
MXF Supporting the Integration of Media Applications and

Broadcasting Products
Vitor Rodrigues

1
, Mário Cordeiro

1
, Paula Viana

1,2
, José Ruela

1,3

{vgr,mcordeiro,pviana,jruela}@inescporto.pt

1
INESC Porto, Campus da FEUP, Rua Dr Roberto Frias 378, Porto, Portugal

2
ISEP, Rua Dr António Bernardino de Almeida, Porto, Portugal

3
FEUP, Rua Dr Roberto Frias 378, Porto, Portugal

Abstract

The ASSET project, partially funded by the European IST

programme, is defining and developing a universal and

unified software architecture that will be made available to

manufacturers for allowing easy interfacing between digital

television equipment and applications. To guarantee

interoperability between manufacturers, a standard to

share/exchange content files between broadcast facilities was

chosen. This paper gives an overview of the Material

eXchange Format (MXF), currently under joint development

by the Pro-MPEG Forum and the AAF (Advanced Authoring

Format) Association, and describes its use as a content

exchange format for the ASSET project.

I - INTRODUCTION

The introduction of IT concepts and technologies is

opening the possibility for new approaches on the

implementation of digital television facilities covering the

whole workflow: acquisition, creation, editing, control,

storage, broadcasting, publishing and archiving of digital TV

content.

This approach has not yet solved the problems that

Broadcasters and System Integrators face due to lack of

connectivity and interoperability between equipment and

applications: solutions available in the market are still

vertically integrated or proprietary, requiring specific and

costly development, relying typically on a single

manufacturer or system integrator.

The main goal of the ASSET project [1] (IST-2001-37379

Architectural Solutions for Services Enhancing digital

Television) is to overcome these problems by creating a

universal and unified system architecture that will provide a

set of software tools and APIs that shall make the integration

of different systems independent from the device

manufacturer, programming language and underlying

middleware platform.

The project is exploiting open standards and emerging

technologies (like MXF [3], standard data models for

describing essence, XML [4] and distributed systems

technologies) for defining the concept of an Asset

Middleware that will wrap the standard software layered

architecture into a software middleware, which proposes:

• The abstraction of broadcast software and hardware

devices as logical resources;

• Generic, openly defined and simple interfaces to control

devices and data distribution;

• Added value for system logic: decisions to configure the

devices and to convert/move data.

II - ASSET SYSTEM ARCHITECTURE

The ASSET architecture [2] is based upon a software

Framework - the ASSET Framework - composed by a set of

standard interfaces and protocols for applications and

products working together in an integrated environment.

Products from different manufacturers can be natively

connected to the ASSET Framework or through a software

adaptor – the ASSET agent or ASSET proxy – enabling their

control and management by any ASSET compliant

application connected to the Framework.

The ASSET architecture is implemented through a software

bus called the Media ASSET Bus or MAB. The goal of the

MAB is to provide support for integrating the widest range of

applications and products within the ASSET framework,

independently from the underlying protocols or the operating

system environment.

III - CONTENT EXCHANGE

The requirement to share/exchange content files between

broadcast facilities, using non-proprietary formats, has been

emphasised by user organizations like EBU (European

Broadcasting Union). Aspects like multiple users to

simultaneously and independently access the same content;

various and adaptable speed transfer across Local and/or

Wide Area Networks; common "container" for data, metadata

and essence organised in data models; simple and direct

access to the content through standardised network protocols

and interfaces and unified formats for manipulating,

managing, sharing, storing and distributing essences and

metadata are priorities that must be satisfied by emerging

content exchange technologies.

The Pro-MPEG Forum [5] and the Advanced Authoring

Format (AAF) Association [6] developed an open standard

that ensures the interoperability among the different vendor

systems involved in production environments.

IV - MXF - MATERIAL EXCHANGE FORMAT

MXF [7][3][11] has been designed to meet user demands. It

is being put forward as an Open Standard that is not

compression-scheme-specific, simplifying the integration of

systems using MPEG and DV as well as future, yet

unspecified, compression strategies. Transportation of these

different files is then independent of content, and does not

dictate the use of specific manufacturers’ equipment. Any

required processing can simply be achieved by automatically

invoking the appropriate hardware or software codec.

An MXF file is a "wrapper" for containing audiovisual

material in a playable format. Each file contains a

comprehensive metadata structure together with component

parts that enable MXF files to be written and read directly

also by AAF-compliant tools. The entire data structure is

based on approved SMPTE standards relating to metadata

coding using the KLV (Key Length Value) syntax [8] and

standardized metadata dictionary items for interchange [9].

File Structure

The MXF file structure follows the usual scheme of many

other file formats, having the basic header, body and footer

components as shown in Figure 1.

Figure 1 - Core Components of a simple MXF file

The File Header, which provides information about the file

as a whole, must always be present at the start of every MXF

file. It includes an optional Run-In, a Header Partition Pack,

Header Metadata and optionally an Index Table. At least the

first part of the header must be consistent for all

implementations.

The File Body provides a mechanism for embedding

essence data within MXF files and may have one or more

Essence Containers, multiplexed using partitions. The

associated MXF Essence Container specifications define how

each essence element in the container will be KLV encoded

and the format of the Essence Descriptors that are required to

describe each essence element.

The File Footer, located at the end of the file, includes a

Footer Partition Pack, an optional repetition of the Header

Metadata sets and an optional Random Index Pack. It may

also include optional Index Table Segments.

Header Metadata

The Header Metadata is split into two categories:

Structural and Descriptive. Both categories must be a

sequence of KLV coded packets.

The MXF specification defines the Structural Metadata

packages and sets as a single scheme. There shall be no other

Structural Metadata schemes in MXF. The Structural

Metadata scheme must occupy the first part of the Header

Metadata and defines the capabilities of the file and how it is

constructed.

Any Descriptive Metadata is defined as a ‘plug-in’ in order

to accommodate one or more Descriptive Metadata Schemes.

Where present, any Descriptive Metadata Scheme will use

the plug-in mechanism provided by the Structural Metadata

Scheme. The Descriptive Metadata is used to define various

editorial aspects of the file, for example Production and Clip

Information.

Essence Containers

The MXF Generic Container is the native Essence

Container of the MXF File Body. The MXF Generic

Container is a streamable data container that can be placed on

any suitable transport and potentially stored. The concept of

this container was based on the work done by the

EBU/SMPTE Task Force in the Wrappers and Metadata sub-

group [10].

The premise for the MXF Generic Container format is that

of a general-purpose essence data and metadata container of

many different kinds of essence and metadata elements into a

single entity by interleaving the data streams in a defined and

time-synchronous manner.

Essence container specifications are written as a plug-in to

allow the inclusion of any standardized container. They can

be based on one of several basic types, including MPEG, DV

and uncompressed.

Partitions

An MXF File may be divided into a number of Partitions

that logically divide the file to allow easier parsing, to help

streaming and to manage the creation of Index Tables (which,

in turn, make random access in a storage system easier). An

MXF file may contain many different Essence Containers

and partitions help managing them.

The Header Partition must be located at the start of the file

and starts with a Header Partition Pack, followed by the

Header Metadata, optional Index Table segments and

optionally by the whole, or the first part, of an Essence

Container.

If a file has Body Partitions, then each shall comprise a

Body Partition Pack followed optionally by a repeat of the

Header Metadata, optional Index Table segments and

optionally by a whole or part of an Essence Container.

When present, a Footer Partition must be located at the end

of the file and must comprise a Footer Partition Pack

followed optionally by the Header Metadata, and optionally

by Index Table segments. An Index Table is an optional

component that allows quick access to any component in an

essence container through a byte offset value from a defined

address. The Footer Partition may optionally be followed by

a Random Index Pack.

Header
partition pack

Header
Metadata

Footer
partition pack

File Header File Body File Footer

Essence
Container

Figure 2- Required order of file components

 in each partition type

Operational Patterns

To manage the complexity of MXF, Operational Patterns

(OP) have been defined to limit the features which can be

used in different applications, thus allowing software and

hardware developers to create products with different levels

of functionality. It can be seen as a grid that is divided

vertically depending on the timeline complexity within the

file and horizontally depending on the number of different

packages within the file.

For timeline complexity (Item Complexity) the following

items are considered:

1. Single Item – the file contains only one item;

2. Play List Items – several items that are butted one

against the other;

3. Edit Items – the file contains several items with one

or more cut edits.

For the number of different packages (Package Complexity)

the following option are considered:

a. Single Package – the Material Package can only

access a single Source Package at a time;

b. Ganged Packages – the Material Package can access

one or more Source Packages at a time;

c. Alternate Packages – two or more Material

Packages, which can access one or more File

Packages at a time.

Item complexity and Package Complexity can be chosen to

create the desired Operation Pattern, e.g. OP 2.b - Play List

Items with Ganged Packages.

V - MXF IN ASSET FRAMEWORK

According to the ASSET Framework, content exchange

(audio-visual material and associated metadata) relies on a

file format that provides full interoperability between

different equipment and applications. The exchange format

should be open and standardized, compression-independent,

cross-platform and support streaming/transfer bridging.

Due to its characteristics, MXF is being used as the ASSET

solution for Content Exchange. Two different scenarios were

defined:

• the native interchange file within the same ASSET

framework;

• the import/export of both Essence and Metadata between

different ASSET architecture based systems or simply

external ASSET MXF compliant products.

The difference between these two approaches does not

reside in the file format being used (both use MXF) but in the

content of the MXF file:

• for the Exchange between ASSET compliant products

connected to the same ASSET framework, only the

essence and the structural metadata will be included in

the file. Associated descriptive metadata are indeed

stored and shared by both products, in one (or eventually

several) common Media Asset Management system(s).

• for Importing/exporting to/from outside ASSET,

descriptive metadata can be included in the MXF file.

The import process must extract the descriptive metadata

and update Media Asset Management system(s). The

export process must build MXF files with both structural

and descriptive metadata (available from the from a

Media Asset Management system(s)) allowing external

applications and systems to access essence and metadata

(structural and descriptive) in just one file transfer.

MXF Import/Export module

As referred to above, all content exchanges in the ASSET

framework are made always using MXF files. All ASSET

compliant products provide MXF capabilities for import and

export of MXF files. In some third party applications these

MXF functionalities might not be present, so it is necessary

to provide external MXF functionality to those products.

page 7© 2002 October 18th, 2002ASSET framework (proposition)

Common services

•Service Repository

•Security

•Notification

•Debug/logging

•Management

•Session

• …

ASSET Framework

ASSET Service Library

ASSET Compliant
Exchange Application

ASSET Plublic

Service Layer

ASSET Agent

ASSET Compliant

Video Server

MXF Wrapper

ASSET Agent

ASSET Compliant
MXF Import/Export

MXF Exchange MXF Exchange

MAB API Call

Essence

3rd Party Video Server

Metadata

MXF Wrapper

ASSET Proxy

3rd Party Video Server

ASSET Proxy

Essence

Metadata MXF Wrapper

ASSET Function

Service Layer

Essence

Without MXF Support With MXF Support

Figure 3 - Integration of third party products

using the MXF Import/Export module

To provide the adaptation to the framework of third party

products, ASSET provides external adaptors (ASSET

proxies) that make the mapping between proprietary API’s

and the ASSET generic API. This concept is valid only for

command and control adaptations. The content exchange

adaptation using MXF support and compatible ASSET

transfer capabilities to the third party products can be

provided either inside the products, implemented internally

by product manufacturers, or externally, using an additional

Footer Partition

Header Partition
Pack

Header
Metadata

Essence
Container

Index
Table

Header
Partition

Run
In

(optional) (optional)

Header
Metadata

Essence
Container

Index
Table

Body
Partition

(optional) (optional)

Body Partition
Pack

Header
Metadata

Index
Table

Footer
Partition

(optional) (optional)

Footer Partition
Pack

Random
Index Pack

(optional)

Next Partition
Pack

Next Partition
Pack

(optional)

(optional)

Header Partition

Body Partition

ASSET framework module, the MXF Import/Export. This

module allows products or applications to integrate MXF

content handling and transport without a previous knowledge

of how to do that inside the system.

Using both ASSET proxies for adaptation of internal

product API and the MXF Import/Export module for MXF

and content exchange adaptation, third party products or

applications (MXF compliant or not) can be easily integrated

into an ASSET framework based systems (Figure 3).

MXF Import/Export XML based API

The ASSET MXF Import/Export module uses the XML

based Message Exchange Format (MEF) defined for

providing a common way for adapter implementations to

describe their function and parameters (Figure 4). Different

message types were defined to allow, for example,

registering, initialising, processing a command, etc.

<mab-message type=”type of message”>

 <mab-header>

 <!— Generic header information -->

 </mab-header>

 <mab-data>

 <!— The message data comes here -->

 </mab-data>

</mab-message>

 Figure 4 – Generic MAB Message Structure

Requesting the MXF Import/Export services requires a

message type “executeCmd” as illustrated in Figure 5. The

body part (Figure 6) identifies the metadata and essence

repository as well as the final destination of the MXF file.

<mab-message type="executeCmd">

 <mab-header>

 <mab-header-block>

 <header name="session-id" value="8CE983D392"/>

 </mab-header-block>

 <mab-header-block>

 <header name="security" value="user1/xxxx"/>

 </mab-header-block>

 </mab-header>

</mab-message>

Figure 5 – ExecuteCmd header message

<mab-data>

 <export service="MXFImportExport">

 <input>

 <metadata>

 <descriptive>

 <file>

//metadata_common_service/demo/descrip_metadata.xml

 </file>

 </descriptive>

 </metadata>

 <essence>

 <url>

ftp://user:xx@essence_repository:21/demo/essence.dv

 </url>

 </essence>

 </input>

 <output>

 <mxf>
 <file>

//localhost/mxf_repository/demo_clip.mxf

 </file>

 </mxf>

 </output>

 </export>

 </mab-data>

</mab-message>

Figure 6 – MXF Import/Export XML body message

CONCLUSIONS

This paper gives an overview of the project approach and

describes the work under development in the IST ASSET

project. The basic architecture is outlined and the content

exchange approach is detailed. An MXF introduction is

presented to illustrate the importance for the definition of

common file formats in digital TV environments. The

application of the ASSET concepts is illustrated with the

presentation of an ASSET compliant MXF Import/Export

module.

The project has already defined the software architecture,

concepts and demonstration scenario and partners are now

working towards the development of the prototype that shall

demonstrate the effectiveness of the ASSET solution.

REFERENCES

[1] ASSET web site – http://www.ist-asset.com

[2] Paula Viana et all, “A Unified Solutions for the

Integration of Media Applications and Products in

Broadcaster Environments – The ASSET Architecture”,

Proceedings of NAB2003, USA, April 2003

[3] Pro-MPEG Forum, Material eXchange Format (MXF)

10b, http://www.pro-mpeg.org/mxf.htm, Oct. 16, 2002

[4] W3C, Extensible Markup Language (XML) 1.0,

http://www.w3c.org/TR/REC-xml, Oct. 6, 2000

[5] Pro-MPEG Forum site - http://www.pro-mpeg.org

[6] AFF Association site – http://www.aafassociation.org

[7] Bruce Devlin, “MXF - the Material exchange Format”,

EBU Technical Review, July 2002

[8] SMPTE 336M-2000, “Television - Data Encoding

Protocol Using Key-Length-Value”, 2000

[9] SMPTE RP210-2001, “Metadata Dictionary Contents”,

2001

[10] EBU/SMPTE, “EBU/SMPTE Task Force for

Harmonized Standards for the Exchange of Program

Material as Bit-streams”, Final Report, Sept 1998

[11] Jim Wilkinson and Bruce Devlin, “The Material

Exchange Format (MXF) and its Application”, SMPTE

Journal, Sept 2002

ACKNOWLEDGEMENTS

The authors would like to thank the support of the

European IST programme and partners on the ASSET

project: HP, THOMSON, Dalet a.n.n, INESC Porto, INRIA,

IRT, FPDI, SHS Multimedia.

