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Abstract— The scheduling of preventive maintenance actions 

of generators is not a new problem but gained in recent years a 

new interest with the advent of electricity markets. In this paper 

we report the research on this topic developed during the 

preparation of the MSc Thesis of the second author. In this paper 

we formulate the problem as a mixed integer optimization 

problem and we describe the use of Simulated Annealing to solve 

it. Simulated Annealing is a very appealing metaheuristic easily 

implemented and providing good results in numerous 

optimization problems. The paper includes results obtained for a 

Case Study based on a realistic generation system. This research 

work was proposed and developed with the collaboration of the 

third and fourth authors, from EDP Produção, Portugal. 

Index Terms-- preventive maintenance, generators, scheduling, 

Simulated Annealing. 

I.  INTRODUCTION 

he scheduling of preventive maintenance actions of 

thermal generators has been subject of study and analysis 

by many researchers. This implicitly recognizes the 

importance of this topic in the past in the sense that this was 

considered a complex problem, whose solution affected the 

daily unit commitment and the dispatch of the generation 

systems. The problem had a variety of formulations and 

integrated a number of variables and constraints, reflecting 

different levels of refinements that were progressively 

introduced. Nevertheless, a number of features were common 

to all these formulations: one aimed at scheduling the 

maintenance actions of a set of generators along a period of 

typically one or two years discretized in weeks, ensuring that 

the expected demand was supplied, that the maintenance 

period of each generator was continuous in time, that the 

number of maintenance crews available for each generation 

technology was not exceeded and that at least one maintenance 

action was scheduled for each generator along the period 

under analysis. Typically this corresponded to a combinatorial 

problem formulated using binary variables having the value 1 

if a particular generator was scheduled for maintenance in a 

particular week. The objective of this problem was usually the 

minimization of the generation cost along the planning period. 
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 With the introduction of market mechanisms in the 

electricity sector, this problem started to receive increased 

attention given the implications that the adoption of a good 

preventive maintenance schedule can have in the revenues of 

generation agents. In this scope, the Preventive Maintenance 

Scheduling, PMS, problem gained new dimensions given that 

it is now strongly affected by uncertainties namely determining 

the behaviour of the demand, by the presence of renewable 

generation, several of them dependent on volatile primary 

resources, and also being dependent on electricity prices now 

determined by market mechanisms. 

In this context, this paper describes a PMS model developed 

in the scope of the MSc thesis concluded in July 2009 by the 

second author and in close cooperation with a Portuguese 

generation company. The model aims at minimizing the cost of 

generating electricity to meet the demand along the period of 

one year discretized in 52 weeks, considering minimum and 

maximum limits of generation units, as well as several other 

constraints directly related with the maintenance problem. The 

problem includes binary variables to model a generator being 

scheduled for maintenance in a particular week. In order to 

solve this combinatorial problem it was used a well known 

meta-heuristic, Simulated Annealing that proved to be very 

efficient in several tests that were performed. This paper 

includes a Case Study considering a generation system 

integrating 29 generators and expected values both for weekly 

values of the demand and of the market prices of electricity. 

According to these ideas this paper is structured as follows. 

Section II summarizes some models and approaches available 

in the literature addressing the generator preventive 

maintenance problem. Section III describes the optimization 

problem and Section IV details the application of Simulated 

Annealing to solve it. Finally, Section V presents the Case 

Study and Section VI draws the most relevant conclusions. 

II.  GENERATOR PREVENTIVE MAINTENANCE APPROACHES 

The definition of schedules to implement preventive 

maintenance actions on generation units has been addressed in 

the past as it is recognized by the number of papers on this 

topic. These formulations can be grouped in two large sets: the 

first one including approaches using traditional optimisation 

techniques and the second adopting metaheuristics to address 

the integer nature of several variables. 

Regarding the first group, reference [1] formulates the 

optimization problem to identify the most adequate 

maintenance schedule using an objective function that 

aggregates 5 terms – the expected energy generation cost along 

the period under analysis, the maintenance cost, a reliability 
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driven term, a term related with deviations of the maintenance 

program regarding the ideal frequency to develop maintenance 

actions and, finally, a term related with penalties for 

constraints that are not fully enforced. On the other hand, in 

[2] the generator maintenance problem is formulated as a 

large-scale mixed integer non-linear optimization problem and 

the author discusses the impact on the solution of relaxing 

several constraints as well as the integer nature of some 

variables. In this paper the author adopts a combined implicit 

enumeration and branch-and-bound algorithm. A similar 

formulation is described in [3] considering the generation cost, 

a reliability index and penalties for violated constraints. 

Reference [4] discusses the benefits of developing optimal 

maintenance generator schedules given that sub-optimal 

programs lead to higher generation costs and lower reliability 

of the generation system and of the entire power system. Apart 

from that, the maintenance programs affect short and long-

term operation and planning actions as unit commitment, 

pumping and hydro scheduling. In the developed approach the 

authors use two optimization criteria – generation cost and 

reliability, and the formulation uses integer variables ikx  that 

if equal to 1 indicate that the maintenance period of unit i 

starts at week k. The developed approach uses a probabilistic 

production cost algorithm based on cumulants in order to get 

the generation cost for the period under analysis. 

Reference [5] proposes a more complex formulation 

considering a longer planning period and network constraints 

as well as generator outages. Given the complexity of the 

resulting problem, the authors use Benders Decomposition to 

consider network constraints in each planning sub-period. 

Regarding the second group, there are several papers using 

Simulated Annealing, Genetic Algorithms, Tabu Search and 

fuzzy models to consider different particular aspects of the 

problem. In this scope, [6] formulates the generator scheduling 

maintenance problem in a similar way regarding [4] 

considering an objective function that includes two terms 

(generation cost and maintenance cost) and constraints related 

with the continuity of the maintenance actions once started, 

with the availability of crews to develop maintenance actions 

for a given generator technology, with specified sequences of 

maintenance actions for some units, with the generator output 

limits and with the supply of the demand along the period. 

This mixed integer problem is solved using Simulated 

Annealing and the scheduling programs obtained with this 

approach and with an Integer Programming traditional 

technique are compared considering a small, a medium and a 

large generation system. The Simulated Annealing based 

approach provides faster solutions for the small and medium 

systems with comparable costs. For the larger generation 

system the Integer Programming approach is not able to get a 

solution while the Simulated Annealing provides one. 

References [7, 8, 9] describe the use of Genetic Algorithms, 

combined with Simulated Annealing in case of [8, 9]. The 

authors implemented genetic operators to prevent the 

premature convergence of the simulation together with 

efficient encoding/decoding techniques concluding that GA’s 

are very effective in dealing with the PMS problem. 

The approach described in [10] uses Genetic Algorithms 

together with fuzzy membership functions to model the two 

objectives included in this formulation – the reserve margin 

and the generation cost. Regarding the constraints, this 

formulation considers limitations on the number of available 

maintenance crews, limitations on the number of generators in 

maintenance in the same geographical area in order to limit 

power transfers between areas and the definition of a window 

of weeks during which each generator maintenance should be 

scheduled. Reference [11] also uses a Genetic Algorithm 

combined with a fuzzy function to evaluate the solutions. This 

function combines a crisp penalty function to model the 

inflexible demand constraint together with fuzzy penalty 

functions to model the objective and other constraints. In [12] 

it is described a fuzzy approach that is able to deal with 

uncertainties affecting the demand and the generation and 

maintenance costs. This approach uses triangular fuzzy 

numbers to model the demand and an evolutionary algorithm.  

In [13, 14] the PMS problem is solved using Tabu Search. In 

[13] it is used a multi-stage approach to decompose the 

problem in several sub-problems. The partial results are then 

combined to produce the global maintenance schedule. In [14] 

the formulation uses the generation cost and the reserve 

margin as objectives and the constraints are related with the 

availability of crews, predefined sequence of maintenance 

actions for several units and continuity of the maintenance 

period once a maintenance action starts. The plans provided by 

the Tabu Search algorithm for two generation systems (one 

with 4 units and another with 22 units) were compared with the 

results obtained with an implicit enumeration approach. The 

results obtained with Tabu Search were very promising given 

the more reduced computation time and their good quality. 

References [15, 16] compare the performance of several 

metaheuristic approaches, namely Tabu Search, Simulated 

Annealing, Genetic Algorithms, an hybrid Simulated 

Annealing/Genetic Algorithm approach and an hybrid Tabu 

Search/Simulated Annealing algorithm. The authors report that 

the combined use of Simulated Annealing/Genetic Algorithm 

and of Tabu Search/Simulated Annealing produces better 

results than the isolated use of a single metaheuristic, although 

the computational time is sometimes longer. 

Finally, in [17] the PMS problem is formulated as a dynamic 

non-cooperative game and the players aim at maximizing their 

profits coming from selling electricity in the market. The 

solution corresponds to a Nash equilibrium that is obtained 

using a backward induction scheme. 

III.  MATHEMATICAL FORMULATION 

A.  General Ideas  

 The developed model considers that thermal stations are 

either available or completely unavailable due to an outage. 

Regarding maintenance, the units are either completely in 

maintenance or not in maintenance. When available, this 

means the maximum output of each unit is constant. Regarding 

the constraints, the formulation considers the following ones: 

- the maintenance action is performed continuously. This 
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means that when started, an unit is unavailable for 

maintenance for a number of weeks corresponding to the 

duration of the action; 

- each unit should be submitted to one maintenance action 

per year; 

- the demand should always be satisfied; 

- there is a limited number of crews to implement 

maintenance actions for each generation technology. 

Considering these general ideas, the formulation aims at 

minimizing the generation cost along a planning period T, 

discretized in 52 weeks. The week demand is represented by a 

diagram organized in 5 steps as follows: 

- Step 1 – 5% of the week, corresponding to 8,4 hours; 

- Step 2 – 30% of the week, corresponding to 50,4 hours; 

- Step 3 – 18% of the week, corresponding to 30,24 hours; 

- Step 4 – 20% of the week, corresponding to 33,6 hours; 

- Step 5 – 27% of the week, corresponding to 45,36 hours. 

Finally, the approach was developed to schedule 

maintenance actions of thermal units. In case the system has an 

hydro component and/or renewable and dispersed generation 

not submitted to dispatch and paid according to feed-in 

schemes, it should be estimated the demand to be supplied by 

the thermal sub-system subtracting the hydro and dispersed 

generation components from the total demand for each period. 

B.  Optimization Problem 

Given the above general aspects, we used the following 

notation to formulate the optimisation problem: 

- kjC  - generation cost of unit k, in step j; 

- kjtP  - generation of unit k, in step j, in week t; 

- j∆  - duration in hours of step j; 

- jtD - demand in step j, in week t; 

- jtH - hydro generation in step j, in week t; 

- jtW - wind generation in step j, in week t; 

- jtOG - other generation in step j, in week t; 

- jtINT - power from interconnections with other countries in 

step j, in week t; 

- +
kjt

P  and −
kjt

P  - maximum and minimum powers for unit k, 

in step j, in week t; 

- ktm  - state of unit k in week t regarding maintenance. If 

1mkt =  unit k is in maintenance in week t. If 0mkt =  then it 

is not in maintenance; 

- kti  - operation state of unit k, in week t; 

- ktf  - state of unit k in week t regarding forced outages; 

- kP - rated power of unit k; 

- kja - availability of unit k in step j; 

- kS - duration in weeks of the maintenance action of unit k; 

- kt - week in which the maintenance action of unit k will 

start; 

- −
k

t  to +
k

t - initial and final weeks of the period during 

which the maintenance action of unit k should be initiated; 

- +
rV - maximum number of units of the same technology r 

that can be in maintenance simultaneously; 

- rV  - set of units of the same technology r; 

- K – number of units; 

- J – number of steps used to model the demand; 

- T – total number of weeks; 

- R – number of different thermal generator technologies. 

 According to this notation the generator maintenance 

scheduling problem is formulated as follows: 

( )∑ ∑ ∑=
= = =

T

1t

J

1j

K

1k
jkjtkj .PC Zmin ∆  (1) 

subj. ∑ −−−−=
=

K

1k
jtjtjtjtjtkjt INTOGWHDP  

  for j=1…J; t=1…T (2) 

 +− ≤≤
kjtkjtkjt

PPP  for k=1…K; j=1…J; t=1…T (3) 

 ( ) ( ) kjkktktktkjt
a.P.f1.i.m1P −−=+   

  for k=1…K; j=1…J; t=1…T (4) 

 ∑ =
=

T

1t
kkt Sm  for k=1…K (5) 

 ∑ =
−+

=

1kSkt

ktt
kkt Sm  for k=1…K (6) 

 +− ≤≤
kkk

ttt  for k=1…K (7) 

 kkk
S1tt ≥+− −+  for k=1…K (8) 

 ∑ ≤
∈

+

Vrk
rkt Vm  for r=1… R (9) 

 { }1,0mkt ∈  for k=1…K; t=1…T (10) 

In this formulation, we aim at minimizing the generation 

cost to supply the demand along the period T. As mentioned 

before, this period T is organized in weeks and the demand is 

specified by a load diagram organized in J steps. This 

objective function is subjected to the following constraints: 

- constraints (2) enforce that the demand jtD is supplied in 

each step j and in every week t. This supply is obtained 

using the K  generation units and also by hydro 

generation, jtH , by wind parks, jtW , by other generation 

sources, jtOG , and by interconnections with other 

countries, jtINT ; 

- constraints (3) bound the output of the K  units to 

minimum and maximum values, in each step j and in each 

week t; 

- constraints (4) determine the maximum output of unit k, 

in each step j and week t. This maximum output depends 

on the rated power of the unit, kP , on its availability 

regarding maintenance modeled by the variable ktm , on 

its availability regarding forced outages modeled by kti  

and on the availability of unit k in step j modeled by kja ; 

- constraints (5) enforce that each unit k has to be 

subjected to a maintenance action per year with a 

duration of kS  weeks; 
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- constraints (6) enforce that the kS  weeks during which 

unit k is in maintenance are continuous; 

- constraints (7) indicate that the maintenance action of 

unit k has be initiated between weeks −
kt  and +

k
t ; 

- constraints (8) enforce that that the maintenance action of 

unit k has to be finished before +
k

t ; 

- constraints (9) limit the number of simultaneous 

maintenance actions of units of the same technology r, 

given the available number of crews for technology r; 

- finally, (10) indicates that variables ktm  are binary ones. 

IV.   SIMULATED ANNEALING – AN OVERVIEW 

In the last decade, several optimization techniques emerged 

both in conceptual terms and in current applications. These 

techniques, often called meta-heuristics, include Tabu Search, 

Neural Networks, Simulated Annealing, Genetic Algorithms 

and its development to Genetic Programming. Literature 

includes nowadays a large number of papers reporting 

applications of these techniques to several problems showing 

their success and their special ability to address problems 

having some particular characteristics. 

In particular, Simulated Annealing and Genetic Algorithms 

are used to address combinatorial problems due to the 

presence of discrete variables. Traditionally, this type of 

problems could be tackled in a two-step approach. In a first 

phase, discrete variables were relaxed into continuous ones, 

and then the output was rounded to the nearest integer. As it is 

easily understood, this does not ensure that the selected integer 

solution corresponds to the optimal one. Other approaches 

adopted branch-and-bound based techniques, usually leading 

to a large amount of computation time. 

However, there are two aspects that must be mentioned: 

- several continuous optimization algorithms – as gradient 

techniques – often converge to local optima as illustrated 

in Figure 1. Gradient-based approaches can converge to 

solution A and the iterative process will be trapped there 

since derivatives are zero. Apart from that, the final 

solution can vary depending on initialization conditions; 

- secondly, in several real life problems, decision makers 

are not really interested in the global optimum. They are, 

in fact, interested in a good or adequate solution, for 

which some quality index is evaluated. The process 

would end if an improvement, although not impossible to 

obtain, can lead to a large computational time. 

 

iter 

f 

B 

A 

 
Fig. 1.  Illustration of an optimization process with local optima. 

Simulated Annealing was developed by Kirkpatrick et al 

[18, 19] based on the Metropolis algorithm dated from 1953. It 

is a search procedure in which it is included the possibility of 

accepting a solution that is worse than the current one. The 

simulation starts at an initial solution, 1x , evaluates it using an 

evaluation function, )x(f 1 , and samples a new solution in the 

neighborhood of 1x . If this new solution improves )x(f 1 , then 

it is accepted. If it is worse than the current one, it can still be 

accepted depending on a so-called probability of accepting 

worse solutions. This mechanism eventually allows escaping 

from a local optimum, as point A in Figure 1, and go on 

iterating towards point B. In a more formal way, the algorithm 

can be summarized as indicated in the next paragraphs 

admitting a minimization problem. 

Simulated Annealing Basic Algorithm 

i) Initialization: Select an initial solution 1x  in the solution 

space X. Evaluate 1x , )x(f 1 ; 

ii) Assign 1x  to *
x  and )x(f 1  to )x(f * . The sign * denotes 

the best solution identified until this step; 

iii) Step n=1, 2,…, n. nx  denotes the current solution at 

iteration n. Obtain a new solution x in the neighborhood of 

nx  using a sampling process; 

iv) Testing: 

a.if  )x(f)x(f n≤ then assign x to 1nx + ; 

if *)x(f)x(f ≤ then assign x to *
x  and )x(f  to )x(f * ; 

b. else 

i. get a random number p in [ ]0.1;0.0 ; 

ii. evaluate the probability of accepting worse solutions 
at iteration n, p(n), using (11); 

eTemperaturBoltzK

)x(f)nx(f

e)n(p ⋅

−

=  (11) 

if )n(pp ≤  then assign x  to 1nx + ; 

v) End if a stopping rule is reached. Otherwise go to iii). 

In expression (11), BoltzK  represents the Boltzman constant. 

Regarding this algorithm there are some issues to be clarified: 

- the solution of a combinatorial problem, CP, has a clear 

analogy with the cooling process of a thermodynamic 

system, TDS. In this analogy, a state of a TDS is 

equivalent to the solutions or combinations of a CP. The 

energy of a TDS corresponds to the evaluation function, 

f, of the CP and the temperature of a TDS corresponds to 

the control parameter of the CP problem; 

- a TDS system should be cooled in a slow way. This 

enables sub-systems to reorganize themselves so that a 

low energy system is built. Similarly, the temperature of 

the CP must be lowered in a sufficiently slow way in 

order to identify a good quality solution; 

- the temperature T is usually lowered by steps 

corresponding to a maximum number of iterations. Once 

this maximum is reached, the current temperature is 

lowered by a cooling parameter α , in [ ]0.1;0.0 . According 

to this scheme, at the beginning of the simulation, the 

probability of accepting worse solutions, p(n), is larger. 

This turns it more probable to accept worse solutions 

making the search more chaotic in the sense that larger 

areas of the solution space are searched. As the process 

goes on, the temperature is lowered, turning it more 
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difficult to accept worse solutions. This means that the 

search is eventually being conducted in a promising area 

from where one doesn’t want to leave; 

- the Simulated Annealing algorithm proceeds from one 

solution x to another one in its neighbourhood. The 

definition of the neighbourhood of x, N(x), is a strategic 

aspect of the algorithm in the sense it has an impact on 

the design of the final solution. The structure of N(x) is 

quite simple to define in discrete problems. As an 

example, Simulated Annealing can be used to minimize 

transmission losses in a network by changing taps of 

transformers or of capacitor banks. Departing from the 

nominal positions, one can simply sample a transformer 

or capacitor, and then sample if the tap goes upwards or 

downwards by one step. This leads to a neighbour 

solution regarding the current one; 

- finally, the search procedure ends if a stopping rule is 

achieved. This can correspond to the absence of 

improvements in a pre-specified number of iterations, to 

perform a maximum number of iterations or to lower the 

temperature parameter till a minimum level. 

V.  SOLUTION ALGORITHM 

The discrete nature of the PMS problem justified the 

adoption of Simulated Annealing given its natural adaptation 

to incorporate discrete variables and parameters and its 

implementation easiness. This metaheuristic starts at an initial 

maintenance schedule and evolves to a new schedule by 

sampling new maintenance periods for some units. Each 

schedule is evaluated considering the generation costs along 

the whole period T, plus penalties on violated constraints. A 

new solution is then identified in the neighborhood of the 

current one and after evaluating this new solution, a decision is 

taken to accept it or not. The following paragraphs detail the 

application of Simulated Annealing to this particular problem. 

i) Consider an initial maintenance schedule, denoted by ox ; 

ii) Analyze the current solution: 
a. compute the generation cost along the period T; 
b. check if any constraints (2) to (9) is violated; 

c. the value of the Evaluation Function oEV  is the sum of 

the generation cost plus penalties on violated 
constraints; 

d. assign oEV  to optEV  and to currentEV ; 

e. assign ox  to optx  and to currentx ; 

f. set the iteration counter, IC , to 1; 

g. set the worse solution counter, WSC , at 0; 

iii) Identify a new schedule. Sample an unit k and sample a 

week between −
k

t  and +
k

t  to start its maintenance. The new 

schedule is denoted as newx ; 

iv) Analyze the new schedule computing the generation cost 

and looking for violated constraints. Obtain newEV ; 

v) If optnew EVEV <  then 

a. assign newEF  to optEF  and to currentEF ; 

b. assign newx  to optx  and to currentx ; 

c. set the worse solution counter, WSC , at 0; 

vi) If optnew EFEF ≥  then  

a. get a random number [ ]0.1;0.0p ∈ ; 

b. compute the probability of accepting worse solutions 

)x(p new  by (12); 

 T.BoltzK

newEFcurrentEF

new e)x(p

−

=  (12) 

c. if )x(pp new≤  then assign newx  to currentx  and newEF  

to currentEF ; 

d. increase the worse solution counter, WSC , by 1; 

vii) If WSC  is larger than a specified maximum number of 

iterations without improvements than go to ix); 

viii) If the iteration counter IC  is larger than the maximum 

number of iterations per temperature level then: 

a. decrease the temperature level T by a rate α  smaller 

then 1.0; 

b. if the new temperature level is smaller then the 

minimum allowed temperature then go to ix); 

c. set the iteration counter IC  to 1; 

Else, increase the iteration counter IC  by 1; 

Go back to iii); 
ix) End. 

VI.  CASE STUDY 

A.  Data 

The generation test system includes 29 thermal units as 

follows: 

- coal fire plants – 2360 MW in 8 units; 

- CCGT – 3006 MW in 8 units; 

- fuel oil – 1708 MW in 11 units; 

- diesel – 165 MW in 2 units. 

Apart from these units, the generation system also has inputs 

from hydro stations, wind parks, other generation sources (as 

cogeneration and small hydro stations dispersed along the 

network) and interconnections with other countries. In order to 

incorporate a reliability index in the model, we also considered 

a fictitious station to model Energy Not Supplied. This station 

has a very large generation cost when compared with the costs 

of the other thermal stations. This means that, in a given week 

t and demand step j, it will be dispatched only if the other 

cheaper stations are already in the limit. This implicitly means 

that the corresponding maintenance schedule has a large 

concentration of units simultaneously in maintenance in the 

same weeks so that the demand is larger than the available 

capacity leading to Energy Not Supplied. Since the cost of the 

mentioned fictitious generator is very large, we are in fact 

penalizing this maintenance schedule solution. 

For each of the mentioned 29 thermal stations we specified 

the corresponding variable generation cost, the minimum 

output power, the forced outage rate, the duration in weeks of 

the corresponding maintenance. As an example, Table I 

includes the installed capacity, the duration of the maintenance 

and the forced outage rates. 

Apart from these elements, we also specified the number of 

crews available for each technology, the demand for step j in 

each week t, the duration of each step as indicated in Section 

III.A and the energy obtained from the hydro subsystem, from 
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the wind parks, from other generation sources and from the 

interconnections for each step j and week t. This means that 

for each step j and week t it is possible to obtain the energy to 

be supplied by the thermal system and according with these 

values and the generation variable costs it is possible to obtain 

a dispatch and so to estimate the generation cost of that period. 

TABLE I – DATA FOR THE THERMAL GENERATION SYSTEM. 

Type Pmax 

MW 

Sk 

week 

FOR 

% 

Type Pmax 

MW 

Sk 

week 

FOR 

Coal1 292 3 3.40 CCGT8 330 4 4.80 

Coal2 292 3 3.40 Fuel1 236 6 8.50 

Coal3 292 3 3.40 Fuel2 236 6 8.50 

Coal4 292 3 3.40 Fuel3 236 6 8.50 

Coal5 298 3 8.70 Fuel4 236 6 8.50 

Coal6 298 3 8.70 Fuel5 118 5 13.70 

Coal7 298 3 8.70 Fuel6 118 5 13.70 

Coal8 298 3 8.70 Fuel7 118 5 13.70 

CCGT1 420 3 1.10 Fuel8 118 5 13.70 

CCGT2 420 3 1.10 Fuel9 118 5 13.70 

CCGT3 392 3 1.10 Fuel10 118 5 13.70 

CCGT4 392 3 1.10 Fuel11 56 5 11.50 

CCGT5 392 3 1.10 Diesel1 82,5 2 4.30 

CCGT6 330 4 4.80 Diesel2 82,5 2 4.30 

CCGT7 330 4 4.80 ENS 1000 -- -- 

B.  Results for Simulation 1 

In the first simulation we admitted that all units were 

available in all weeks during the year, that is 1ikt =  for every k 

and t. On the other hand there is no preference on particular 

weeks to subject units to the maintenance actions. This means 

that in this first simulation we admitted that 1tk =−  and that 

52t
k

=+ . In order to run the Simulated Annealing algorithm we 

specified that the number of iterations to run at the same 

temperature level was 200, that the number of worse solutions 

before convergence was 300 and the temperature-lowering 

coefficient was set at 0.95. 

The first solution was obtained by a random procedure and 

the corresponding value of the evaluation function was larger 

than 31.4.10
9
 €. This large value is very much determined by 

penalties on violated constraints. The graph in Figure 2 

illustrates the evolution of the evaluation function for the 

current solution and for the so far best identified solution. 

After the first thousand iterations the evaluation function 

decreased to about 1.4.10
9
 €, that is decreased by about 30.10

9
 

€. This indicates that it was possible to identify solutions not 

violating any constraint and also completely supplying the 

demand without using the fictitious generator representing 

Energy Not Supplied. In this case, the simulation ends after 

14130 iterations and the temperature is lowered till 0.243. The 

final schedule displays a relatively large concentration of 

maintenance actions in the period from week 14 to 23. This is 

due to fact that in these weeks the energy demand to be 

supplied by thermal stations is more reduced because there are 

larger inputs from hydro stations and wind parks. 

 

 
 
Fig. 2. Evolution of the Evaluation Function along the iterative process. 

C.  Results for Simulation 2 

In the second simulation we admitted that some units were 

not available in some weeks. For instance, one of the CCGT 

units was not available from week 45 to 52, one coal station 

was not available from week 45 to 52, one fuel station was not 

available from week 16 to 22 and another fuel station was not 

available from week 30 to 37. Apart from that, for some 

stations we specified values for −
kt  and for +

kt  different from 1 

and from 52, respectively. This means that we specified 

preferences for the scheduling of their maintenance actions. 

For instance, for one CCGT we specified 20t
k

=+ , for another 

CCGT unit we specified 30t
k

=+ , for one fuel unit we specified 

30tk =−  and 50t
k

=+  and for another fuel station we specified 

20tk =−  and 40t
k

=+ . The graph in Figure 3 shows the evolution 

of the Evaluation Function after the first two thousand 

iterations. As in Simulation 1, in the beginning the value of the 

Evaluation Function is very large due to penalties on violated 

constraints and also due to the fact that there is Energy Not 

Supplied. As the process goes on, constraint violations are 

eliminated and Energy Not Supplied comes to zero. The 

iterative process ends after 23997 iterations and the 

temperature is lowered to 0.110. Finally, Table II shows the 

final maintenance schedule for the 52 weeks of the year. This 

schedule still shows a large concentration of maintenance 

actions from week 14 to 25 because the demand values and the 

inputs from hydro and wind parks are the same ones that were 

used in the first simulation. 

 

 
 

Fig. 3. Evolution of the Evaluation Function along the iterative process. 
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Table II – Final maintenance schedule obtained for Simulation 2 (Part 1) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Coal1                           

Coal2                           

Coal3                           

Coal4                           

Coal5                           

Coal6                           

Coal7                           

Coal8                           

CCGT1                           

CCGT2                           

CCGT3                           

CCGT4                           

CCGT5                           

CCGT6                           

CCGT7                           

CCGT8                           

Fuel1                           

Fuel2                           

Fuel3                           

Fuel4                           

Fuel5                           

Fuel6                           

Fuel7                           

Fuel8                           

Fuel9                           

Fuel10                           

Fuel11                           

Diesel1                           

Diesel2                           

Table II – Final maintenance schedule obtained for simulation 2 (Part 2) 

 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 

Coal1                           

Coal2                           

Coal3                           

Coal4                           

Coal5                           

Coal6                           

Coal7                           

Coal8                           

CCGT1                           

CCGT2                           

CCGT3                           

CCGT4                           

CCGT5                           

CCGT6                           

CCGT7                           

CCGT8                           

Fuel1                           

Fuel2                           

Fuel3                           

Fuel4                           

Fuel5                           

Fuel6                           

Fuel7                           

Fuel8                           

Fuel9                           

Fuel10                           

Fuel11                           

Diesel1                           

Diesel2                           

 

VII.  CONCLUSIONS 

In this paper we addressed the problem of building good 

quality generator maintenance schedules given the relevance of 

this topic in the context of the advent of competition in the 

electricity sector. This is a complex optimization problem 

formulated as a mixed-integer problem for which we applied 

Simulated Annealing, given its abilities to address 

combinatorial problems and its easiness of implementation. 

The formulation minimizes the generation cost along the 

maintenance planning horizon and it implicitly includes a 

reliability measure when penalizing non zero values of Energy 

Not Supplied. The problem integrates constraints related with 

the continuity of the maintenance actions, with the limited 

number of crews for some generation technologies and with 

the preferences of the Decision Maker to locate some 

maintenance actions along the year. The Simulated Annealing 

application shows good performance and it is able to produce 

good maintenance schedules with short computation times. 
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