
Performance Evaluation of Statistical Functions

André Rodrigues˚, Carla Silva˚, Paulo Borges:, Sérgio Silva:, Inês Dutra;
˚INESC TEC, Portugal
:NLPC Lda., Portugal

;CRACS INESC TEC and University of Porto, Portugal

Abstract—Statistical data analysis methods are well known
for their difficulty in handling large number of instances or
large number of parameters. This is most noticeable in the
presence of “big data”, i.e., of data that are heterogeneous,
and come from several sources, which makes their volume
increase very rapidly. In this paper, we study popular and well-
known statistical functions generally applied to data analysis,
and assess their performance using our own implementation
(DataIP)1, MatLab and R. We show that DataIP outperforms
MatLab and R by several orders of magnitude and that
the design and implementation of these functions need to be
rethought to adapt to today’s data challenges.

Keywords-data analysis; statistical functions; performance
evaluation; MatLab; R;

I. INTRODUCTION

As the amount of information grows more than exponen-

tially along the years, we start to face a big data challenge.

In order to process and analyze all these data, we need new

tools and algorithms that can cope with their heterogeneity

and volume. Statistical data analysis methods are well known

for their difficulty in handling large number of instances or

large number of parameters. Likewise, machine learning al-

gorithms may require large amounts of running-time. These

problems are most noticeable in the presence of “big data”,

i.e., of data that are heterogeneous, and come from several

sources, which makes their volume increase very rapidly.

Often just accessing the data may be a serious bot-

tleneck. These considerations motivated work on the so-

called “noSQL” data-bases, such as Google’s BigTable [1],

or the Apache Foundation’s Spark [2]. The latter supports

distributed data, and includes MLLib [3], an implemen-

tation of several machine learning algorithms. In contrast

to transaction oriented data-bases, statistical methods are

often applied to data repositories with read-only data, which

avoids data consistency overheads. Progress in DRAM tech-

nology has enabled manipulating large amounts of data in

main memory. However, these solutions require specialized

hardware and software to be able to handle massive amounts

of data. In general, in order to analyze data, most people

use traditional tools such as Excel, SPSS, MatLab or R.

Although these are very popular, they are not tailored to

handle large amounts of data. In this work, we show that

1DataIP is a R&D project from NLPC - Dataias. All contacts related to
this work should be addressed to: rd@dataias.com, http://www.dataias.com

we can process and analyze millions of instances, with

potentially hundreds of variables, faster than these systems,

with the same simplicity, and without the need of special-

ized resources, except the use of top-of-the-shelf multicore

machines.

We concentrate on the following bivariate and multivariate

analysis, which are most popular in data analysis: Chi-square

and Shapiro-Wilk tests, Pearson, Spearman and Kendall

correlations, linear and logarithmic regression, Wilcoxon,

Kolmogorov-Smirnov (K-S), T-student and Bartlett statisti-

cal tests. We also study the performance of calculating data

summaries. Our results are always superior to MatLab and R,

and our best result, for Chi-square, achieves a performance

75% better than R.

Our software is written in C/C++, and implements the

same functions available in MatLab and R, producing the

same results for the same inputs. Next, we describe the

main functions our software implements, discuss about im-

plementation issues, present our experimental methodology

and results, and finally, we conclude.

II. BACKGROUND AND METHODOLOGY

In a data mining process, an important issue is the pre-

processing phase. Data preparation and selection is relevant

for knowledge discovery. Next, we have the data analysis

phase, where usually we start to “know” the data using

descriptive and inferential statistics through univariate, bi-

variate and multivariate methods.

The major purpose of univariate analysis is to describe

the data. Univariate analysis is usually used in the first

descriptive stages of problem solving, being complemented

by more advanced, inferential bivariate or multivariate anal-

ysis. Descriptive statistics [4] describe and summarize data.

Univariate descriptive statistics describe individual variables.

Exploratory analysis of data gives us a summary statistics

of measures of Central Tendency, Dispersion and Shape of

the data.

Measures of central tendency locate a distribution of

data along an appropriate scale, such as: geometric mean,

harmonic mean, arithmetic average, median and mode. The

purpose of measures of dispersion is to find out how spread

out the data values are. Another term for these statistics is

measures of spread: interquartile range, percentiles, average

absolute deviation (or simply called average deviation),

2015 IEEE International Conference on Smart City/SocialCom/SustainCom together with DataCom 2015 and SC2 2015

978-1-5090-1893-2/15 $31.00 © 2015 IEEE

DOI 10.1109/SmartCity.2015.159

754

range, standard deviation and coefficient of variation. This

analysis is usually followed by measures of shape. The

measures of shape indicate the symmetry and flatness of

the distribution of a data sample. A distribution of data item

values may be symmetrical or asymmetrical. In this field

we have: variance, kurtosis, central moment of 3rd order

and Pearson asymmetry coefficients G1 and G2.

Bivariate analyses are conducted to determine whether

a statistical association exists between two variables, the

degree of association if one does exist, and whether one

variable may be predicted from another. It deals with causes

or relationships. The major purpose of bivariate analysis is

to: (1) Define the nature of the relationship, (2) Identify the

type and direction of the relationship, (3) Determine if the

relationship is statistically significant, and (4) Identify the

strength of the relationship.

In bivariate analysis we use nonparametric statistics [5],

given that our focus is on inferential statistics [6]. We

use the same hypotheses testing used in the univariate

analysis, as well as other tests specific to bivariate analysis

(Kolmogorov-Smirnov, Wilcoxon and T-test).

Multivariate studies are analogous to bivariate studies,

but involve multiple variables. Researchers could then use

multivariate statistical analysis to study the relationships

between all of the variables. Multivariate analytical tech-

niques symbolize a variety of mathematical models used to

measure and quantify outcomes, taking into account relevant

factors that can cause this relationship. The most common

is multiple regression analysis [7] whose objective is to

understand how the value of the dependent variable changes

when any of the independent variables is varied, while

the other independent variables are fixed, using multiple

response variables. With regression [8] we attempt to find a

function which models the data with the minimum error.

III. IMPLEMENTATION

Based on the whole data analysis process, we developed

a framework that can make use of tools for univariate,

bivariate, multivariate statistical analysis and also include

some machine learning methods. In this paper, we concen-

trate on the statistical methods. In a general context, knowl-

edge extraction is performed through exploratory analysis,

univariate, bivariate and multivariate, and using descriptive

and inferential statistics. We have optimized sequential and

parallel implementations of the methods. Moreover, we take

advantage of the fact that several statistical functions share

common data preprocessing operations, and execute them

only once to speedup execution. For example, correlation

functions usually sort the two variable values to be corre-

lated. We sort all variables beforehand, store the resulting

vectors, and reuse then whenever needed. We also store

minimum and maximum values, modes and medians, among

others.

The algorithms were developed in C/C++ and implement

well known functions used in R and MatLab.

We implemented all of those methods from scratch, in

C/C++, using the best algorithms found in the literature,

optimizing for performance, and removing redundant calcu-

lations. For example, as we have all functions integrated,

lots of calculations can be saved because they are common

to several methods. One example is sorting variable values,

which is performed just once. Memory usage is other impor-

tant issue, and we needed to organize our implementation to

minimize writes and memory allocation during calculations

(reads are always faster than writes). Another issue on the

implementation is the complexity of the algorithms. Our

implementations keep a maximum complexity of Opnlognq.

In order to get the most possible organized structure and

layer separation, we are using an object oriented structure

in C++.

Our most important optimization is on the calculation of

Kendall τ (correlations). This is known to have quadratic

complexity, but we use Knight’s algorithm [9], [10], that

calculates Kendall τ with Opnlognq complexity.

IV. PARALLELIZATION

Our parallel implementation runs on multicore machines.

We use openMP [11] for parallelization. In order to get

big chunks of processing and always get speedups avoiding

overheads, parallelism is used on the following steps:

‚ On calculating data summary, all statistics related to

this procedure are calculated in parallel, attribute by

attribute. If we have only one attribute, the calculations

are sequential, but if we have more than one, they are

performed in parallel.

‚ On calculating correlations, all pairs are calculated in

parallel. Each core processor calculates one pair with

all three correlations (Pearson, Spearman and Kendall).

‚ On multivariate analysis the idea is the same. Each core

calculates all analysis to each one of the permutations.

V. EXPERIMENTAL METHODOLOGY

We performed our experiments in three different ma-

chines: a plain multicore workstation with 4 cores (hy-

perthreaded allowing 8 threads to run simultaneously), 16

GBytes of memory and Linux Fedora 18 (Machine 1); a

Xeon server with 8 cores (16 threads), 24 GBytes of memory

and Fedora 20 (Machine 2); an IBM system x3755 with 6

cores, 48 GBytes of memory; and Windows Server 2012

Datacenter (Machine 3).

In order to apply the statistical analysis, we used two

datasets: real data collected from Hospital das Clı́nicas

(São Paulo, Brazil), consisting of around 200,000 patient

discharges (Dataset 1) with 26 variables, and a synthetic

dataset created with millions of instances, but with only two

variables because of memory constraints (this dataset alone

is almost 5 GigaBytes large) (Dataset 2).

755

We use Dataset 1, patient discharges, with different ver-

sions:

‚ 300 version: It is a subset with 300 rows, and 9 numeric

variables without nulls.

‚ 200k version: original dataset consisting of 201,879

discharge patients, and 9 numeric variables without

nulls

‚ 1M version: it is a replication in chunks of the original

dataset 200k in order to achieve one million instances,

with 6 numeric variables without nulls.

‚ 5M version: it is a replication in chunks of the original

dataset 200k, in order to achieve five million instances,

with 6 numeric variables without nulls.

‚ 10M version: it is a replication in chunks of the original

dataset 200k, in order to achieve ten million rows, with

6 numeric variables without nulls.

Dataset 2 is a synthetic dataset created to study the scala-

bility of our implementation when handling many millions of

instances. It has only two variables, due to the memory limits

of our machines. The dataset was generated with random

numbers between 0 and 1235. The type of data and range

do not affect results. The file size is 4.8 GBytes.
Most of our experiments were run with Dataset1 using

Machine1. Dataset2 ran in the last two machines (the

dual Xeon and the IBM servers, Machine2 and Machine3,

respectively). The experiment in Machine2 compares the

Kendall results running on Linux and Windows with only

one thread and a larger set of instances, as in Dataset2. The

experiment in Machine3 compares the execution of Kendall

on Oracle with our implementation. Kendall is highlighted

here because we use an algorithm whose complexity is

Opnlognq as compared with the quadratic implementations

of MatLab, R or Oracle.
We performed experiments for the summary, Chi-square

and Shapiro-Wilk tests, the three correlations (Pearson,

Spearman and Kendall), linear and logarithmic regression,

Wilcoxon, K-S, T and Bartlett statistical tests. Some exper-

iments were aborted by MatLab or R, because of lack of

memory or because they exceeded our maximum running

time limit.
All experiments in Machine1 and Dataset1 were run

with 1 and 4 threads. In our implementation, we measured

execution times necessary to execute each one of the

statistical functions, but because some operations need to be

computed only once (for example, sorting variable values),

this time is computed only once. A list of functions timed in

MatLab is: corr(var1,var2,’type’,’Pearson’),

corr(var1,var2,’type’,’Spearman’),

corr(var1,var2,’type’,’Kendall’), fitlm,

min, max, median, mode, mean, geomean,

harmmean, std, var, range, iqr, mad,

quantile, prctile, kurtosis, moment,

ranksum, kstest2, ttest2. A list of functions

timed in R is: chisq.test, shapiro.test,

cor(var1,var2,method="pearson"),

cor(var1,var2,method="spearman"),

cor(var1,var2,method="kendall"),

lm(var1 var2), summary(lm(var1 var2)),

min, quantile, median, mean, max, var, sd,

IQR, range, kurtosis, wilcox.test, ks.test,

t.test, bartlett.test.

Time to read the input data was not taken into account in

any of the experiments.

Shapiro-Wilk was not run for all dataset sizes, because the

algorithm only allows input sizes of at most 5000 rows [12].

Linear and logarithmic regression, and the Wilcoxon,

Kolmogorov-Smirnov (K-S), T-student and Bartlett statis-

tical tests are only applied to datasets that have strong

correlations between variables (correlation value greater than

0.75 with confidence greater than 95%). As this is true only

for the 300 dataset, results are shown just for this dataset

for these functions.

VI. EXPERIMENTS AND RESULTS

Tables I to IX show execution times, in seconds, for each

statistical function, using our implementation (DataIP (1)

– with a single thread, and DataIP (4) – with 4 threads),

MatLab and R, running on Machine1, applied to datasets

300, 200k, 1M, 5M and 10M.

A. Summary

Table I shows execution times for MatLab, R and our

implementation of the summary for 1 thread (DataIP (1))

and for 4 threads (DataIP (4)), with varying dataset sizes. All

experiments were run on Machine1. For this task, R is twice

as fast as MatLab. DataIP (1) is almost ninety times faster

than R, and almost two hundred times faster than MatLab.

If we look at the parallel implementation of DataIP, which

uses 4 threads, the speedup is almost double.

Table I
SUMMARY (TIME IN SECONDS).

300 200k 1M 5M 10M
MatLab 0.109624 1.215 2.733 73.835 -
R 0.05 0.529 2.778 19.716 46.713
DataIP (1) 0.000569 0.298 1.583 8.31 16.063
DataIP (4) 0.000319 0.153 0.814 4.01 8.32

DataIP with one thread (DataIP (1)) takes 0.000569 sec-

onds to compute the summary for the 300 dataset while the 4

threads version takes 0.000319 seconds, being 43.9% faster

than the sequential version. As we increase the dataset size,

this gain is maintained with DataIP with 4 threads keeping

an average speedup of 2 over the 1-thread version. Notice

that our parallelization is very simple and only computes

in parallel the summary of each attribute. As these datasets

have a small number of non-null attributes, we do not take

full advantage of the multi-threaded version, but still manage

756

to have an efficiency of almost 50% for all dataset sizes,

doubling the speed of the sequential version.
We do not have access to a parallelized MatLab toolbox,

but, even if the 4-threads version speedup of MatLab was

perfect, DataIP with 4 threads would still be almost 86 times

faster than MatLab with 4 threads to calculate the summary

for the 300 dataset. The same is true for the other dataset

sizes. If R were run in parallel with 4 threads and would have

perfect speedup, it would be 40 times slower than DataIP

(4).
Figure 1 shows how the three implementations compare in

terms of execution times, in seconds, as we vary the dataset

sizes.

●
●

●

●

0
20

40
60

Summary

Ti
m
e(
se
co
nd
s)

Matlab
R
DataIP(1)
DataIP(4)

● ●

●

●

●

● ●
●

●

●

● ● ●

●

●

300 200k 1M 5M 10M
File(lines)

Figure 1. Summary Execution times (seconds).

B. Chi-square test
We ran the chi-square test only in R, because the

chi2gof function of MatLab gives a result that is very

much different than R or our implementation. It looks like

it does something else more than just performing the chi-

square test.

Table II
CHI-SQUARE TEST (TIME IN SECONDS).

300 200k 1M 5M 10M
R 0.025 1.479 3.076 8.351 15.106
DataIP (1) 0.000250 0.259 1.285 6.288 12.597
DataIP (4) 0.000089 0.063 0.325 1.612 3.214

For this function we got better performances than for the

summary. Speedups are also higher. DataIP (4) has speedup

2.8 on 4 threads when compared with DataIP running with

a single thread, for the 300 dataset. When comparing with

R, DataIP (1) is 100 times faster and DataIP (4) is almost

281 times faster, for the 300 dataset.
Figure 2 shows how the three implementations compare in

terms of execution times, in seconds, as we vary the dataset

sizes.

●

●

●

●

●

0
5

10
15

Chi−Square test

Ti
m
e(
se
co
nd
s)

R
DataIP(1)
DataIP(4)

●
●

●

●

●

● ●
●

●

●

300 200k 1M 5M 10M
File(lines)

Figure 2. Chi-Square test execution times (seconds).

C. Shapiro-Wilk test

Table III
SHAPIRO-WILK TEST (TIME IN SECONDS).

300
R 0.073
DataIP (1) 0.000176
DataIP (4) 0.000147

The Shapiro-Wilk test performed again much better in

DataIP than in R (more than 400 times faster), but with

a modest speedup from 1 to 4 threads. This function is not

directly implemented in MatLab, that is why we do not show

results for MatLab.

D. Pearson Correlation

Table IV
PEARSON CORRELATION (TIME IN SECONDS).

300 200k 1M 5M 10M
MatLab 0.4286680.5829741.25086824.112243(aborted)
R 0.011 1.259 14.045 8.07 15.741
DataIP (1)0.0000260.0037800.022880 0.115164 0.238069
DataIP (4)0.0000250.0027090.018669 0.090914 0.197789

For the Pearson correlation we did not reach speedups

as good as the other statistical functions, running only 3.9%

faster for the 300 dataset, with just a drop of 1 microsecond.

For the 200k it achieves its best results (28.3% faster),

followed by 1M (18.4% faster), 5M (21.1% faster) and

finally 10M (16.9% faster).

E. Spearman Correlation

For the Spearman correlation we got the best speedup for

the 300 dataset (DataIP (1) is 2.3 times faster than DataIP

(4)). Speedups for the larger datasets are limited, but in

757

● ●

●

●

0
5

10
15

20
25

Pearson correlation

Ti
m
e(
se
co
nd
s)

Matlab
R
DataIP(1)
DataIP(4)

●

●

●

●

●

● ● ● ● ●● ● ● ● ●

300 200k 1M 5M 10M
File(lines)

Figure 3. Pearson Correlation.

Table V
SPEARMAN CORRELATION (TIME IN SECONDS).

300 200k 1M 5M 10M
MatLab 0.1477893.42845637.36695441.568466(aborted)
R 0.024 6.115 78.812 206.6 477.634
DataIP (1)0.0004130.048796 0.471813 2.792287 5.567729
DataIP (4)0.0001740.026701 0.277256 1.589052 3.276365

any case, the DataIP implementation largely outperforms

MatLab and R. The 10M dataset could not run on MatLab.

Figure 4 shows execution times as we increase the dataset

sizes.

● ●

● ●

0
10
0

20
0

30
0

40
0

Spearman correlation

Ti
m
e(
se
co
nd
s)

Matlab
R
DataIP(1)
DataIP(4)

●
●

●

●

●

● ● ● ● ●
● ● ● ● ●

300 200k 1M 5M 10M
File(lines)

Figure 4. Spearman Correlation.

F. Kendall Correlation

Regarding the Kendall correlation we got an overall good

speedup performance. For all dataset sizes we managed to

have an average of 2.5 speedup with 4 threads related to the

single threaded version. Once more, we can notice the long

Table VI
KENDALL CORRELATION (TIME IN SECONDS).

300 200k 1M 5M 10M
MatLab 0.45355817214.17513809.805(aborted)(aborted)
R 0.212 37927.22 (aborted) (aborted)(aborted)
DataIP (1)0.000535 0.202866 1.09301 6.625 14.143
DataIP (4)0.000480 0.075935 0.428808 2.616 5.687

processing times for MatLab and R. For the 200k, MatLab

took 4.8 hours and for the 1M, 3.8 hours. R took about

10.5 hours for the 200k, the worst case scenario we got in

our tests. Implementations of Kendall usually employ the

quadratic algorithm, but we use an Opnlognq complexity

version published many years ago [9]. This can partially

explain the poor performance achieved by MatLab and R.

●

●

●

0
10
00
0

20
00
0

30
00
0

Kendall correlation

Ti
m
e(
se
co
nd
s)

Matlab
R
DataIP(1)
DataIP(4)

●

●

● ● ● ● ●● ● ● ● ●

300 200k 1M 5M 10M
File(lines)

Figure 5. Kendall Correlation.

G. Linear and Logarithmic regression

Table VII
LINEAR AND LOGARITHMIC REGRESSION (TIME IN SECONDS).

300
MatLab 1.209489
R 0.032
DataIP (1) 0.000757
DataIP (4) 0.000449

For processing the two functions for linear and logarith-

mic regression, the speedup was 1.68 when running with 4

threads, for the 300 dataset. R runs the same regressions,

producing the same results, being two orders of magnitude

slower than DataIP.

H. Wilcoxon, K-S and T tests

Table VIII shows the execution times for the three

statistical tests we implemented: Wilcoxon, Kolmogorov-

Smirnov (K-S) and T tests. The speedup is modest and again

758

Table VIII
WILCOXON, K-S AND T TESTS (TIME IN SECONDS).

300
MatLab 0.123508
R 0.03
DataIP (1) 0.000188
DataIP (4) 0.000141

DataIP outperforms R and MatLab by at least two orders of

magnitude.

I. Bartlett test

Table IX
BARTLETT TEST (TIME IN SECONDS).

300
R 0.071
DataIP (1) 0.000004
DataIP (4) 0.000003

We ran the Bartlett test only in R, because the Bartlett

function of MatLab gives a result that is very much different

than R or our implementation. It looks like it does something

else more than just performing the test.

This test [13] ends our experiments and results on Ma-

chine1, for the patients discharge dataset. DataIP did not

achieve any speedup, but performed three orders of magni-

tude faster than R.

J. Kendall Correlations Performance on Big Data

In this section, we present results for the comparison

between the same software running on Linux and Windows,

using a larger number of instances (Dataset 2), on Machine

2. The dataset has 300 million instances. The tests are run

on a single thread, since the dataset has only two variables

and we parallelize the column operations.

Table X
KENDALL CORRELATIONS WITH DATAIP (TIME IN SECONDS).

300M
Windows 116.489
Linux 113.264

Linux is slightly faster than Windows. In both envi-

ronments our implementation performs well running the

Kendall correlation in less than 2 minutes. Unfortunately,

we could not load the dataset in R or MatLab.

K. Kendall Correlations on Oracle Database 12c enterprise

In this section we compare DataIP with the Oracle im-

plementation of Kendall, in Machine3, the Windows Server

2012 Datacenter using Dataset2.

The Oracle implementation has time complexity that is

probably quadratic. In order to perform this experiment, we

had to reduce our 300 million instances. We created two

smaller subsets: one with about 50 thousand instances and

another one with about 200 thousand instances.

Table XI
KENDALL CORRELATION (TIME IN SECONDS).

50k 200k
Oracle 12c Enterprise 426.46 6253.568
DataIP (1) 0.015 0.046

Table XI shows the results for this experiment. To get ex-

actly the same results, on the 50k subset, DataIP is 28430.7

times faster than Oracle 12c Enterprise, and on the 200k

subset is 135947.1 times faster than Oracle 12c Enterprise.

With larger datasets, we would even better results, since on

the Oracle 12c Enterprise the execution time grows faster

than on DataIP.

VII. CONCLUSION AND FUTURE WORK

Our main conclusion of this work is that traditional im-

plementations of basic statistical functions, crucial for data

analysis, need to be revisited, and better designed to meet

the requirements of larger datasets. We presented results of

a C/C++ implementation of many statistical functions and

show that, even for small datasets, well designed code can

achieve very good performance when compared with state-

of-the-art statistical software. Experiments running with 1

thread or 4 threads perform several orders of magnitude

faster than R or MatLab. Besides, we can achieve reasonable

speedups taking advantage of multicore, which MatLab and

R can also take, but, even with perfect speedups, would not

beat DataIP.

We would like to continue testing other functions, com-

paring our parallel implementation with parallel versions of

the same functions in R and MatLab, and improving our

parallel implementation, which, currently, achieves modest

speedups.

ACKNOWLEDGEMENTS

We are grateful to Prof. Domingos Alves, from Faculty of

Medicine of Ribeirão Preto, São Paulo, Brazil, who kindly provided

us with the patient discharge dataset. This work was supported by

NLPC, Lda (Proj. DATAIP Nb. 38667, 07/2012-SII&DT), IAP-

MEI/COMPETE/QREN/EUROPEAN UNION, Copyright c©2014

2015 NLPC – I.C.NLPC T.A.I.C.C.Gestão, LDA – All rights

reserved. Other funding, which supported attendance to the

DataCom conference, was provided by FCT – Fundação para

a Ciência e a Tecnologia (Portuguese Foundation for Science

and Technology) within project UID/EEA/50014/2013.

REFERENCES

[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: A distributed storage system for structured
data,” ACM Trans. Comput. Syst., vol. 26, no. 2, pp. 4:1–4:26,

759

Jun. 2008. [Online]. Available: http://doi.acm.org/10.1145/
1365815.1365816 1

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863113 1

[3] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. B. Tsai, M. Amde,
S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh,
M. Zaharia, and A. Talwalkar, “Mllib: Machine learning in
apache spark,” CoRR, vol. abs/1505.06807, 2015. [Online].
Available: http://arxiv.org/abs/1505.06807 1

[4] D. Rumsey, Statistics Essentials For Dummies, ser. –
For dummies. Wiley, 2010. [Online]. Available: https:
//books.google.pt/books?id=QBmsVY0p7YkC 1

[5] W. Conover, Practical Nonparametric Statistics, ser. Cram101
Series. Cram101 Incorporated, 2006. [Online]. Available:
https://books.google.pt/books?id=ouvPSgAACAAJ 2

[6] G. Casella and R. Berger, Statistical Inference, ser.
Duxbury advanced series. Duxbury Thomson Learning,
2008. [Online]. Available: https://books.google.pt/books?id=
ZpkPPwAACAAJ 2

[7] D. Montgomery and G. Runger, Applied Statistics and Prob-
ability for Engineers. John Wiley & Sons, 2010. [Online].
Available: https://books.google.pt/books?id= f4KrEcNAfEC
2

[8] T. Wonnacott and R. Wonnacott, Student workbook,
Introductory statistics for business and economics, fourth
edition and Introductory statistics, fifth edition. Wiley,
1990. [Online]. Available: https://books.google.pt/books?id=
HuUIAQAAMAAJ 2

[9] W. R. Knight, “A computer method for calculating kendall’s
tau with ungrouped data,” Journal of the American Statistical
Association, vol. 61, no. 314, pp. pp. 436–439, 1966.
[Online]. Available: http://www.jstor.org/stable/2282833 2, 5

[10] D. Christensen, “Fast algorithms for the calculation of
kendalls ,” Computational Statistics, vol. 20, no. 1, pp.
51–62, 2005. [Online]. Available: http://dx.doi.org/10.1007/
BF02736122 2

[11] R. Chandra, Parallel Programming in OpenMP, ser. High
performance computing. Morgan Kaufmann Publishers,
2001. [Online]. Available: https://books.google.pt/books?id=
18CmnqIhbhUC 2

[12] P. Royston, “Remark as r94: A remark on algorithm
as 181: The w-test for normality,” Journal of the
Royal Statistical Society. Series C (Applied Statistics),
vol. 44, no. 4, pp. 547–551, 1995. [Online]. Available:
http://www.jstor.org/stable/2986146 3

[13] M. S. Bartlett, “Properties of sufficiency and statistical tests,”
Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, vol. 160, no. 901, pp.
268–282, 1937. 6

760

