As Secure as Possible Eventual Consistency
A Draft of the Work in Progress

Ali Shoker*
HASLab, INESC TEC & University of
Minho,
Braga, Portugal

ABSTRACT

Eventual consistency (EC) is a relaxed data consistency model that,
driven by the CAP theorem, trades prompt consistency for high
availability. Although, this model has shown to be promising and
greatly adopted by industry, the state of the art only assumes that
replicas can crash and recover. However, a Byzantine replica (i.e.,
arbitrary or malicious) can hamper the eventual convergence of
replicas to a global consistent state, thus compromising the entire
service. Classical BFT state machine replication protocols cannot
solve this problem due to the blocking nature of consensus, some-
thing at odd with the availability via replica divergence in the EC
model. In this work in progress paper, we introduce a new secure
highly available protocol for the EC model that assumes a frac-
tion of replicas and any client can be Byzantine. To respect the
essence of EC, the protocol gives priority to high availability, and
thus Byzantine detection is performed off the critical path on a con-
sistent data offset. The paper concisely explains the protocol and
discusses its feasibility. We aim at presenting a more comprehensive
and empirical study in the future.

CCS CONCEPTS

« Information systems — Data management systems; Infor-
mation storage systems; « Security and privacy — Distributed
systems security; « Computer systems organization — Reli-
ability; Availability;

KEYWORDS

Eventual consistency, Byzantine fault tolerance, security, availabil-
ity, CRDT

“The research leading to these results has received funding from the European Union’s
Horizon 2020 - The EU Framework Programme for Research and Innovation 2014-2020,
under grant agreement No. 732505, LightKone project.

TProject “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with
Industrial Impact/NORTE-01-0145-FEDER-000020" is financed by the North Portugal
Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partner-
ship Agreement, and through the European Regional Development Fund (ERDF).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2018 ACM. 978-x-xxxx-xxxx-x/YY/MM...$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

Houssam Yactine
HASLab, INESC TEC & University of
Minho,

Braga, Portugal

Carlos Baquero®
HASLab, INESC TEC & University of
Minho,

Braga, Portugal

ACM Reference format:

Ali Shoker, Houssam Yactine, and Carlos Baquero. 2018. As Secure as Possi-
ble Eventual Consistency. In Proceedings of ACM Conference, Washington,
DC, USA, Fuly 2017 (Conference’17), 5 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Eventual Consistency (EC) [14] emerged as a relaxed trade-off
model between strong consistency and availability, given that net-
work partitions and high latency links cannot be avoided in geo-
replicated and highly scalable systems [7]. Replicated services that
are built through EC are highly available since client’s requests are
served via a local application server (or replica) without immediate
synchronization with other servers; this step is however performed
in the background to avoid blocking of client requests, but still
ensure (eventual) data convergence. State-of-the-art research in
EC assumes that replicas can crash and recover back to the last
“healthy” state. Unfortunately, there is evidence that malicious and
arbitrary (a.k.a., Byzantine [10]) faults are not rare even in leading
Internet services [12, 13]. In the case of EC, a Byzantine server can
apply operations in an incorrect way (deliberately or not) which
hampers data convergence, and thus compromises the entire service.
Consequently, secure EC solutions that are resilient to Byzantine
faults, being the strongest fault model [4], are highly advocated
when the deployment conditions of servers and clients creates risk
for this class of faults.

Classical BFT protocols like state machine replication proto-
cols [4, 9] cannot simply solve the EC problem due to two main rea-
sons. The first is that such protocols are often blocking to the clients
since total order coordination is required per operation. The second
reason is that replicas are considered correct (i.e., not Byzantine)
as long as all replies match; i.e., it requires that replies are exactly
equivalent. In a recent work [5], the authors tried to solve the latter
case by allowing a replica to immediately execute a request, with-
out first establishing a total order, whereas Byzantine agreement
between replicas is used, either periodically or on-demand, to estab-
lish a common state synchronization point as well as to identify the
set of individual operations needed to resolve conflicts. Meanwhile,
the client must wait for enough replies from a majority of replicas
(after Byzantine agreement is achieved) to commit a reply, which is
clearly blocking and impose high delays under network partitions
or high latency. Another major issue is that servers may stop re-
ceiving new requests until Byzantine agreement among servers is
achieved to withstand a Byzantine client. Indeed, we believe that
this is impractical in scenarios where eventual consistency was se-
lected to not forfeit availability. Another approach, followed in [12],

Conference’17, July 2017, Washington, DC, USA

Clients Clients Clients Clients

&1 &Z T l 3 T l S4
(ke <™ m] e Rl e o AB T e |

Front-end

[BFT Proxy] [BFT Proxy] [BFT Proxy]| [BFT Proxy] Back-end
Loose e‘
strong G 5)—®
BFT Cluster

Figure 1: The system model showing how a consistent offset
is always verified through the BFT cluster (back-end) with-
out hindering clients access to application servers S; (front-
end) through eventual consistency. S; are loosely coupled via
a Reliable Causal Broadcast (RCB).

was to modify an existing protocol, i.e., Zyzzyva, to support the
EC model. Unfortunately, this is impractical for two reasons: (1) it
adds more complexity to Zyzzyva whose recovery phase is known
to be very complex to implement and test [9], and (2) the industry
is unlikely to completely replace a currently running middleware
with a new (complex) one. Therefore, we believe that a layered
approach that separates EC logic from Byzantine fault tolerance is
more convenient as it does not require much changes in the running
system.

In this paper, we introduce Byzec , a protocol that makes even-
tual consistency “as secure as possible”, without impact on system’s
availability nor requiring a significant modification to an already
deployed system. The protocol allows the service to run in an
eventually consistent manner whereas Byzantine behaviors are
detected off the critical path, in a back-end process, with the help
of a black-box BFT cluster. In particular, and as described in Fig. 1,
client’s requests are served by an associated application server as
they arrive without immediate synchronization with other servers,
which is done in the background and eventually leading to data
convergence. Decoupled form this front-end logic, a server pro-
gressively sends consistent data offsets to the BFT cluster to be
matched against similar versions of other servers, thus forming
a “certificate”: a signed proof that up to this very offset, data is
equivalent on an appropriate majority of non Byzantine application
servers. The client progressively receives the most recent certificate
along the replies of the associated server. This allows the client to
verify the validity of the certificate; otherwise, it may switch to
another server if it holds a proof (basically an invalid certificate) of
detecting a Byzantine server, or if the certificate is not sufficiently
up to date (which is verified through the other servers as well).

One may argue that our solution is not sufficiently secure as
clients can receive non certified data. While this is true, the client
will be able to progressively detect any misbehaviors once the con-
sistent data offset evolves. In our opinion, adopting more secure
solutions like fault prevention or hiding will impose extra delays as
it is done in the critical path, whereas our solution is accountable
for Byzantine faults without impacting availability. We believe that
in the same sense that the adopters of EC trade strong consistency
— despite being a correctness property — for availability, they will

Ali Shoker, Houssam Yactine, and Carlos Baquero

likely be keen to trade high security in favor of high availability.
What supports our argument is that current EC solutions in pro-
duction still run in the wild without such Byzantine guarantees;
and therefore, they may be less reluctant to adopt secure solutions
like ours provided that availability is not compromised.

The solution we introduce is interesting for both: service and
applications. On the service side, our solution is important as it
guarantees convergence despite the presence of Byzantine servers
or clients, which is not possible in current EC systems. On the
application side, it is interesting due to its flexibility through al-
lowing a spectrum of options: A non sensitive client can proceed
with operations without checking the certificate (i.e., as current
systems do), whereas a very conservative client can only accept
read operations from a certified consistent data (on the expense
of stale data); a trade-off option is to accept a limited number of
operations ahead the certified data as long as they will be verified
in the future and can be rolled back.

We describe a short version of the protocol in the following
sections, leaving the details to a comprehensive study in the future,
accompanied with an empirical evaluation to assess the usefulness
and feasibility of our approach.

2 PROTOCOL

2.1 Background, system model and fault model

We address a system model where application servers are geo-
replicated and (fully) share data structures. A client is directed, via
a load balancer, to a given application server. A client can change
the associated application server through providing an “acceptable”
argument to the load balancer (e.g., the old server is Byzantine). This
is described in the front-end in Fig. 1. To ensure high availability
in face of network partitions, the front-end components follow the
eventual consistency data model: operations of clients are served by
the associated server without prompt synchronization with other
servers, and they are background propagated to other servers via
Reliable Causal Broadcast [2]. Since operations can be applied in dif-
ferent orders on different servers, a conflict resolution method must
be used. Without loss of generality, a recently well known approach
is to use Conflict-free Replicated DataTypes [11] that encapsulate
conflict resolution through mathematically sound policies. At any
time, a server can have a different data version provided that all
replicas will eventually converge to the same state. Obviously, since
a running system is very unlikely to be idle, convergence will not
be observed immediately; however, a consistent offset of the data
must be ensured once the same set of operations are executed on all
replicas and provided that no concurrent operations are expected.
This notion is similar to causal stability used in [1] and background
global sequence formation in [3], both for non Byzantine settings.

Currently, data convergence is guaranteed as long as replicas
execute the operations correctly, and assuming that a crashed sever
can recover to the recent correct state [11, 14]. A single Byzantine
server can however prevent convergence since the wrong execu-
tion of a single operation on the Byzantine server may lead to an
inconsistent data state. In this paper, we assume that f application
servers out of 3f + 1 can be Byzantine, and that any client can be
Byzantine. Note that 2f + 1 application servers are not sufficient as

As Secure as Possible Eventual Consistency

in the case of crash-stop fault models!; to achieve liveness in the
Byzantine model, additional f replicas are required since it is impos-
sible to distinguish a Byzantine node from another one that is just
slow [10]. We also assume the presence of a BFT cluster that runs
a classical BFT state-machine protocol like PBFT [4], Zyzzyva [9]
or even an adaptive mix of these protocols as in Adapt [8]. The
purpose is to use this cluster to achieve agreement using strong
consistency methods. The fact that this cluster uses consensus will
have no impact on the availability of the service once used in the
background, as shown in Fig. 1. In particular, we assume that appli-
cation servers can send (through a BFT proxy process) data offsets
to the BFT cluster, which ensures the agreement of at least 2f + 1
application servers on the common offset.

Finally, we assume that clients and servers (secretly) exchange
cryptographic keys that cannot be broken. We don’t address flood-
ing attacks, we rather assume the existence of another security layer
to guard against them. In addition, we require that clients (that can
be end users, proxies, or third party servers), have a method to
rollback data changes that have been recently made.

2.2 An overview of Byzec

We present an overview of the protocol and we associate the corre-
sponding pseudo-code in the Appendix 3 for convenience (given
the page limits). The protocol works as follows: a client can access
a single server, chosen through a load balancer, following the EC
model. The normal case message pattern, depicted in Fig. 2a, is the
regular case where no Byzantine behaviors are present. Clients fol-
low this case as long as they receive valid certificates. A certificate
is a hash digest of an incrementally consistent data offset that is
signed by at least f + 1 application servers which guarantees its
correctness and integrity. A non Byzantine application server initi-
ates the preparation of a new certificate once it has a new causally
stable operation: an operation for which concurrent operations are
no longer delivered through the RCB [2]. (This is usually known
once a newer operation, in the causal future, is received from each
server.). Since a stable operation has already been executed on all
servers, the data offset corresponding to all stable operations must
be a consistent offset. This is ensured through preparing a corre-
sponding certificate by the application servers, off the critical path,
with the help of a BFT cluster.

A valid certificate informs the client that the data received cor-
responding to that certified data offset is fault-free; however, no
security guarantees are promised for the operations corresponding
to the non-certified data, in favor of high availability. If the certifi-
cate is invalid (Fig. 2b) the client will change the current application
server showing a proof of mis-behavior of the previous server. Once
the client updates its state after communicating with the new server,
it rolls back the non-certified operations and returns to the normal
case.

The remaining case is when the received certificate from a server
is outdated — it has not been updated for a “long” time. This can be
due to two reasons: either the server is Byzantine, or there is some
network partitioning or delays preventing the certificates from
being updated on all servers — because causal stability does not take

Read and Write quorums must interest in at least one non faulty server even under
network partitions.

Conference’17, July 2017, Washington, DC, USA

valid certificate
C \ /
S1

(a) Normal case

invalid certificate

LN\ L

(b) Invalid certificate
c outdated certificate f+1 certificates
s1 \ / \ /
2 X
S3 \

(c) Outdated certificate

Figure 2: Messaging patterns of the protocol.

place on these conditions and the consistent offset stays the same.
In the latter case, it is enough for the client to receive f +1 matching
responses showing that the certificate is up to date; consequently,
the client will have no advantage of changing a server. Notice that
f + 1 matching replies are enough to rule out Byzantine faults and
at the same time tolerate network partitions. To the contrary, if the
certificate is too old according to f + 1 servers which hold a more
up-to-date certificates, these servers add the Byzantine server to the
blacklist and reply back to the client. Once f + 1 matching replies
are received by the client, it becomes eligible to as for changing the
server and continue through the normal case again.

3 CONCLUSION AND FUTURE WORK

Eventual consistency (EC) is a weak data consistency model that fa-
vors availability over consistency. Although EC is becoming promi-
nent in large deployments [6, 14], data convergence approaches
only address the Crash-Recovery fault model, and thus adequate
support for stronger fault models (like the Byzantine model) is
still missing. Recent works (like [5, 12]) tried to solve the problem,
but the result was at the expense of the most important criteria in
such system which is availability, as it required blocking all clients
during synchronization between replicas.

Byzec, outlined here, is a new protocol that handles this issue
by respecting the essence of EC: the protocol gives priority to high
availability, and thus Byzantine faults detection is performed in
background, off the critical path on a consistent data offset. Given
that design, Byzec can be used as an added value for practical EC
based systems, increase security and fault-tolerance without affect-
ing performance. We are currently implementing the protocol to
assess its behavior and performance. We plan to drive an empiri-
cal study to compare Byzec with classical BFT models as well as
existing optimistic BFT models.

REFERENCES

[1] Carlos Baquero, Paulo S Almeida, and Ali Shoker. 2014. Making Operation-Based
CRDTs Operation-Based. In Distributed Applications and Interoperable Systems -
International Conference, DAIS 2014. 126—-140.

[2] Kenneth Birman, André Schiper, and Pat Stephenson. 1991. Lightweight Causal
and Atomic Group Multicast. ACM Trans. Comput. Syst. 9, 3 (Aug. 1991), 272-314.

Conference’17, July 2017, Washington, DC, USA

DOI: https://doi.org/10.1145/128738.128742

Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fihndrich.
2015. Global Sequence Protocol: A Robust Abstraction for Replicated Shared
State. In 29th European Conference on Object-Oriented Programming, ECOOP
2015, July 5-10, 2015, Prague, Czech Republic (LIPIcs), John Tang Boyland (Ed.),
Vol. 37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 568-590. DOI:
https://doi.org/10.4230/LIPIcs. ECOOP.2015.568

[4] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault Tolerance
and Proactive Recovery. ACM Trans. Comput. Syst. 20, 4 (Nov. 2002), 398-461.
DOI:https://doi.org/10.1145/571637.571640

[5] Hua Chai and Wenbing Zhao. 2014. Byzantine Fault Tolerance for Services with
Commutative Operations. In Proceedings of the 2014 IEEE International Conference
on Services Computing (SCC °14). IEEE Computer Society, Washington, DC, USA,
219-226. DOI:https://doi.org/10.1109/SCC.2014.37

[6] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.
SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 205-220. DOI:https://doi.org/10.1145/
1323293.1294281

[7] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-tolerant Web Services. SIGACT News 33, 2 (June
2002), 51-59. DOI:https://doi.org/10.1145/564585.564601

[8] Jean-Paul Bahsoun, Rachid Guerraoui, and Ali Shoker. 2015. Making BFT Proto-
cols Really Adaptive. In In the Proceedings of the 29th IEEE International Parallel
& Distributed Processing Symposium (IPDPS’15). IEEE-CS.

[9] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2010. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Trans.
Comput. Syst. 27, 4, Article 7 (Jan. 2010), 39 pages. DOI :https://doi.org/10.1145/
1658357.1658358

[10] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-
erals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 382-401. DOI:
https://doi.org/10.1145/357172.357176

[11] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011.

Conflict-free Replicated Data Types. In Proceedings of the 13th International

Conference on Stabilization, Safety, and Security of Distributed Systems (SS5’11).

Springer-Verlag, Berlin, Heidelberg, 386-400. http://dl.acm.org/citation.cfm?id=

2050613.2050642

Atul Singh, Pedro Fonseca, Petr Kuznetsov, Rodrigo Rodrigues, and Petros

Maniatis. 2009. Zeno: Eventually Consistent Byzantine-fault Tolerance. In

Proceedings of the 6th USENIX Symposium on Networked Systems Design and

Implementation (NSDI'09). USENIX Association, Berkeley, CA, USA, 169-184.

http://dl.acm.org/citation.cfm?id=1558977.1558989

[13] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden. 2007. Tol-
erating Byzantine Faults in Transaction Processing Systems Using Commit
Barrier Scheduling. SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 59-72. DOI:
https://doi.org/10.1145/1323293.1294268

[14] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (Jan. 2009),
40-44. DOI:https://doi.org/10.1145/1435417.1435432

=

[12

A THE PSEUDOCODE OF BYZEC

We provide the pseudocode of Byzec for the client, application
server, and BFT cluster in Algorithm 2, 31, and 4, respectively. The
algorithms make use of some abstractions, defined in Def. 10, which
we avoid to include in the pseudocode as they are self-explanatory,
and to keep the description concise and clear.

A.1 The client protocol

On start, a client chooses an application server s through any load
balancing approach. When a user invokes a new operation o, the
client sends a REQUEST to the associated application server (Al-
gorithm. 2, lines 10-13), where Ngeq is the last sequential client’s
request number, ¢; is the client identifier and ()¢, is the encrypted
security token (e.g. digital signature and hash digest) signed with
the private key « if the client.

When a client receives a RESPONSE from the associated server
(Algorithm. 2, lines 14-26), where m is the received message and
o’ is the last received certificate, it checks its validity (i.e., authen-
tication, integrity, and sequence number): if it received a number
of invalid messages (defined in a policy), it simply changes the

Ali Shoker, Houssam Yactine, and Carlos Baquero

application server through the load balancer (Algorithm .2, lines
15-20). However, if the message holds an invalid certificate, the
client sends a COMPLAIN message to all other application servers.
Otherwise, the client processes the received message.

When a client receives f + 1 matching and valid BLACKLIST
messages as a response to its COMPLAIN request (Algorithm. 2,
lines 27-36), it updates its blacklist accordingly, requests a new
server (if its associated server is blacklisted), and resumes sending
REQUEST in the normal case.

A.2 The server protocol

On receiving a valid client’s REQUEST (Algorithm. 3, lines 10-17),
the associated application server checks the received message’s
validity. According to the retransmission policy, the server resends
a stored RESPONSE message if it was executed earlier; otherwise,
it processes the new operation and sends a RESPONSE to the client
with its last certificate. On the other hand, when the server re-
ceives a COMPLAIN from a client (Algorithm. 3, lines 18-22) due
to detecting an old certificate, the server checks for message’s va-
lidity (mainly the signatures in the old certificate and the corre-
spoding server) to make sure that the client is not lying. If the
message is invalid, the server drops it; otherwise, it updates the list
of Byzantine servers by adding the outdated received certificate to
the BLACKLIST, broadcasts it to other servers, and sends it back to
the client.

When an application server reaches stability at time 7 (Algorithm.
3, lines 24-25), it generates a digest for a consistent offset including
causally stable operations and sends a STABLE message to the
BFT cluster, asking for new certificate synchronization with other
servers. Once the new certificate o’ is received (Algorithm. 3, lines
26-31), the application server checks if the received certificate is
valid and updates its old certificate ¢ with a new one ¢”.

A.3 The BFT cluster protocol

When the BFT cluster receives a digest of a consistent offset STABLE
from a (non Byzantine) server (Algorithm. 4, lines 1-7), the BFT clus-
ter checks the received message’s validity and drops the message if
it is invalid. Otherwise, it tries to match at least 2f + 1 messages
with same new updated certificate to broadcast it to all servers. The
BFT cluster algorithm we provide excludes the encapsulated BFT
state-machine protocol that is used as a black box.

https://doi.org/10.1145/128738.128742
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.1145/571637.571640
https://doi.org/10.1109/SCC.2014.37
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/357172.357176
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=1558977.1558989
https://doi.org/10.1145/1323293.1294268
https://doi.org/10.1145/1435417.1435432

As Secure as Possible Eventual Consistency

Conference’17, July 2017, Washington, DC, USA

Definitions 1: Auxiliary abstractions.

Algorithm 3: The server protocol.

-

M)

oW

o

=)

~

o

©

10

loadBalance() : chooses a server through load balancing.

validMsg(): encapsulates authentication, integrity, and sequence nb of
a messages.

validCertificate(): checks if certificate is signed by f + 1 servers.

validPolicy(): a retransmission policy followed by clients and servers.

outdatedCertificate(): a certificcate has not been updated for a long
time according to a certain policy.

rollback(): rolls back requests issued after last correct certificate.

matching() : checks if messages are matching.

stable(): returns a timestamp that has become causally stable.

stableOffset() : returns a datatype offset corresponding to a stable
timestamp.

bftAgree(): returns a certificate signed by all BFT agreed servers on a
stable timestamp and corresponding digest.

Algorithm 2: The client protocol.

10
11
12

13

15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35

36

init:

s := loadBalance(S)

NReq =0

NCompIain =0

lastReq := ¢

BList := ¢

Buffered := ¢

o:=¢

data := ¢

on invoked; (OPERATION, o):
NReq 1= NReq + 1

lastReq := (NReg, 0, ;)
send(REQUEST, (IastReq}ﬁ‘i, s)

on receive; (RESPONSE, in = (m, 0/)$):
if —validMsg(in, s) Vv
—validCertificate(c”’) then

if —validPolicy() then
s := loadBalance(S)
data := rollback(data, o);
send(REQUEST, (IastReq)?I_, s)
else
if outdatedCertificate(c’) then
NCompIain = NCompIain +1
send(COMPLAIN, (Ncomplain» in)f:’i, S)

else
‘ process(m)

on receive; (BLACKLIST, in = (bList, o‘)‘s);_):
if - validMsg(in, s;) then
‘ dropMsg((bList, J)gj.)
else
add(Buffered, bList)
if matching(Buffered) > f then
BList := bList
if s € BList then
‘ s := loadBalance(S)
send(REQUEST, (IastReq)ﬁ’i, s)

10
11
12
13

15

16
17

19
20
21
22

24
25

26
27
28
29
30
31

Init:
data:= ¢
Vi € I, LastRes[i] = 0
Vi € I, Npeg[i] = 0
o=¢
BList := ¢
timestamp := (0,0...)
seq:=0
With Clients:
on receivej(REQUEST, in = <m>g.):
if —validMsg(in, c;) then
if validPolicy() then
\ send (RESPONSE, (LastRes[il, 0)¢, ¢;)
else
‘ dropMsg(in)
else
LastRes[i] := process(m, data, timestamp)
NReq[i] := Nreq[i] +1
send(RESPONSE, (LastRes[,]O')‘s);., ci)

on receivej(COMPLAIN, in = ((m, 0)¥ g‘l)
if —validMsg(in, c;) then
‘ dropMsg(in)
else
add(BList, outdatedCertificate((m, o)¥, s))
send(BLACKLIST, (BList, o)g’;, ci)

With BFT Cluster:

on stable;(7):

consistentOffset := stableOffset(data, 7)
D := Digest(consistentOffset)
send(STABLE, (D, , seq}?j., BFTCluster)

on receive;(CERTIFICATE, in = (c¢’, seq)Z‘):
if —validMsg(in, b) then
‘ dropMsg(in)
else
if validCertificate(o”, seq, seq) then
‘ o:=0

Algorithm 4: The BFT cluster protocol.

1

2
3
4

5
6

®

With BFT Cluster:

on receive;(STABLE, in = (D, stableTS§, seq>§;)z
if —validMsg(in, s;) V then
‘ dropMsg(in)
else
(cert, Servers) := bftAgree(D, stableTS, seq)
if | Servers |> 2f + 1 then
‘ send(CERTIFICATE, (cert, seq)%, Servers)

	Abstract
	1 Introduction
	2 Protocol
	2.1 Background, system model and fault model
	2.2 An overview of Byzec

	3 Conclusion and Future Work
	References
	A The pseudocode of Byzec
	A.1 The client protocol
	A.2 The server protocol
	A.3 The BFT cluster protocol

