hardware

architectures other than a single loop accelerator as targets.

For instance, single-cycle sub-graph accelerators (i.e., custom

instruction engines), multiple concurrently executing loop ac-

celerators, or architectures such as CGRAs [FGD+19].

REFERENCES

[Bel05] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator.
In USENIX Annual Technical Conference, FREENIX Track, pages
41–46. USENIX, 2005.

[FGD+19] Luis Fiolhais, Fernando Gonçalves, Rui Duarte, Mário Véstias,
and José Sousa. Low Energy Heterogeneous Computing with
Multiple RISC-V and CGRA Cores. pages 1–5, 05 2019.

[PFC19a] Nuno Paulino, João C. Ferreira, and João M.P. Cardoso. Dynamic
Partial Reconfiguration of Customized Single-Row Accelerators.
IEEE Trans. on VLSI Systems, 27(1):116–125, 2019.

[PFC19b] Nuno Paulino, João C. Ferreira, and João M.P. Cardoso, Ferreira.
Improving Performance and Energy Consumption in Embedded
Systems via Binary Acceleration: A Survey. ACM Comput. Surv.,
52(6), 2019.

367

2020 30th International Conference on Field-Programmable Logic and Applications (FPL)

978-1-7281-9902-3/20/$31.00 ©2020 IEEE
DOI 10.1109/FPL50879.2020.00072

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 05,2023 at 09:26:03 UTC from IEEE Xplore. Restrictions apply.

