
Design and implementation of an IDE for

learning programming languages using a

gamification service

José Carlos Paiva, José Paulo Leal and Ricardo Queirós

December 18, 2017

Abstract

This chapter presents the architecture and design of Enki, an Inte-
grated Development Environment (IDE) for learning programming lan-
guages on Massive Open Online Courses (MOOCs). This environment
can be used as a tool by a Learning Management System (LMS) and a
typical LMS such as Moodle can launch it using the Learning Tool In-
teroperability (LTI) API. Student authentication tokens are passed via
LTI, thus integrating Enki in the single sign-on domain of the academic
institution. The proposed tool has a web user interface similar to those of
reference IDEs, where the learner has access to different integrated tools,
from viewing tutorial videos, to solving programming exercises that are
automatically evaluated. Enki uses several gamification strategies to en-
gage learners, including generic gamifications services provided by Odin
and the sequencing of educational resources. The course content (videos,
PDFs, programming exercises) is progressively disclosed to the learner as
he successfully completes exercises. This is similar to what happens in a
game, where new levels are unlocked as the previous are completed, thus
contributing to the sense of achievement.

1 Introduction

Environments for learning programming languages have very precise require-
ments. Students need editors and compilers of the languages they are learning,
in specific versions. If students attend practical classes in a lab then it is fairly
easy to ensure they all have access to all the tools they need. However, if the stu-
dents are enrolled in a MOOC, they must install themselves these tools on their
own computers or devices. Installing software such as compilers is too complex
for many students of introductory programming courses, and some may even
use devices where these installation is not feasible, such as in tablets.

Enki is a programming learning environment designed for students enrolled
in MOOCs. It integrates several features surveyed in Section 2, which are
commonly found in e-Learning environments. It provides a user interface de-
ployed on the web with automated assessment running on a remote server and
was designed to interact with several e-Leaning systems. The most common of
these systems is the Learning Management Systems (LMS) that is interlinked

1

with Enki using the LTI specification. Enki communicates also with more spe-
cialized e-learning systems, namely with a content sequencing engine named
Seqins. However, the most distinctive interoperability feature of Enki is the use
of a gamification service.

The use of game concepts and mechanics in eLearning is an effective way
to engage learners. Techniques and tools that have proven their effectiveness in
computer games are routinely exploited in other areas of software development.
The use of this approach led to the concept of gamification as a service, provided
by major players such as Google and Microsoft. These services leverage on their
large user base to provide support for points, leaderboards and badges, requiring
a specific authentication from the client application.

However, e-learning systems are typically deployed in environments with a
single sign-on managed by an academic institution that should not require stu-
dents to have an account with a third party. Odin is a gamification service
designed to circumvent this obstacle. It retains the salient features of the gami-
fication services of reference without requiring registration of the end users. Its
API is inspired in the Google Play Game Service (GPGS) with minor adjust-
ments regarding user identification.

Section 3 presents Enki. It starts with a description of the IDE inspired user
interface. Then, it describes the architecture of which Enki is the visible face. It
encompasses Mooshak, the automated evaluation system hosting Enki, as well
as gamification services, sequencing services and learning management systems.
It also details an use case that shows how these components are interconnected.
Section 4 concludes the chapter with an highlight of the main features of the
described system.

2 Background

Teaching computer programming is considered to be difficult and often inef-
fective (Robins, Rountree, & Rountree, 2003). Our tool, Enki, is a web-based
IDE designed to be integrated on MOOCs that allows users to learn computer
languages efficiently. To the best of the authors’ knowledge, there is no tool in
the literature that provides all the Enki features such as gamification features,
sequencing of educational resources, social collaboration, automatic evaluation
and standard LMS integration. So, this section surveys systems with some of
these features.

2.1 Gamification

Gamification aims to engage users by applying game principles (points, pro-
gression, competition), in non-game contexts. Gamification is currently being
applied to e-learning environments with relative success, as it helps students
to remain focused and thus to fulfill course goals. In this context, the most
widely used approach is to empower LMS with game mechanics such as badges,
achievements, leaderboards in order to boost engagement and to improve knowl-
edge retention. Some of the notable examples are Academy LMS, Axonify and
Matrix. Despite the success of this approach, the concept of loser may adversely
affect the motivation of students (Vansteenkiste & Deci, 2003).

2

Codeacademy (Ryzac, 2012) is an online interactive platform that offers free
coding classes in several programming languages. The programming courses
are organized into lessons, consisting of sequences of exercises. The exercises
are composed by a statement, a set of instructions and a skeleton exercise to be
completed. Each exercise completed gives students one point and the completion
of a lesson is registered as an achievement. Students are also rewarded with
badges for attaining specific number of points or completing certain lessons or
courses, which they can share on social networks such as Facebook.

PeerSpace (C. Li & Chasteen, 2013) is an online social network based learn-
ing environment to engage students in collaborative learning. The environment
has a strong peer support, that leave students more comfortable willing to share
knowledge and experiences, exchange ideas, and seek help. PeerSpace has a set
of learning activities such as peer code review, group wiki-based exercises, and
self-paced quizzes that encourage students to help and learn from each other.
Study results show that students became more active in social activities.

Peer 2 Peer University (P2PU) (Ahn, Butler, Alam, & Webster, 2013) is an-
other environment defined as a social computing platform that promotes peer-
created and peer-led online learning environments. In P2PU, learners can join,
complete and leave challenges at any time. They can also earn badges, associ-
ated with learning tasks and courses, which are based on Mozilla Open Badges
framework1. P2PU also promotes social collaboration by allowing any stake-
holder to create a course.

In short, nowadays gamification is applied in computer programming learn-
ing online environments by including game mechanics such as badges, achieve-
ments and leaderboards in order to maintain students’ motivation.

2.2 Sequencing of Educational Resources

In the e-learning realm, the learner satisfaction when using interactive learning
environments is influenced by the type of learning experience that the environ-
ment provides. Existing adaptive educational hypermedia systems have been
using learning resources sequencing approaches in order to address the issues
previously focused. These systems typically implement a rule-based sequencing
approach based on a two steps procedure: they generate a sequence of con-
cepts that matches the learning goal and then select learning resources for each
concept of that sequence.

Most of the learning environments offer the same learning paths and re-
sources to students, regardless of their prior knowledge, goals, progress or prefer-
ences which has a negative impact on their motivation (Stewart, Cristea, Brails-
ford, & Ashman, 2005).

Karampiperis (Karampiperis & Sampson, 2005) presented an alternative
approach since it first generates all possible learning paths that match a specific
learning goal. After that, it adaptively selects the desired one, based on the use
of a decision model that infers the suitability of learning resources for a specific
targeted learner.

Brusilovsky (Brusilovsky & Millán, 2007) introduced the user model facet
as an important piece to any adaptive system since the prior knowledge of
information related with the user that uses the system can help the system in
its guidance.

3

Fischer (Fischer, 2001) explored the use of metadata standards such as IEEE
LOM and Dublin Core with regard to course and exercises sequencing. The fol-
lowing subsections focus on other important types of e-learning specifications
such as sequencing and integration specifications that should be taken in con-
sideration when developing learning resources sequencing approaches.

Multibook (El Saddik, Fischer, & Steinmetz, 2001) is a web-based adaptive
hypermedia learning system for multimedia and communication technology, de-
veloped by the Technical University of Darmstadt and the University of Hagen.
Multibook aims to offer different lessons to different users, by storing a huge
number of compiled lessons or by dynamically generating lessons for each user.
It uses four dimensions for each user. Firstly, Multibook fills the user’s profile
with his demands and preferences. The Multibook system also keeps track of the
information that had been found and learned by users as well as the additional
materials requested while users work with the system. The knowledge base of
Multibook consists of two distinct concept spaces – Concept Space and Media
Brick Space. Concept Space contains a networked model of learning topics and
uses knowledge management approaches. Media Brick Space is used to store
atomic information units (media bricks) of different multimedia formats which
are interconnected via rhetoric relations. Media bricks use IEEE’s LOM scheme
and are described and treated as learning objects.

2.3 Social Collaboration On E-Learning

One of the main reasons that leads students to online course dropout is the
lack of social interaction. Most students play a passive role on learning envi-
ronments, often reduced to consult content provided by teachers which leads to
an unstimulating environment (Rodrigues, Sabino, & Zhou, 2011). The natural
characteristics of online social networks, such as content sharing and comments,
promote an active and stimulating learning environment(Li & Liu, 2009).

The Web assumes nowadays a mandatory place to learn how to program.
In fact, there are several interactive programming courses such as Codecademy,
Coursera, EDX, OdinProject, Udacity, Udemy, CodeSchool, and many others,
where we can get free or paid lessons in the form of HTML documents, PDF
or videos. These lessons formalize a predefined and validated learning path
so that the student does not feel lost in the panoply of educational resources
gravitating on the web. In order to increase retention rates in these courses,
these programming environments include features regarding social collaboration
allowing students of the same educational level to interact each others or with
tutors who have the responsibility to guide them. These features are essential
to motivate learners and enrich interactive programming courses as scaffolding
tools for computer programming learning.

SCALE (Supporting Collaboration and Adaptation in a Learning Environ-
ment) (Gogoulou, Gouli, Grigoriadou, Samarakou, & Chinou, 2007) is a web-
based educational environment with learning and assessment content. It en-
ables students to (1) work on individual or group activities proposed with re-
spect to their knowledge, (2) participate in self-assessment, peer-assessment or
collaborative-assessment activities, (3) work with embedded educational envi-
ronments, (4) use synchronous and asynchronous communication tools and (5)
have access to feedback components. Three studies (Gogoulou et al., 2007)
shown that this tool facilitates and supports learning and assessment.

4

2.4 Automatic Evaluation Of Exercises

The evaluation of exercises takes a large amount of time to teachers, and thus,
many universities have invested in the development of automated assessment
systems (Ala-Mutka, 2005; Prados, Boada, Soler, & Poch, 2005). Several of
these systems are only prepared for the assessment of programming assignments
(Juedes, 2003; Pisan, Richards, Sloane, Koncek, & Mitchell, 2003; Leal & Silva,
2003; Blumenstein, Green, Nguyen, & Muthukkumarasamy, 2004) and differ
on the extra features that they provide, such as multi-programming language
support, evaluation type (static or dynamic), feedback, interoperability, learning
context, security and plagiarism. However, there is also some work on automatic
evaluation of other types of exercises such as UML, Mathematics and Physics
(Prados et al., 2005; Ali, Shukur, & Idris, 2007; Harjula et al., 2008).

Mooshak (Leal & Silva, 2003) is a web-based system to handle program-
ming contests. It acts as a full contest manager and as an automatic judge for
programming contests. Mooshak supports submissions of exercises written in
several programming languages. The standard way of to evaluate a program
is to compile it and then execute it with test cases input files, comparing the
obtained output with the expected result (black-box approach). It also deals
with non-determinism using special correctors, which are invoked after each test
case execution. The feedback provided by this system consists of error status
(e.g. wrong answer, compilation error, execution errors).

2.5 Interoperability

Most of the learning institutions have already adopted a Learning Management
System (LMS) to organize and share their course resources, to deliver assign-
ments and/or to report the performance of the students (Dagger, O’Connor,
Lawless, Walsh, & Wade, 2007). So, interoperability among e-learning content
and components is increasingly becoming the key to the success of any e-learning
environment.

Many approaches to couple LMS with other applications have been proposed,
since defining LMS from scratch based on service-oriented architectures (Al-
Smadi & Gütl, 2010; Casquero, Portillo, Ovelar, Benito, & Romo, 2010), in-
cluding web services layers within the LMS infrastructure (Severance, Hardin,
& Whyte, 2008; Conde, Garćıa, Casany, & Alier, 2010) or providing support for
interoperability specifications (Leal & Queirós, 2011b).

The latter approach is primarily based on IMS specifications, namely the LTI
(Learning Tools Interoperability) specification that facilitates the integration
between LMS and external applications. The TSUGI framework 1 is a recent
proposal to simplify the implementation of LTI tools.

3 Implementation

This section describes the implementation of Enki, a web-based IDE for learning
programming languages which integrates several services to ease programming
learning. Enki blends assessment and learning, presenting content, from hyper-
text to video, as well as exercises, in an adaptive and engaging way.

1http://csev.github.io/tsugi/

5

This IDE makes use of gamification to engage students in the learning pro-
cess, interacting with gamification services to support the creation of leader-
boards, reward students for their achievements, among others. It also integrates
a service for sequencing educational resources to provide different learning paces
according to students’ capabilities. The exercises and assessment are, typically,
programming exercises. The system that hosts Enki includes also contains in-
terfaces for teachers to author and manage both, exercises and content, as well
as to browse assessment results and student profiles.

The next subsections present the graphic user interface and architecture of
Enki and its main components, and describe an use case.

3.1 Graphic User Interface

Enki can also be described as an entry level IDE, a scaffolding tool to support the
progress of students towards more complex environments and tools. It borrows
from IDEs the characteristic graphic user interface, organized in regions which
contain several overlapping windows organized using tabs. The layout scheme
for these regions locates them roughly in the main directions of the compass:
north, south, east and west. Regions are resizeable and the windows they con-
tain can be moved among regions, according to the needs and preferences of
students.

Figure 1: Interface of Enki for students with different regions highlighted in
different colors

Enki’s GUI is composed of 5 regions located in the west, center, south,
northeast and southeast regions of the screen. This regions are easily mapped
to those existent in an IDE.

The west region, with a purple highlight in Figure 1, contains, by default,
a resource browser. In known IDEs, such as Eclipse or NetBeans, this region
contains browsers that provide different views of the workspace, either organized
in projects, packages and classes, or organized in directories and files. In Enki,
this region is used for browsing pedagogical resources using a tree widget that
mimics those used by IDE browsers.

6

The resource browser is a particularly important part of Enki’s GUI as it
drives student interaction by presenting both the course structure and content.
The view of course unfolds as the student progresses throughout the course.
This view is mediated by Seqins (described in subsection 3.2). Tree leaves may
hold educational resources of different types: text (HTML or PDF), multimedia
and activities (exercises). They are presented in the tree with an icon reflecting
its type and a color depending on its state relative to the student: available,
solved/seen, unavailable or recommended.

The center region, highlighted in magenta in Figure 1, is the main region of
Enki’s GUI. The expository and evaluative resources selected in the browser will
be open, by default, in this region, in one or more tabs. Expository resources
are presented in specialized viewers (eg: a sequence of steps can be illustrated
by an embed video hosted in YouTube, and reference material can be presented
in PDF or HTML formatted pages). On the other hand, evaluative resources
open several windows: to show the exercise statement, to edit a solution and to
evaluate it. Currently Enki supports two editors for different kinds of computer
science languages: a code editor for programming languages such as Java or
C#, and a diagram editor for diagrammatic languages such as EER or UML.

The northeast region, highlighted in yellow in Figure 1, aggregates gami-
fication related windows, such as the leaderboard and the achievements, and
windows that global or personal progress, such as problem statistics and profile
data. These windows are not always present, it depends on the selected resource
type. The majority of the information presented in this region is provided by
Odin and Seqins (both are described in subsection 3.2).

The southeast region, by default, is just available in exercises and activities.
In this case, it contains the window to write input test cases to execute with
the exercise, where corresponding outputs are later on presented, and buttons
to validate or submit the solution.

The windows presented in the south region (highlighted in green in Figure 1)
depend on the selected resource type. In exercises and activities, three windows
are shown in different tabs: the observations window which contains automated
feedback on an exercise, the error list window that summarizes the compila-
tion/syntax errors and warnings, and a window that allows the student to rate
and/or comment a resource. This last window is also shown on educational
resources, as well as one with links to related resources.

3.2 Architecture

Enki is a part of the Mooshak 2.0, the new version of Mooshak (Leal & Silva,
2003), a web environment for automated assessment in computer science, both
in competitive and pedagogical learning. The new version is a complete re-
implementation of the code base with a wider variety of user interfaces for
different use cases. It has interoperability features that enable it to interact
with other e-learning tools such as LMSs.

Enki takes advantage of Mooshak 2.0 to have a pivotal role in a network of e-
learning systems, coordinating the communication with all external components
as depicted by the UML components diagram in Figure 2.

An important task for building the network of Enki is the choice of the
systems that would play each role. The next sub-subsections describe the types

7

LTI (IMS)

Exercise
Creator

Evaluator
Engine

Enki

Learning
Objects

Repository

Educational
Resources

Sequencing
Service

Learning
Management

System
REST API

Mooshak 2.0

REST API

Gamification
Service

Figure 2: Components diagram of the network of Enki where Mooshak 2.0 acts
as a tool provider for an LMS

of systems that compose the network presented in Figure 2, and introduce the
selected system(s) for each of the components.

3.2.1 Learning Management System (LMS)

An LMS is a software application for the administration, documentation, track-
ing and reporting; used in training programs, classrooms and online events
(Ellis, 2009). Typically it is used by two types of users’ groups: learners and
teachers. The learners can use the LMS to plan their learning experience and to
collaborate with their colleagues; the teachers can deliver educational content
and track, analyze and report the learner evolution within an organization.

Nowadays, an LMS plays a central role in any eLearning architecture. Still,
the LMS cannot afford to be isolated from other systems in an educational
institution. Thus, the potential for interoperability is an important, although
frequently overlooked, aspect of an LMS system (Leal & Queirós, 2011a).

The purpose of Enki is to integrate an e-learning ecosystem based on an LMS.
For this, Enki benefits from the interoperability mechanisms inherited from
Mooshak 2.0 to provide authentication directly from the LMS and to submit
exercises grades to the LMS, using the Learning Tools Interoperability (LTI)
specification.

Although the majority of the LMSs support LTI communication (Queirós,
Leal, & Paiva, 2016), only Moodle and Sakai are able to fully integrate with
Enki. Blackboard LMS is also capable of running Enki but it cannot receive
grading results.

3.2.2 Gamification Service (GS)

A Game-Backend-as-a-Service (GBaaS), which is abbreviated here as Gamifica-
tion Service (GS), is a subset of a Backend-as-a-Service (BaaS) - a cloud comput-
ing service model acting as a middleware component that allows developers to
connect their applications to cloud services via application programming inter-
faces (API) and software development kits (SDK) - that includes cross-platform
solutions for the typical game concepts. These GBaaS that can leverage on their
authentication services and massive user base already provide gamification fea-
tures. However, gamification services that rely on external authentication are

8

not adequate for a network of e-learning systems which already operates on a
single sign-on ecosystem.

Since there was no service fulfilling the requirements of the network of Enki,
a new gamification service was developed. This service – called Odin – (Paiva,
Leal, & Queirós, 2015) is inspired in the Google Play Game Service (GPGS)
but with a different approach regarding authentication. Institutions, rather
than end-users, are the ones that require authentication. The communication
with Odin is made through its REST API, similar to the GPGS API2.

3.2.3 Educational Resources Sequencing Service
(ERSS)

The ERSS selected was Seqins (Queirós, Leal, & Campos, 2014). Seqins is a
sequencing tool of digital educational resources that includes a flexible sequenc-
ing model that fosters students to learn at different rhythms. Enki feds Seqins,
through its REST API, with precedence among content units, assessment re-
sults and students’ progress and Seqins provides an XML representation of the
resources to present to the current student.

3.2.4 Evaluator Engine (EE)

The purpose of an EE is to mark and grade exercises. In this network, an EE
should perform four tasks: (1) receive a reference to the exercise, an attempt
to solve it (a program) and a reference to the student submitting the attempt,
(2) load the exercise from the LOR (possibly itself) using the given reference,
(3) compile the solution and run the tests, related to the exercise, against the
attempt of the student and (4) produce an evaluation report with the classifi-
cation, feedback and, possibly, corrections.

The EE system is provided by Mooshak 2.0. As in its previous version, the
main feature is the automatic evaluation of exercises, adding support for differ-
ent exercise types and better feedback. For the Enki purposes, this evaluator
suffered some minor changes to be less strict.

3.2.5 Exercise Creator (EC)

An EC must allow teachers to create a complete exercise package, containing a
statement, a solution, tests, skeletons, and a manifest file describing the contents
of the package. This package must follow the same package specification as the
LOR for programming exercises.

This kind of tool is offered by Mooshak 2.0, which also stores its exercises
on its own repository.

3.2.6 Learning Objects Repository (LOR)

A Learning Objects Repository (LOR) is a system that stores educational re-
sources and enables educators to share, manage and use them. These resources
(or Learning Objects) are small, self-contained and reusable educational units
which, typically, have additional metadata to catalog and search them. The
system that plays the role of a LOR in the network of Enki is also Mooshak 2.0.

2https://developers.google.com/games/services/web/api

9

3.3 Use Case

A typical use of Enki by a student starts with its launch from the LMS and
involves a submission of a solution to a problem. The main interactions that
these actions trigger are summarized in Figure 3.

LMS LOR GSERSS EEEnki / Mooshak 2.0Client

Enters in the activity Launch (contestId,
studentInfo)

Redirect to
appropriate UI

Validate login

Redirect client

getResources(course, student)

List of Resources

getExercise(ID)

Exercise

evaluate(problem, solution)

EvaluationResult

updateStudentsResourceState

List of ResourcesUpdates

submitScore(student, score)

SubmitScoreResponse

getResources(course)

List of Resources

submitGrade(grade)

result

Figure 3: Sequence diagram of an use case of Enki

Firstly, after the student enters in the activity presented in the LMS, the
LMS will send an LTI request, with the available information of the student
and the id of the course, to the LTI authentication servlet of Mooshak 2.0. This
servlet parses the LTI request using a Java package which implements both sides
of the LTI communication – LTI Wrapper (Queirós et al., 2016) –, authenticates
the student and invokes the appropriate interface, if the authentication succeeds.

While the interface is built, a Remote Procedure Call (RPC) is made to the
server side of Enki requesting the resources to present to the student. Enki
answers this request by performing a similar request to the ERSS and giving
back the response, an XML formatted tree of resources with the state of each
resource to the student annotated.

Once the student selects an evaluative resource, an RPC call is made to the
LOR requesting the problem. The LOR responds with the statement, skeletons
and public test cases of the requested problem. After solving the exercise, the
student submits his solution to the EE – Mooshak 2.0 – through an RPC call
and gets the feedback. After the evaluation, Enki performs three actions: (1)
the result and an identifier of the student is sent through HTTP POST to the
ERSS, which answers with a list of updated resources, (2) a score submission
request is sent to the GS and (3) the grade is submitted to the LMS.

The communication with REST APIs of the ERSS and the GS is made
through Jersey Core Client, which is a part of Jersey3 - an open-source frame-
work that is the reference implementation of the Java API for RESTful Web
Services, extending it with additional features and utilities to further simplify

3https://jersey.java.net/

10

RESTful service - to easily create a client that can communicate with REST
services.

4 Conclusion

Existent environments for learning programming languages have a lot of specific
requirements, which makes its installation and usability too complex for many
students enrolled in introductory programming courses. The installation of these
environments may not even be feasible in some devices, such as tablets.

This chapter presents the architecture and design of Enki, a web-based IDE
for learning programming languages in an adaptive and engaging way. This IDE
resorts to gamification services to support the creation of leaderboards, reward
students for their achievements, among others, in order to engage the students in
the learning process. It also mimics game levels by integrating with a service for
sequencing educational resources in different rhythms to heterogeneous students.

Enki provides a user interface deployed on the web, with programming tools,
running on a remote server. Thus, it does not have specific requirements and
does not require installation. Its user interface is also similar to those of tradi-
tional IDEs, such as Eclipse or NetBeans, so, it can be seen as a scaffolding tool
to support the progress of the students to more complex environments.

Enki and its network will be subject to improvements. The evaluation feed-
back will be the major focus point in the next version. Currently, the feedback
provided is only based on tests, which is not adequate to introduce students to
programming. The next version will benefit of a new improvement to Mooshak
2.0, concerning the static analysis of code, to provide richer feedback to students.
Also, the ERSS system will include a long-term recommendation component.
This component will recommend resources to students with the final goal set to
pass the final evaluation with the best score possible within the available time
left to the end of the course and the personal characteristics of the student.

References

Ahn, J., Butler, B. S., Alam, A., & Webster, S. A. (2013). Learner participation
and engagement in open online courses: Insights from the peer 2 peer
university. MERLOT Journal of Online Learning and Teaching , 9 (2),
160–171.

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for
programming assignments. Computer science education, 15 (2), 83–102.

Ali, N. H., Shukur, Z., & Idris, S. (2007). Assessment system for uml class
diagram using notations extraction. International Journal on Computer
Science Network Security , 7 , 181–187.

Al-Smadi, M., & Gütl, C. (2010). Soa-based architecture for a generic and
flexible e-assessment system. In Education engineering (educon), 2010
ieee (pp. 493–500).

Blumenstein, M., Green, S., Nguyen, A., & Muthukkumarasamy, V. (2004). An
experimental analysis of game: a generic automated marking environment.
In Acm sigcse bulletin (Vol. 36, pp. 67–71).

11

Brusilovsky, P., & Millán, E. (2007). The adaptive web: Methods and strategies
of web personalization. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.),
(pp. 3–53). Berlin, Heidelberg: Springer Berlin Heidelberg.

Casquero, O., Portillo, J., Ovelar, R., Benito, M., & Romo, J. (2010). iple
network: an integrated elearning 2.0 architecture from a university’s per-
spective. Interactive Learning Environments, 18 (3), 293–308.

C. Li, R. H. U., Z. Dong, & Chasteen, M. (2013). Engaging computer science
students through gamification in an online social network based collabo-
rative learning environment. Int. J. Inf. Edu. Technol., 3 (1), 72–77.

Conde, M. Á., Garćıa, F. J., Casany, M. J., & Alier, M. (2010). Applying web
services to define open learning environments. In Database and expert
systems applications (dexa), 2010 workshop on (pp. 79–83).

Dagger, D., O’Connor, A., Lawless, S., Walsh, E., & Wade, V. P. (2007).
Service-oriented e-learning platforms: From monolithic systems to flexible
services. Internet Computing, IEEE , 11 (3), 28–35.

Ellis, R. K. (2009). Field guide to learning management systems.
El Saddik, A., Fischer, S., & Steinmetz, R. (2001). Reusable multimedia content

in web-based learning systems. IEEE Multimedia, 8 (3), 30–38.
Fischer, S. (2001, March). Course and exercise sequencing using metadata in

adaptive hypermedia learning systems. J. Educ. Resour. Comput., 1 (1es).
Retrieved from http://doi.acm.org/10.1145/376697.376700 doi: 10
.1145/376697.376700

Gogoulou, A., Gouli, E., Grigoriadou, M., Samarakou, M., & Chinou, D. (2007).
A web-based educational setting supporting individualized learning, col-
laborative learning and assessment. Educational Technology & Society ,
10 (4), 242–256.

Harjula, M., et al. (2008). Mathematics exercise system with automatic assess-
ment.

Juedes, D. W. (2003). Experiences in web-based grading. In Frontiers in
education, 2003. fie 2003 33rd annual (Vol. 3, pp. S3F–27).

Karampiperis, P., & Sampson, D. (2005). Adaptive learning resources sequenc-
ing in educational hypermedia systems. Educational Technology & Society ,
8 , 128–147.

Leal, J. P., & Queirós, R. (2011a). A comparative study on lms interop-
erability. In R. Babo & A. Azevedo (Eds.), Higher education institu-
tions and learning management systems: Adoption and standardization.
IGI-Global. Retrieved from http://www.igi-global.com/bookstore/

titledetails.aspx?titleid=50529\&detailstype=description doi:
10.4018/978-1-60960-884-2

Leal, J. P., & Queirós, R. (2011b). Using the learning tools interoperability
framework for lms integration in service oriented architectures.

Leal, J. P., & Silva, F. (2003). Mooshak: a web-based multi-site pro-
gramming contest system. Software: Practice and Experience, 33 (6),
567–581. Retrieved from http://dx.doi.org/10.1002/spe.522 doi:
10.1002/spe.522

Li, M., & Liu, Z. (2009). The role of online social networks in students’ e-
learning experiences. In Computational intelligence and software engi-
neering, 2009. cise 2009. international conference on (pp. 1–4).

Paiva, J. C., Leal, J. P., & Queirós, R. (2015). Languages, applications and
technologies: 4th international symposium, slate 2015, madrid, spain,

12

june 18-19, 2015, revised selected papers. In J.-L. Sierra-Rodŕıguez,
J.-P. Leal, & A. Simões (Eds.), (pp. 194–204). Cham: Springer In-
ternational Publishing. Retrieved from http://dx.doi.org/10.1007/

978-3-319-27653-3 19 doi: 10.1007/978-3-319-27653-3 19
Pisan, Y., Richards, D., Sloane, A., Koncek, H., & Mitchell, S. (2003). Submit!

a web-based system for automatic program critiquing. In Proceedings of
the fifth australasian conference on computing education-volume 20 (pp.
59–68).

Prados, F., Boada, I., Soler, J., & Poch, J. (2005). Automatic generation and
correction of technical exercises. In International conference on engineer-
ing and computer education: Icece (Vol. 5).

Queirós, R., Leal, J. P., & Campos, J. (2014). Sequencing educational resources
with seqins.

Queirós, R., Leal, J. P., & Paiva, J. C. (2016). Integrating rich learning appli-
cations in lms. In State-of-the-art and future directions of smart learning
(pp. 381–386). Springer.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer Science Education,
13 (2), 137-172. Retrieved from http://www.tandfonline.com/doi/abs/

10.1076/csed.13.2.137.14200 doi: 10.1076/csed.13.2.137.14200
Rodrigues, J. J., Sabino, F. M., & Zhou, L. (2011). Enhancing e-learning

experience with online social networks. IET communications, 5 (8), 1147–
1154.

Ryzac. (2012). Codeacademy. Retrieved from http://www.codecademy.com/

Severance, C., Hardin, J., & Whyte, A. (2008). The coming functionality mash-
up in personal learning environments. Interactive Learning Environments,
16 (1), 47–62.

Stewart, C., Cristea, A. I., Brailsford, T., & Ashman, H. (2005). ’authoring
once, delivering many’: creating reusable adaptive courseware.

Vansteenkiste, M., & Deci, E. L. (2003). Competitively contingent rewards
and intrinsic motivation: Can losers remain motivated? Motivation and
Emotion, 27 , 273-299. Retrieved from http://dx.doi.org/10.1023/A:

1026259005264 (10.1023/A:1026259005264)

5 Additional Reading

Paiva, J. C., Leal, J. P., & Queirós, R. (2015). Languages, applications and
technologies: 4th international symposium, slate 2015, madrid, spain, june
18-19, 2015, revised selected papers. In J.-L. Sierra-Rodŕıguez, J.-P. Leal,
& A. Simões (Eds.), (pp. 194–204). Cham: Springer International Pub-
lishing. Retrieved from http://dx.doi.org/10.1007/978-3-319-27653

-3 19 doi: 10.1007/978-3-319-27653-3 19

Queirós, R., Leal, J. P., & Paiva, J. C. (2016). Integrating rich learning appli-
cations in lms. In State-of-the-art and future directions of smart learning
(pp. 381–386). Springer.

Queirós, R., Leal, J. P., & Campos, J. (2014). Sequencing educational resources
with seqins.

13

Paiva, J. C., Leal, J. P., & Queirós, R. (2016). Enki: A pedagogical services
aggregator for learning programming languages. (in press)

6 Key Terms and Definitions

Gamification: the concept of applying game mechanics to engage and motivate
people to achieve their goals.

Interoperability: the ability of a system to work with or use parts of another
system.

Integrated Development Environment (IDE): a software application that
provides facilities for software development. An IDE typically has a source
code editor and build automation tools.

Sequencing of Educational Resources: presenting educational resources one
after another.

Social Collaboration: the process of help and share information with other
people to achieve a common goal.

Massive Open Online Course (MOOC): a course available over the Inter-
net, without charge, to an unlimited number of students.

Scaffolding Tool: a temporary tool used to support the progress of a big
change.

14

