Deploying Time-based Sampling Techniques in
Software-Defined Networking

David R. Teixeira
Centro Algoritmi
University of Minho
4710-057 Braga, Portugal

Abstract—Network data volumes have seen a substantial in-
crease in recent years, in part due to the massive use of mobile
devices, the dissemination of streaming services and the rise of
concepts such as IoT. This growing trend highlights the need to
improve network monitoring systems to cope with challenges
related with performance, flexibility and security. Software-
Defined Networking (SDN) and traffic sampling techniques can
be combined to provide a toolset that can be used for enhancing
network management activities and performance evaluation. In
this context, this paper presents a proposal for supporting time-
based sampling techniques in SDN, providing network statistics
at the controller level and allowing the self-configuration of traffic
sampling in network devices. The proposed solution, designed to
improve the efficiency and flexibility of network measurement
systems, takes into account the underlying need to establish
a balance between the reliability of the collected data and
the computational effort involved in the sampling process. The
proof-of-concept results emphasize the potential of applying and
configuring different time-based sampling techniques through a
SDN framework and a small set of standard OpenFlow messages.
Comparative results on the accuracy and overhead of each
technique when sampling real traffic traces are also provided.

Index Terms—SDN, traffic sampling, time-based techniques,
OpenFlow, Ryu.

I. INTRODUCTION

Faced with the exponential increase in services supported
by computer networks, monitoring activities are playing a vital
role in the maintenance of these communication channels.
Alongside this, it is important to ensure that network manage-
ment activities are able to keep up with this accelerated pace,
supporting next generation networks and seamless integration
with trending concepts such as the Internet of Things (IoT),
Cloud Computing and Smart Cities.

Software-Defined Networking (SDN) is viewed as a promis-
ing solution in this context, due to its versatility and the
amount of diversified solutions that can result from this con-
cept for purposes of forwarding, monitoring, security, auditing,
among others. The main principle behind the SDN architecture
is the decoupling of the control and data planes. A centralized
controller has a global view of the network infrastructure and
directly communicates with the applications, establishing a
bridge between them and the forwarding devices. To support
this interaction, a communication layer exists between the con-
trol plane and those components in the data plane, providing
programmability of the network behaviour [1].

Joao Marco C. Silva
INESC TEC
University of Minho
4710-057 Braga, Portugal

Solange Rito Lima
Centro Algoritmi
University of Minho
4710-057 Braga, Portugal

On the other hand, traditional networks have the data
and control planes combined in the same network node. In
the control plane, forwarding policies are static, most times
unaware of dynamic changes and specific demands coming
from users and applications. This approach has proven to be
restrictive, affecting network scalability and performance as
traffic patterns change [1], requiring considerable efforts to
monitor the amount of packets/flows at a given point in time.

Thus, considering the huge traffic volumes of today’s net-
works, traffic sampling has become mandatory in monitoring
systems for effective network measurements, especially in the
network core, reducing the packets collected to a manageable
amount [2], [3]. Based on the flexibility of programmable
measurements, SDN also brings a different approach for
deploying sampling techniques strategies, enabling a proper
balance between sampling efficiency and estimation accuracy.

In this context, having in mind design goals such as ver-
satility and compatibility, this paper presents a new proposal
for supporting sampling techniques at SDN controller level,
which allows a proper mapping between measuring systems
requirements and the self-configuration of sampling tasks on
network devices. Considering the gap of existing solutions on
supporting time-based sampling, the focus of the developed
prototype is on the lightweight deployment of distinct time-
based sampling techniques, i.e., Systematic Time-based (SysT)
[4], Linear Prediction (LP) [S] and Multiadaptive Sampling
Technique (MuST) [6] in SDN environments. In these tech-
niques, timers instead of packet counters rule the intervals of
collected packets, being these timers defined systematically or
adaptively according to the current network load. The obtained
results in a Mininet prototype demonstrate the feasibility and
potential of the present proposal, providing quantitative evi-
dence of the low-overhead and accurate estimation of network
parameters using real traffic traces from high-speed networks.

The next sections of this paper are organized as follows:
related work in this area is analyzed in Section II; the
SDN sampling prototype is presented in Section III; the tests
methodology is described in Section IV; and the conclusions
are included in Section V.

II. RELATED WORK

Although firstly oriented to packet switching, network mon-
itoring have emerged as a promising field for SDN and, cur-

rently, several monitoring approaches are already using Open-
Flow protocol to collect network metrics. Regarding sampling-
based monitoring, few meet the challenges of implementing
sampling techniques in SDN. In this context, sFlow, FleXam,
PayLess and MonSamp are highlighted.

sFlow is an industry standard (RFC 3176 [7]), used by
multiple vendors and early adopted as the sampling technol-
ogy embedded in many existing switches and routers. This
standard defines a set of sampling mechanisms which aim to
decentralize monitoring operations typically implemented on
the switches, by sending sampled packets to a remote external
data collector in partnership with one or more sFlow Agents
monitoring traffic and a sFlow Management Information Base
(MIB). sFlow and OpenFlow can play complementary roles
when implemented over the same network. On one side,
the OpenFlow protocol provides a controller running its own
software on a separate component, responsible for configuring
both switches and hardware forwarding tables. On the other
side, the sFlow standard specifies instrumentation to collect
real-time information about the state of the network and sends
it to a remote monitor. Despite its large deployment, sFlow
includes only systematic and random count-based techniques
for packet sampling, not offering other sampling strategies,
such as the time-based techniques, which are relevant for
several activities, such as anomaly detection [6]. Another
relevant fact to highlight is the project update status, whose
latest version (version 5) was launched several years ago [8],
meaning new sampling techniques appeared in the meantime
and have not been integrated in sFlow so far.

Another tool implementing sampling using OpenFlow is
FleXam [9]. This per-flow sampling framework is described
as a flexible sampling extension for OpenFlow that enables
the controller to access packet-level information. It provides
two sampling possibilities: stochastic, by selecting packets
according to a predetermined probability p; or deterministic,
which involves collecting m consecutive packets from each k
consecutive packets, skipping the first 6 packets of the flow.
The controller has the power to decide which part of the
packet should be sent (e.g., headers only, payload, etc.), as well
as their destination. To meet its design goals, modifications
to the OpenFlow protocol specification are required aiming
to include sampling abilities, thus proposing changes to the
standard maintained by the Open Networking Foundation
(ONF). Such extension is defined through a new action (OF-
PAT_SAMPLING) that can be assigned to each flow [9].

From the analysis of FleXam, it is noticeable that the
customization of the sampling mechanism has obvious im-
plementation advantages. It can be added to current Open-
Flow implementation with no need for matching specific
flow tables or perform multiple actions. Secondly, there’s no
overhead for flows that do not require sampling, given it is
flow driven. Nonetheless, this approach promotes unwanted
fragmentation in the implementation of a protocol (OpenFlow)
that, in itself, is already implemented in several versions by
the manufacturers. Furthermore, flow sampling has associated
disadvantages, such as it involves classifying packets into

flows before or during the sampling process, which consists in
high computational burden [3]. Beyond that, FleXam does not
offer a per packet sampling mechanism, making it unfeasible
to implement time-based sampling techniques [9].

A different approach is supplied by PayLess. It is a query-
based monitoring framework for SDN that provides a flexible
RESTful API for flow statistics collection at different aggrega-
tion levels [10]. This monitoring framework gathers real-time
information with high accuracy without causing significant
network overhead. PayLess replaces the controller policies
when polling the switches, implementing an adaptive schedul-
ing algorithm proposed to achieve the same level of accuracy
as continuous polling but with much less communication
overhead. Thereby, different network applications can develop
new monitoring applications and access the data collected by
PayLess with different aggregation levels (such as flow, packet
and port). This strategy offers the possibility of also getting
information from the network from time to time without
causing significant network overhead. It is comparable to the
behaviour when a flow is being removed from the switch. In
that scenario, if the flow entry’s OFPFF_SEND_FLOW_REM
flag is set, the switch is required to send a flow removed
message to the controller when the timeout is reached, with
a complete description of the flow that has been removed,
including statistics [11]. The monitoring frequency in PayLess
is adjusted according to the network load [12]. Despite the
mentioned advantages of PayLess, it is relevant to note that this
kind of solution is highly dependent on OpenFlow collectable
statistics, potentially compromising the solution’s flexibility
for specific monitoring purposes and it does not provide a
traffic sampling solution.

MonSamp [13] is a SDN application performing flow-based
sampling designed with the requirements for a later quality
of service assessment. For each monitored flow MonSamp
installs a rule into the OpenFlow switches that triggers the
action to send a copy of the matched packets to the monitor.
These rules are installed on the switches by the controller
and the Northbound API. MonSamp limits the number of
installed OpenFlow rules and uses thresholds to adjust the
amount of monitoring load that is forwarded by the SDN
enabled devices to avoid drops. Despite the validity and
usefulness of the inherent concepts, the authors found that their
monitoring concept requires new developments on a scalable
controller architecture that provides a Northbound API able to
bring flexibility on the installation and adjustment of rules. In
addition, MonSamp do not intent to introduce new techniques
for data analysis or traffic sampling.

Facing the above discussion, it becomes evident that sup-
porting sampling techniques in SDN environments has still
many open issues, in particular, regarding the flexible imple-
mentation of time-based sampling techniques, motivating the
present proposal.

III. PROPOSED SDN SAMPLING ARCHITECTURE

This section identifies the main goals driving the design
of the SDN sampling proposal, followed by a detailed expla-

nation of the OpenFlow messages in use and the sequence
diagram sustaining the communication between switch and
controller entities.

A. Design Goals

Proposing a new sampling approach in SDN raises several
challenges. Firstly, the solution must provide sampling mea-
surements that are efficient and lightweight while respecting
both the SDN model and the OpenFlow standard, ensuring
compatibility with any OF-enabled Layer 2 and 3 devices.
However, OpenFlow existing specifications were not designed
to accommodate sampled data collection. Therefore, the main
objective is to enable traffic sampling by defining methodolo-
gies in a SDN controller using only currently available mes-
sages from OpenFlow protocol. The devised strategy explores
the interaction promoted by the separation of data and control
planes aiming to collect traffic packets and make sampled
measurements available in real-time environments.

The implementation here described focuses on mechanisms
that allow the application of time-based sampling techniques,
taking advantage of OpenFlow protocol specification and
having performance in mind. On that subject, a set of relevant
messages within the OpenFlow standard are worth mentioning,
as well as their combination to achieve the proposed objective.
The messages tailored for the task are Packet-In for packet
transmission, Flow Mod for flow table modification and Group
Mod for group table modification.

B. OpenFlow Messages

Packet-In: the switch can send a packet to the controller
through a Packet-In message, technically called OFPT_-
PACKET_IN, when packets are received by the datapath.
There are three reasons for this message to be sent: i) resulting
from an explicit action defined by a match rule asking for this
behaviour; ii) due to a miss in the match tables; iii) caused by
a Time-To-Live (TTL) error [14].

Flow Mod: one of the main messages existing in OpenFlow
that allows the controller to modify the flow characteristics of
an OpenFlow switch.

Group Mod: historically, group table modification messages
were defined in OF 1.1 [14] and are initiated by the controller
to add, delete or modify groups in datapaths with the purpose
of defining groups of action for certain flows.

C. Sampling Process

With the defined objective of collecting network details
at packet level, all existing and active flows in the network
are valid for being queried, aiming at obtaining a diverse
and reliable measurement of the network state. The main
interactions are detailed in Figure 1, through a sequence chart
clarifying the dynamics of the communication process between
switch and controller entities in the proposed architecture.

Once the controller and switch acknowledge each other, the
controller waits to detect activity in the network. This signal
is triggered by the switch when it receives a packet for which
it has no actions defined in its flow table (table-miss), and

I
I
! 1.1: Packet-In (from table miss)

Controller

1: data flow L

1.2: Group Mod
1.3: Add group
2: Sampling thread
3: Flow Mod [
3.1: Add flow
Toop,
{sampling]
Toop)
3.2 Packet-In (from group action)
[sample size] »
4: Store data
5: Group Mod (sampling off)
5.1: Modi
Zl odify group {interval between samples}
6: Group Mod (sampling on)
6.1: Modify group !
L] i
I 1
I 1
T T

Fig. 1: Sequence diagram representing messages exchanged between switch and con-
troller

therefore sends it encapsulated in a Packet-In message to the
controller. In turn, the controller parses the packet header in
order to identify a possible destination in the network for the
packet, based on pre-established rules. If a valid destination
is found, a Flow Mod message to add the new flow is sent
to the switch, which will be used to forward packets with the
same destination, without incurring the penalty of awaiting
new controller’s decision. This is the expected procedure for
a Media Access Control (MAC) learning switch.

Regarding the sampling process, when the first Packet-
In message arrives at the controller, it sends back a Group
Mod message to insert into the switch called the sampling
group, essentially containing a bucket with two actions: one to
continue the standard packet forwarding action for new packets
with the same characteristics; and another to create a copy of
each packet that should be sent to the controller, which will
take care of saving it without triggering further actions . The
packets retrieved include payload, previously specified with an
OFP_NO_BUFFER instruction.

Not least important is the use of Flow Mod messages in
this prototype, responsible for setting the rules to be followed
by the switch for packets with certain characteristics. For the
Group Mod message to be correctly parsed, the actions field
of the Flow Mod message includes a group with the action
bucket to be fulfilled, either simultaneously for all rules, if
the sampling mechanism is enabled. In this way, periods of
packet sampling (sample size) and interval between sampling
can be properly interleaved, according to the desired time-
based parameterization.

In a second moment, the controller signals to stop receiving
all the packets from the switch. For this purpose, it communi-
cates the decision by sending a Group Mod message with the
requirement to modify the previously created group so that the
switch only forwards packets to their original destination.

IV. TESTS METHODOLOGY AND RESULTS

The proposed solution is validated through a set of ex-
perimental tests executed in a Mininet virtual environment.

To do this, the controller is tested with different trace files
and traffic sampling techniques widely discussed in the lit-
erature and used in production networks, in particular, one
systematic technique - Systematic Time-based (SysT) [4]; and
two adaptive techniques - Linear Prediction (LP) [5] and
Multiadaptive Sampling Technique (MuST) [6]. Thus, the tests
aim at evaluating the feasibility of using time-based sampling
in SDN devices, highlighting the comparative accuracy and
overhead of different sampling schemes.

A. Experiment setup

To carry out the experiments, different anonymized datasets
from real networks and publicly available through The Center
for Applied Internet Data Analysis (CAIDA) were selected.
The characteristics of the traces are summarized in Table I.

TABLE I: TRACES USED FOR TESTING

‘ Traffic Label ‘ Characteristics ‘ Source ‘
0C-48 Anonymized passive trace taken at an | CAIDA [15]
US west coast OC-48 peering link for a
large ISP in 2003.
0OC-192 Trace contains anonymized passive | CAIDA [16]

traffic collected at CAIDA’s equinix-
chicago high-speed monitor on a com-
mercial backbone in 2015.

Even though there is some general knowledge about the
mean throughput and total number of packets the traces
contain, there is no in-depth knowledge of the network traffic
pattern. The result of each sampling technique depends entirely
on the parameters initially stipulated and the systematic or
adaptive properties of the technique being used. In the case of
the SysT technique, due to the technique’s static characteris-
tics, only the initial parameters are relevant to the final result.
Regarding time-based adaptive techniques, although the initial
parameters are also important, the sampling intervals are
modified over time by the techniques themselves in order to
self-adapt the sampling frequency towards the characteristics
of the traffic traversing the network.

In this test environment, the SysT sample size and time
between samples parameters are set to 100 ms and 500 ms,
respectively. These values are also proposed in [6] and [5]. For
the Linear Prediction (LP) technique, the sample size is set to
100ms and the interval between samples is set to 200ms. The
order of prediction (N), i.e., the quantity of previous samples
whose values are considered in the next sampling forecast,
is set to 2, according to the original specification [5]. In
Multiadaptive Sampling Technique (MuST), the sample size
and interval between samples are set to 200ms and 300ms,
respectively. The order of prediction is set to 3 for this
technique. These values were set according to their default
values set in [6].

A parameterized topology is defined in Mininet, composed
of one Open vSwitch (OVS) switch (version 2.8.90), two hosts
and a remote controller. The Ryu controller (version 4.10) is
selected to work as a remote entity connected to the switch via
OpenFlow (version 1.3). Figure 2 illustrates each component
in the architecture.

LINUX PREEMPTIVE KeRNEL %
=G~

RYU framework

1

ovs

(with DPDK)

Fig. 2: Architectural scheme

Regarding data security, two configuration parameters can
be enabled to strengthen the security of the solution. One
setting that can be changed is the size of each packet received
by the controller through the global parameter MISS_SEND_-
LENGTH. For instance, this parameter can be set to 14 bytes
to include only the standard Ethernet header. Furthermore, a
TLS connection can be established to secure the channel used
by the controller when connecting to the switches. Both Ryu
and and Open vSwitch provide this feature.

B. Results

A set of results herewith described was obtained after ten
tryouts executed for each sampling technique, applying the
average to the results collected. The decision to collect the
data this way is due to the fact the test values are not constant
because of OVS’s variable latency and throughput limitation
when using an emulated virtual network environment such
as Mininet [17]. In total, 60 tests (30 per trace file, 10 per
sampling technique) were performed and the mean values are
available below.

To estimate the overhead created by each sampling tech-
nique and OpenFlow, the parameters collected in the simula-
tion must be scrutinized. The variables under study are: (i)
number of packets collected; (ii) number of Packet-In mes-
sages handled by the SDN controller; (iii) data volume; and
(iv) number of samples taken during execution. The results,
shown in Table II represent objective values to perform a
comparative analysis of the obtained results. Figure 3 provides
a visual representation of this data.

TABLE II: METRICS COLLECTED FROM ALL SAMPLING TECHNIQUES

[Traffic / Parameter [Total | SysT | LP [MuST |
0C-48
Packets 6550395 539228 | 209322 | 289925
Packet-In Messages 1254978 | 493600 | 604550
Data Volume (MBytes) 372.52 30.67 11.91 16.49
Samples 493 193 42
0C-192
Packets 14990493 80965 38377 22318
Packet-In Messages 683719 401047 | 246583
Data Volume (MBytes) 945.87 5.13 2.44 1.43
Number of Samples 82 43 16

As visible, SysT technique captures significantly more traf-
fic than adaptive techniques, through the use of Packet-In
messages. The collection of the total number of Packet-In
messages aims to assess the overhead introduced by sampling

10° -10°

#Packets
#Packet-In Messages

o Ul

0c-48 0C-192 0oc-48 0C-192

OusysTIOLPIIMUST

1

500
400
300 1

" 200

il N

0Cc-48 0c-192 0c-48 0oc-192

Fig. 3: Comparison of SysT, LP and MuST techniques

Data Volume

|
(|
=

L]

o

techniques applied over the proposed architecture in the com-
munication from the switch to the controller, and compare it
to a SDN architecture without sampling. To effectively do so,
the overall number of Packet-In messages is collected at the
controller. The ratio between the number of packets and this
value indicates the overhead introduced along with sampling
techniques. Other chosen parameters, as suggested in [6] can
be defined as:

o Number of Packets - amount of packets collected during
the period of activity, set by the technique’s sample size;

e Data Volume - size of the result file (in megabytes), con-
taining the amount of packets collected. It is calculated
from the sum of every packet’s total length value, within
the IO frame;

o Number of Samples - number of times the packet capture
process was triggered on the measurement point (switch).

Figure 4 shows the original network throughput for the OC-
48 traffic and its counterparts (estimated throughput) when
applying each time-based sampling technique. The throughput
and sampled packets were collected in 1 second time intervals.
Since traffic sampling implies selecting only part of the packet
stream in the switch, for reliable estimation of the throughput
it is necessary to also consider the packets that were not
selected. This calculation can be done in several ways, the
most common being a statistical extrapolation of the number
of unsampled packets, from the sample value gathered in the
defined time interval [3].

For statistical purposes, some extra parameters of the
original traffic and each sample have to be analysed. These
parameters aim to quantify the accuracy of the acquired
sample [6]. The parameters in which this work focuses are
the following:

e Throughput - indicates the estimated data rate in kbps.
With the use of statistical extrapolation, allows a corre-
lation between the expected average value and the value
obtained with sampling measurements;

e RME - allows to infer the mean error of the estimated
average throughput compared to the average throughput

15000

15000

Throughput (kbps)
Throughput (kbps)
P

000

50 100 150 200 250 300

Time (s)

50 100

150 200 250 300
Time (s)

a: Total traffic b: SysT

15000 T T T T T 15000

10000 F Z10000 t

g =)

3

£

H

£ 5000 I 5000 F
0 0050 100 150 200 250 300

0 50 100 150 200 250 300
Time (s)

Throughput (I

Time (s)

c: LP d: MuST

Fig. 4: Throughput for OC-48 traffic

of the total traffic;

o Peak-to-average ratio - ratio between the peak and aver-
age throughputs for the same sample. It helps to measure
the traffic burstiness;

e Latency - average delay response time between the con-
troller and the switch obtained during the tests;

o Packet loss - percentage of dropped packets.

The parameters calculated from the tests performed are
listed in Table III.

TABLE III: ACCURACY ESTIMATION

[Traffic / Parameter | Total [SysT | LP [MuST |
0C-48
Throughput (kbps) 9934.22 9934.90 9903.53 9936.72
RME 0.00007 0.00309 0.00025
Peak-to-average ratio 1.13 1.13 1.14 1.11
Latency (ms) 0.021 0.019 0.019
Packet loss (%) 0 0 0
0C-192
Throughput (kbps) 154429.34 | 156406.07 | 162038.02 | 156623.15
RME 0.01280 0.04927 0.01415
Peak-to-average ratio 1.06 1.11 1.03 1.04
Latency (ms) 0.023 0.022 0.022
Packet loss (%) 10.93 5.07 4.25

C. Discussion

From the presented results in Figure 3 it is possible
to verify that the number of Packet-In messages has the
peculiarity of resembling the graphical representation of the
number of packets and data volume. This is an interesting fact,
having in mind many Packet-In messages were not originated
by the sampling action. Effectively, Packet-In messages sent
by the switch while OC-48 traffic was being forwarded, rep-
resent 42.97%, 42.41% and 47.96% of all Packet-In messages
received by the controller, in SysT, LP and MuST sampling
techniques, respectively. With regard to OC-192 traffic, Packet-
In messages resulting directly from a sampling action represent
11.84%, 9.57% and 9.05% of all Packet-In messages in SysT,
LP and MuST sampling techniques, respectively.

The visual differences between charts related to the two
traces in Figure 3, are justified by their duration, as the OC-

48 trace is longer than the OC-192 (five to one minute of
traffic captured in the network). Hence, the OC-192 sampling
results are expected to be quantitatively below the OC-48
data sampled values. However, the difference is smaller for
the number of Packet-In messages, which is explained by
the large amount of information in the OC-192 trace sent in
a short time that has to be properly communicated by the
switch to the controller. To corroborate the sampling accuracy
in all time-based sampling techniques, the throughput, RME,
peak-to-average ratio, latency and packet loss parameters were
collected. The values in Table III demonstrate that the sam-
pling results present accurate measures for both test scenarios,
for all techniques, having an average accuracy and error
level within the values observed in [6], for OC-48 traffic.
Despite having a larger margin of error, the OC-192 sampled
traffic corresponds, statistically, to the total traffic (unsampled).
Table III corroborates this assertion, showing values of RME
(Relative Mean Error) tendentially close to zero and values
of throughput and peak-to-average ratio near to the values
calculated on the total traffic. Notwithstanding the good results
obtained, the performance analysis of Open vSwitch showed
that in times of heavy load on the virtual switch, e.g., for OC-
192 traffic, packet routing is not performed for all packets,
resulting in packet loss. The pattern of loss is caused by
empty routing tables on the switch in the first milliseconds of
execution, forcing it to send the whole traffic to the controller
(default action of OpenFlow), ultimately causing packets to be
dropped before reaching the receiving host, consequence of a
buffer overflow scenario [18]. These occurrences of packet loss
are observed up until version 2.8.90 of Open vSwitch.
Facing the above, SDN architecture promotes multilayer
programming flexibility being a convenient platform for sup-
porting the configuration of traffic sampling-techniques in net-
work devices. However, some problems (such as latency) arise
from the separation of layers that SDN advocates. Regarding
the deployment of time-based techniques, the low-overhead
and accuracy obtained on the estimation of network load
were attested under traffic scenarios representing real network
environments. Aiming at enabling time-based sampling in
currently deployed SDN environments and supporting the
implementation and test of forthcoming sampling schemes, the
proposed prototype is currently available as a public project
(http://github.com/drteixeira03/sdn_sampling).

V. CONCLUSIONS

The decoupling of the control and data planes with high
programmability in SDN is changing the way network mon-
itoring tools are being designed. Following this trend, a set
of functionalities to be included in the control plane has
been proposed with the objective of performing sampling
data measurements remotely in the data plane and verify
if it could be done in a sustainable way, considering real
world traffic traces. Moreover, it was also interesting to verify
whether this implementation brings performance benefit over
sampling models applied in legacy network environments.
From the proof-of-concept it was possible to conclude that the

implementation of sampling techniques at the controller level
is a viable solution. The calculated evaluation parameters attest
it is possible to determine the state of the network with a high
degree of accuracy from the sampled measurements that the
controller provides, with a very small RME.

ACKNOWLEDGMENT

This work has been supported by COMPETE: POCI-01-0145-
FEDER-007043 and FCT - Fundag@o para a Ciéncia e Tecnologia
within the Project Scope: UID/CEC/00319/2013.

REFERENCES

[1]1 S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for
SDN? Implementation challenges for software-defined networks,” IEEE
Communications Magazine, vol. 51, pp. 3643, Jul. 2013.

[2] D. Tammaro, S. Valenti, D. Rossi, and A. Pescap, “Exploiting packet-
sampling measurements for traffic characterization and classification,”
International Journal of Network Management, vol. 22, pp. 451-476,
Nov. 2012.

[3] J. M. C. Silva, P. Carvalho, and S. R. Lima, “A Modular Traffic
Sampling Architecture: Bringing Versatility and Efficiency to Massive
Traffic Analysis,” Journal of Network and Systems Management, vol. 25,
no. 3, pp. 643-668, 2017.

[4] T. Zseby, M. Molina, and N. Duffield, “Sampling and Filtering Tech-
niques for IP Packet Selection RFC 5475,” tech. rep., IETF, 2009.

[5] E. Hernandez, M. Chidester, and A. George, “Adaptive sampling for
network management,” Journal of Network and Systems Management,
vol. 9, no. 4, pp. 409-434, 2001.

[6] J. M. C. Silva, P. Carvalho, and S. Rito Lima, “A multiadaptive
sampling technique for cost-effective network measurements,” Computer
Networks, vol. 57, no. 17, pp. 3357-3369, 2013.

[7]1 P. Phaal, S. Panchen, and N. McKee, “InMon Corporations sFlow: A
Method for Monitoring Traffic in Switched and Routed Networks rfc
3176 (informational).” http://www.ietf.org/rfc/rfc3176.txt, 2001.

[8] P. Phaal and M. Lavine, “sFlow Version 5.” http://www.sflow.org/sflow_
version_5.txt, 2004.

[9] S. Shirali-shahreza and Y. Ganjali, “FleXam : Flexible Sampling Exten-

sion for Monitoring and Security Applications in OpenFlow,” Proceed-

ings of the second ACM SIGCOMM workshop on Hot topics in software

defined networking - HotSDN 13, pp. 167-168, 2013.

I. E. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for

traffic engineering in SDN-OpenFlow networks,” Computer Networks,

vol. 71, pp. 1-30, Oct. 2014.

[11] B. Pfaff et al, “OpenFlow Switch Specification

https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf,

2011.

S. Chowdhury, M. Bari, and R. Ahmed, “PayLess: A Low Cost Net-

work Monitoring Framework for Software Defined Networks,” in /4th

IEEFE/IFIP Network Operations and Management Symposium, 05 2014.

[13] D. Raumer, L. Schwaighofer, and G. Carle, “MonSamp: A distributed

SDN application for QoS monitoring,” in 2014 Federated Conference
on Computer Science and Information Systems, (Warsaw, Poland), IEEE,
Sept. 2014.

[14] J. Casey et al., “Flowgrammable - OpenFlow Message Layer.” http:

//flowgrammable.org/sdn/openflow/message-layer.

C. Shannon, E. Aben, K. C. Claffy, D. Andersen, and N. Brown-

lee, “The CAIDA UCSD Anonymized Passive OC48 Internet Traces

Dataset - 20030424-005000-UTC-anon.” http://www.caida.org/data/

passive/passive_oc48_dataset.xml.

C. Shannon, E. Aben, K. C. Claffy, D. Andersen, and N. Brownlee,

“The CAIDA UCSD Anonymized Internet Traces 2015 - 20150917-

125911-UTC-anon.” http://www.caida.org/data/passive/passive_2015_

dataset.xml.

P. Emmerich, D. Raumer, S. Gallenmiiller, F. Wohlfart, and G. Carle,

“Throughput and Latency of Virtual Switching with Open vSwitch: A

Quantitative Analysis,” Journal of Network and Systems Management,

pp. 1-25, 2017.

K. Phemius and M. Bouet, “OpenFlow: Why latency does matter,” 2013

IFIP/IEEE International Symposium on Integrated Network Manage-

ment (IM2013), pp. 680-683, 2013.

[10]

v1.1.0.”

[12]

[15]

[16]

[17]

[18]

